
Journal of Bioinformatics and Sequence Analysis Vol. 2(3), pp. 30-35, July 2010
Available online at http://www.academicjournals.org/JBSA
ISSN 2141-2464 ©2010 Academic Journals

Full length Research Paper

SEALI: A sequence alignment tool

Manoj Giri1*, Dipti Jindal2, Savita Kumari2, Sarla Kumari3, Devender Singh4, Jawahar Lal5 and
Neena Jaggi6

1Department of Applied Sciences, Haryana College of Technology and Management, Kaithal-136 027, India.

2Department of Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar- 125 004, India.
3Deparmtnet of Electronics and Communication Engineering, Haryana College of Technology and Management,

Kaithal-136 027, India.
4Department of Applied Sciences, Dayal Singh College, Karnal-132 001, India.

5Department of Applied Sciences, Markanda National College, Sahabad (M) 136 135, India.
6Department of Applied Sciences, National Institute of Technology, Kurukshetra-136 199, India.

Accepted 21 June, 2010

In this paper we propose a novel program for sequence alignment. This program has been developed in
PERL. The web interface uses CGI and front end for data input and viewing the result has also been
developed. This program counts the length of two sequences, aligns the two sequences, counts the
number of matches, mismatches, gaps and score and displays the possible alignment.

Key words: Sequnce alignment, SEALI tool, PERL, dynamic programming, DNA, adenine (A), guanine (G),
cytosine (C), thymine (T).

INTRODUCTION

Sequence alignment is by far the most common task in
Bioinformatics. A sequence alignment is a way of
arranging the primary sequences of DNA, RNA, or
protein to identify regions of similarity that may be a
consequence of functional, structural, or evolutionary
relationships between the sequences [Mount, 2004].
Sequence alignments are useful in bioinformatics for
identifying sequence similarity, producing phylogenetic
trees, and developing homology models of protein struc-
tures. Alignments are often assumed to reflect a degree
of evolutionary change between sequences descended
from a common ancestor [HTTP//www.wikipedia.
org/sequence_alignment//.].

There are three primary methods of producing pairwise
alignments namely dynamic programming, dotplot and
word method. The Needleman and Wunsch algorithm
was the first rapid method in the biological literature for
determining sequence homology (Needleman and
Wunsch, 1970). It was based on dynamic programming

*Corresponding author. E-mail: manojgiri1@rediffmail.com. Tel:
097295-73419. Fax: (01746) 280711.

and was used to align sequences globally. Smith and
Waterman algorithm yields local alignment (Smith and
Waterman, 1981). There are various tools for the
sequence analysis available in the public domain such as
FASTA, LALIGN and PRSS, BLAST, PipMaker, LAGAN,
ParAlign, BLAT, YASS and Nigila, etc (Lipman and
Pearson, 1985; Pearson, 1990; Altschul et al., 1990;
Schwartz et al., 2000; Brudno et al., 2003; Rognes, 2001;
Kent, 2002; Noe and Kucherov, 2004; Noe and
Kucherov, 2005; Cartwright, 2007; Wang and Jiang,
1994).

The present research has been carried out to develop a
simple sequence alignment tool using dynamic
programming which counts the length of two sequences,
aligns the two sequences, counts the number of matches,
mismatches, gaps and score and displays the possible
alignment.

METHODS AND IMPLEMENTATION

The SEALI program has been implemented in Perl script. The web
interface uses common gateway interfaces (CGI) and a front end
for data input and viewing the results has also been developed. The
script for web interfaces has been written in html. The hypertext

Two nucleotide sequences were entered

Spaces, newline characters and digits were
removed from the sequences

Length of two sequences was calculated

A matrix with one row more than the length of
the sequence1 and one column more than the

length of sequence2 was created

First row and first column were filled with zero

Each character of sequence1 was matched with
each character of sequence2 and score for

each cell in the matrix was calculated and also
the cell which contributes to it i.e. diagonal cell,

left or up cell was noted

The possible alignment was found

Score of alignment, number of matches,
mismatches and gaps were calculated

Figure 1. Pictorial representation of the steps followed
during workflow of SEALI.

transport protocol (HTTP) is used for data transport. The main
function of the program developed in the present work is to count
the length of two sequences, align the two sequences, count the
number of matches, mismatches, gaps, and score and display the
possible alignment. The nucleotide or gene sequence (DNA) con-
tains four nucleotide bases adenine (A), guanine (G), cytosine (C)
and thymine (T). The sequence of these bases comprises genetic
information. The complete nucleotide sequence is taken as a single
string. Two nucleotide sequences are taken as two strings. The
sequence of characters was given to computer program as input for
manipulating for the required purpose. The methods followed for
the functioning of the program is summarized as:

1. In the first step, two nucleotide sequences were given as input to
the program.
2. The program for alignment either global or local was chosen.
3. It was checked whether the entered sequences were correct or
not, that is the correct sequence should not contain any spaces or

Giri et al. 31

letter other than the four (A, G, C, and T).
4. The length of the two sequences was counted.
5. Alignment of two sequences was done.
6. Number of matches, mismatches, gaps and score were counted.
7. Results were displayed.

Pictorial presentation

The pictorial presentation for the SEALI has been shown in the
Figure 1.

Program code

The program code has been written in PERL language. With the
help of the coding, the SEALI tool runs and it takes the two
nucleotide sequences as input through web interface and counts
the length of two sequences, align the two sequences, counts the
number of matches, mismatches, gaps and score and display the
possible alignment. In this program there are two library files
namely;

global.lib and local.lib.
#!/usr/bin/perl
require "global.lib";
require "local.lib";
print"Content-type: text/html\n\n";
print"<html>";
print"<body>";
read(STDIN,$buffer,$ENV{'CONTENT_LENGTH'});
$a = $buffer;
#get the name and value for each form input
@array= split(/&/,$a);
foreach $array(@array)
{
#separate the name and value
($key,$value) =split(/=/,$array);
#convert +signs to space
$value =~tr/+/ /;
#convert hexadecimal to ASCII characters
$value=~ s/%([a-fA-F0-9][a-fA-F0-9])/pack("C",hex($1))/eg;
#store values in a hash called %form
$form{$key}=$value;
}
#print the algo you have selected
print"$form{'algo'}\t";
$b =$form{'algo'};
if($b eq 'needle')
{
 &global($form{'text1'} ,$form{'text2'});
}
else
{
&local($form{'text1'} ,$form{'text2'});
}
print"</body>";
print"</html>";

Coding of library files

global.lib
sub need1
{
$seq1 = $_[0];
$seq2 =$_[1];
my $match =2;

32 J. Bioinform. Seq. Anal.

my $mismatch =-1;
my $gap =-2;
print"(global alignment)
";
my @best_score;
$seq1 =~s/\n|\s*|\d*//gi;
print"$seq1
";
$seq2 =~s/\n|\s*|\d*//gi;
 print"$seq2
";
my $size1=length($seq1);
print"length of seq1 is : $size1
";
my $size2 = length($seq2);
print"length of seq2 is : $size2
";
print"
";
initialization
my @matrix;
$matrix[0][0] = 0;
for(my $j = 1; $j <= $size1; $j++) {
$matrix[0][$j] =0;
}
for(my $i = 1; $i <=$size2; $i++) {
$matrix[$i][0] = 0;
 for(my $j = 1; $j <=$size1; $j++) {
my ($diagonal_score, $left_score, $up_score);
calculate match score
my $letter1 = substr($seq1, $j-1, 1);
my $letter2 = substr($seq2, $i-1, 1);
if ($letter1 eq $letter2) {
$diagonal_score = $matrix[$i-1][$j-1] + $match;
}
else {
$diagonal_score = $matrix[$i-1][$j-1] + $mismatch;
}
calculate gap scores
$up_score = $matrix[$i-1][$j] + $gap;
$left_score = $matrix[$i][$j-1] + $gap;
choose best score
if ($diagonal_score >= $up_score)
{
if ($diagonal_score >= $left_score)
{
$matrix[$i][$j] = $diagonal_score;
$best_score[$i][$j] = "diagonal";
}
else
{
$matrix[$i][$j] = $left_score;
$best_score[$i][$j] = "left";
}
}
else {
if ($up_score >= $left_score) {
$matrix[$i][$j] = $up_score;
$matrix[$i][$j] = $up_score;
$best_score[$i][$j] = "up";
}
else {
$matrix[$i][$j] = $left_score;
 $best_score[$i][$j] = "left";
}
}

}
}

trace-back
my $align1 = "";
my $align2 = "";
start at last cell of matrix

my $j = $size1;

my $i = $size2;
while($i!=0 || $j!=0) {
if ($best_score[$i][$j] eq "diagonal") {
$align1 .= substr($seq1, $j-1, 1);
$align2 .= substr($seq2, $i-1, 1);
$i--;
$j--;
}
elsif ($best_score[$i][$j] eq "left") {
$align1 .= substr($seq1, $j-1, 1);
$align2 .= "_";
$j--;
}
elsif ($best_score[$i][$j] eq "up") {
$align1 .= "_";
$align2 .= substr($seq2, $i-1, 1);
$i--;
}
elsif($j==0)
{
$align1.="_";
$align2 .= substr($seq2,$i-1,1);
$i--;
}
elsif($i == 0)
{
$align1 .=substr($seq1,$j-1,1);
$align2 .="_";
$j--;
}
}
$align1 = reverse $align1;
$align2 = reverse $align2;
#score
@a =split(//,$align1);
@b = split(//,$align2);
$len= @a;
$sum=0;
$j=0;
$nomatch = 0;
$nomismatch = 0;
$nogap = 0;
for($i=0;$i<$len;$i++)
{
while($i==$j)
{
if($a[$i] eq $b[$i])
{
$sum =$sum+ $match;
$nomatch = $nomatch + 1;
}

elsif(($a[$i] eq "_")||($b[$i] eq "_"))
{
$sum = $sum + $gap;
$nogap = $nogap +1;
}
else
{
$sum = $sum+ $mismatch;
$nomismatch = $nomismatch +1;
}
$j++;
}
}
print" score: $sum
";

print" matches: $nomatch
";
print" mismatches: $nomismatch
";
print" gaps: $nogap
";
$l1 = length($align1);
$l2 = length($align2);
print"The possible alignment is:
";
$i=1;
for($i=1;$i<=$l1;$i++)
{
if($l1 >60)
{
$align1=~m/.{60}/;
print"$&
";
$align1= $';
$l1 = length($align1);
$align2=~m/.{60}/;
print"$&

";
$align2= $';
}
if($l1<=60)
{
print"$align1
";
print"$align2

";
last
}
}
}
1;

Coding of local.lib

sub water1
{
print"(local alignment)
";
$seq1= $_[0];
$seq2= $_[1];
my $match = 2;
my $mismatch = -1;
my $gap = -2;
initialization
my @matrix;
my @best_score;
$seq1 =~s/\n|\s*|\d*//gi;
print"$seq1
";
$seq2 =~s/\n|\s*|\d*//gi;
print"$seq2
";
$len1= length($seq1);
$len2= length($seq2);
print"length of sequence1 is $len1
";
print"length of sequence2 is $len2
";
$matrix[0][0] = 0;

for(my $j = 1; $j <= length($seq1); $j++) {
$matrix[0][$j] = 0;
}
for (my $i = 1; $i <= length($seq2); $i++) {
$matrix[$i][0] = 0;
fill
for(my $j = 1; $j <= length($seq1); $j++) {
my ($diagonal_score, $left_score, $up_score);
calculate match score

my $letter1 = substr($seq1, $j-1, 1);
my $letter2 = substr($seq2, $i-1, 1);
if ($letter1 eq $letter2) {
$diagonal_score = $matrix[$i-1][$j-1] + $match;
}

Giri et al. 33

else {
$diagonal_score = $matrix[$i-1][$j-1]+ $mismatch;

}
calculate gap scores
$up_score = $matrix[$i-1][$j] + $gap;
$left_score = $matrix[$i][$j-1] + $gap;
if ($diagonal_score <= 0 and $up_score <= 0 and $left_score <= 0)
{
$matrix[$i][$j] = 0;
}
choose best score
else{
if($diagonal_score >= $up_score) {
if ($diagonal_score >= $left_score) {
$matrix[$i][$j] = $diagonal_score;
$best_score[$i][$j]="diagonal";
}
else {
$matrix[$i][$j] = $left_score;
$best_score[$i][$j]="left";
}
} else {
if ($up_score >= $left_score) {
$matrix[$i][$j] = $up_score;
$best_score[$i][$j]= "up";
}
else{
$matrix[$i][$j]= $left_score;
$best_score[$i][$j]= "left";
}
}
}
}
}
my $max_score = 0;
my $min_score = 99;
my $s=0;
my $t=0;
my $u=0;
my @index1;
my @index2;
for(my $i=1;$i<=length($seq2);$i++)
{
for(my $j=1;$j<=length($seq1);$j++)
{
if($matrix[$i][$j]>= $max_score){
$max_score = $matrix[$i][$j];

$index1[$s] =$i;
$index2[$t] = $j;
$s++;
$t++;
}
if($matrix[$i][$j]< $min_score){
$min_score= $matrix[$i][$j] ;
}
$maxscore[$u] = $matrix[$i][$j];
$u++;
}
}
print"
";
for(my $i=1;$i<=length($seq2);$i++)
{
for(my $j=1;$j<=length($seq1);$j++)
{
if($matrix[$i][$j]== $max_score){
$ind1[$r] = $i;

34 J. Bioinform. Seq. Anal.

$ind2[$s] = $j;
$r++;
$s++;
}
}
}

#trace back
my $m=0;
my $n=0;
foreach $i(@ind1)
{
foreach$j(@ind2)
{
while(!($matrix[$i][$j] == 0))
{
 if($best_score[$i][$j] eq "diagonal")
{
$align1[$m] .= substr($seq1, $j-1,1);
$align2[$n] .= substr($seq2, $i-1,1);
$i--;
$j--;
}
 elsif($best_score[$i][$j] eq "left")
{
$align1[$m] .= substr($seq1,$j-1,1);
$align2[$n] .= "_";
$j--;
}
 elsif($best_score[$i][$j] eq "up")
 {
$align1[$m] .="_";
$align2[$n] .=substr($seq2 ,$i-1,1);
$i--;
}
}
}
$align1[$m]= reverse $align1[$m];
$align2[$n] = reverse $align2[$n];
$m++;
$n++;
}
#score
$p=0;
$o=0;
foreach $a(@align1)
{
@c =split(//,$a);
$len=@c;
foreach $b(@align2)
{
while($o==$p)
{
@d=split(//,$b);
$j=0;
$sum=0;
$nomatch=0;
$nomismatch=0;
$nogap=0;
for($i=0;$i<$len;$i++)
{
while($j==$i)
{
if($c[$j] eq $d[$j])
{
$sum =$sum+ $match;
$nomatch = $nomatch +1;
}

elsif(($c[$i] eq'_')||($d[$i] eq'_'))
{
$sum += $gap;
$nogap= $nogap+1;
}
else
{
$sum += $mismatch;
$nomismatch = $nomismatch+1;
}
$j++;
}
}
print"score: $sum
";
print"matches: $nomatch
";
print"mismatches: $nomismatch
";
print"gaps: $nogap
";
last;
}
$p++;
}
$p=0;
$o=$o+1;
}
$length = @align1;
for($j=0;$j<$length;$j++)
{
$align1[$j]=$align1[$j];
$align2[$j]=$align2[$j];
$l1= length($align1[$j]);
for($i=1;$i<=$l1;$i++)
{
if($l1 >60)
{
$align1[$j]=~m/.{60}/;
print"$&
";
$align1[$j]= $';
$l1 = length($align1[$j]);
$align2[$j]=~m/.{60}/;
print"$&

";
$align2[$j]= $';
}
if($l1<60)
{
print"$align1[$j]
";
print"$align2[$j]

";
last;
}
}
}
}
1;

DISCUSSION

A sequence alignment is a way of arranging the primary
sequences of DNA, RNA, or protein. Alignment provides
a powerful tool to compare related sequences, and the
alignment of two residues could reflect a common
evolutionary origin, or could represent common structural
and/or catalytic roles, not always reflecting an evolu-
tionary process. If two sequences in an alignment share a
common ancestor, mismatches can be interpreted as
point mutations and gaps as indels introduced in one or
both lineages in the time since they diverged from one

another [HTTP//www.wikipedia.org/sequence_alignment//.].

Pairwise sequence alignment methods are used to find
the best-matching piecewise (local) or global alignments
of two query sequences. Pairwise alignments can only be
used between two sequences at a time. Multiple
sequence alignment is an extension of pairwise
alignment to incorporate more than two sequences at a
time. Multiple alignment methods try to align all of the
sequences in a given query set. Multiple alignments are
often used in identifying conserved sequence regions
across a group of sequences hypothesized to be evolu-
tionarily related (Wang and Jiang, 1994). Computational
approaches to sequence alignment generally fall into two
categories: global alignments and local alignments. So
SEALI is a tool which aligns the two sequences globally
and locally. For the tool development the code was
written in perl and script for front end was written in html.
Two nucleotide sequences were given as input to the
program. In this tool, sequences can be aligned either
locally or globally by selecting one option. It was checked
whether the entered sequences were correct or not, that
is the correct sequence should not contain any spaces or
letter other than the four (A, G, C, and T). The length of
the two sequences was counted. Alignment of two
sequences was done. Number of matches, mismatches,
gaps and score were counted. Results were found.

ACKNOWLEDGMENTS

The authors are thankful to Dr. Sudhir Kumar, Associate
Professor and Head of the Bioinformatics Section, at
CCSHAU, Hisar for his inspiration to the present work.

Giri et al. 35

REFERENCES

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic

local alignment search tool. J. Mol. Biol., 215: 403-410.
Brudno M, Do CB, Cooper GM, Kim MF, Davydov E, Green ED, Sidow

A, Batzoglou S (2003). LAGAN and Multi-LAGAN: Efficient Tools for
Large-Scale Multiple Alignment of Genomic DNA. Genome Res., 13:
721-731.

Cartwright AR (2007). Ngila: global pairwise alignments with logarithmic
and affine gap costs. Bioinform, 23: 1427-1428.

Kent WJ (2002). BLAT-The BLAST-like alignment tool. Genome Res.,
12: 656-664.

Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (2nd
ed), Cold Spring Harbour Laboratory Press: Cold Spring
Harbour,HTTP//www.wikipedia.org/sequence_alignment//.

Needleman SB, Wunsch CD (1970). A general method applicable to the
search for similarities in the amino acid sequence of two proteins. J.
Mol. Biol., 48: 443-453.

Noe L, Kucherov G (2004). Improved hit criteria for DNA local
alignment. BMC Bioinform., 5: 149.

Noe L, Kucherov G (2005). YASS: enhancing the sensitivity of DNA
similarity search. Nucleic Acid Res., 33: 540-543.

Pearson WR (1990). Rapid and sensitive sequence comparison with
FASTP and FASTA. Methods Enzymol., 183: 63–98.

Pearson WR, Lipman DJ (1985). Rapid and sensitive protein similarity
searches. Science, 227(4693): 1435-1441.

Rognes T (2001). ParAlign: a parallel sequence alignment algorithm for
rapid and sensitive database searches. Nucleic Acids Res., 29: 1647-
1652.

Schwartz S, Zhangf Z, Frazer KA, Smit A, Riemer C, Bouck J, Gibbs R,
Hardison R, Miller W (2000). PipMaker-A web server for aligning two
genomic DNA sequences. Genome Res., 10: 577-586.

Smith T, Waterman M (1981). Identification of common molecular
subsequences. J. Mol. Biol., 147: 195-197.

Wang L, Jiang T (1994). On the complexity of multiple sequence
alignment. J. Comput. Biol., 1: 337-348.

