Journal of Biophysics and Structural Biology
Subscribe to JBSB
Full Name*
Email Address*

Article Number - 337345B44936


Vol.6(1), pp. 1-12 , February 2014
DOI: 10.5897/JBSB2013.0045
ISSN: 2141-2200



Full Length Research Paper

Spectroscopic approach of the interaction study of ceftriaxone and human serum albumin



Abu Teir M. M.*
  • Abu Teir M. M.*
  • Department of Physics, Faculty of Science, Al-Quds University, Jerusalem, Palestine.
  • Google Scholar
Ghithan J.
  • Ghithan J.
  • Department of Physics, Faculty of Science, Al-Quds University, Jerusalem, Palestine.
  • Google Scholar
Abu-Taha M. I.
  • Abu-Taha M. I.
  • Department of Physics, Faculty of Science, Al-Quds University, Jerusalem, Palestine.
  • Google Scholar
Darwish S. M.
  • Darwish S. M.
  • Department of Physics, Faculty of Science, Al-Quds University, Jerusalem, Palestine.
  • Google Scholar
Abu-hadid M. M
  • Abu-hadid M. M
  • Department of Immunology, Faculty of Medicine, Al-Quds University, Jerusalem, Palestine.
  • Google Scholar







 Received: 13 September 2013  Accepted: 18 November 2013  Published: 28 February 2014

Copyright © 2014 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Under physiological conditions, interaction between ceftriaxone and human serum albumin was investigated by using fluorescence spectroscopy and ultra violet (UV) absorption spectrum. From spectral analysis, ceftriaxone showed a strong ability to quench the intrinsic fluorescence of human serum albumin (HSA) through a static quenching procedure. The binding constant (k) is estimated as K=1.02× 103 M-1 at 298 K. Fourier transform infrared spectroscopy (FT-IR) spectroscopy with Fourier self-deconvolution technique was used to determine the protein secondary structure and drug binding mechanisms. The observed spectral changes indicated the formation of H-bonding between ceftriaxone and HSA molecules at higher percentage for a-helix than for the b-sheets.

Key words: Ceftriaxone, amide I-III, binding mode, binding constant, protein secondary structure, Fourier transform IR, UV-spectroscopy, Flurosence spectroscopy.

Abu Teir MM, Ghithan SJH, Darwish S, Abu-Hadid MM (2011). "Study of Progesterone interaction with Human Serum Albumin: Spectroscopic Approach," J. Appl. Biol. Sci. 5 (13):35-47.
 
Abu Teir MM, Ghithan SJH, Darwish S, Abu-hadid MM (2012). Multi-spectroscopic investigation of the interactions between cholesterol and human serum albumin. J. Appl. Biol. Sci. 6(3):45-55.
 
Ahmad B, Parveen S, Khan RH (2006). Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin. Biomacromolecules. 7:1350-1356.
Crossref
 
Arrondo JL, Muga A (1993). Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Prog. Biophys. Mol. Biol. 59:23-56.
Crossref
 
Artali R, Bombieri G, Calabi L, Del Pra A (2005). A molecular dynamics of human serum albumin binding sites. Il Farmaco 60:485-495.
Crossref
 
Bian Q, Xu LC, Wang SL, Xia YK, Tan LF, Chen JF, Song L, Chang HC, Wang XR (2004). Study on the relation between occupational fenvalerate exposure and spermatozoa DNA damage of pesticide factory workers. Occup. Environ. Med. 61:999-1005.
Crossref
 
Bibiana N, Beatriz Farruggia, Guillermo Pico (1996). A Comparative study of the binding characteristics of ceftriaxone, cefoperazone and cefsudolin to human serum albumin. Biochem. Mol. Biol. Int. 40(4):823-831.
 
Bilirubin RB, Alex R (1989). Ceftriaxone binding to human serum albumin. Mol. Pharmacol. 36:478-483.
 
Brodersen R, Robertson A (1989). Ceftriaxone binding to human serum albumin: competition with birirubin. Mol. Pharnmacol. 36: 478-483.
Pubmed
 
Byler M and Susi H (1986). Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 25:469-487.
Crossref
 
Chen GZ, Huang XZ, Xu JG, Zheng ZZ, Wang ZB (1990). Method of Fluorescence Analysis, Science Press, Beijing, 112-119.
 
Cui F, Qin L, Zhang G, Liu X, Yao X, Lei B (2008). A concise approach to 1,11-didechloro-6-methyl-40-O-demethyl rebeccamycin and its binding to human serum albumin: Fluorescence spectroscopy and molecular modeling method. Bioorg. Med. Chem.16:7615-7621.
Crossref
 
Cui F, Wang J, Cui Y, Yao X, Qu G, Lu Y (2007). Investigation of interaction between human serum albumin and N6-(2-hydroxyethyl) adenosine by fluorescence spectroscopy and molecular modelling. Luminescence. 22:546-553.
Crossref
 
Curry S, Brick P, Franks NP (1999). Fatty acid binding to human serum albumin: new insights from crystallographic studies. Biochem. Biophys. Acta 1441:131-140.
Crossref
 
Darwish SM, Abu sharkh SE, Abu Teir MM, Makharza SA, Abu hadid MM (2010). Spectroscopic investigations of pentobarbital interaction with human serum albumin. J. Molecular Structure. 963:122-129.
Crossref
 
Fabian H, Schultz C, Naumann D, Landt O, Hahn U, Saenger WJ (1993). Secondary Structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution: A Fourier transform infrared spectroscopic study. Mol. Biol. 232:967-981.
Crossref
 
Ganim Z, Tokmakoff A (2006). Spectral Signatures of Heterogeneous Protein Ensembles Revealed by MD Simulations of 2DIR Spectra. Biophys. J. 91 : 2636.
Crossref
 
Guowen Zhang N, Nan Z, Lin W (2011). Probing the binding of vitexin to human serum albumin by multi spectroscopic techniques. J. Lumin 131:880-887.
Crossref
 
Hal CP, Thomas PA, Ronald AH, Bliss SP (2000). Simmondsin and wax ester levels in 100 high-yielding jojoba clones. Industrial Crops Prod. 12:151-157.
Crossref
 
He XM, Carter DC (1992). Atomic structure and chemistry of human serum albumin. Nature 358:209-215.
Crossref
 
Holzbaur IE, English AM, Ismail AA (1996). FTIR study of the thermal denaturation of horseradish and cytochrome c peroxidases in D2O. Biochemistry 35:5488-5494.
Crossref
 
Il'ichev AL, Gut LJ, Williams DG, Hossain MS, Jerie PH (2002). Area-wide approach for improved control of oriental fruit moth Grapholita molesta (Busck) (Lepidoptera: Tortricidae) by mating disruption. Gen. Appl. Entomol. 31:7-15.
 
Jackson M, Mantsch HH (1991). Protein secondary structure from FT IR spectroscopy with dihedral angles from three-dimensional Ramachandran plots. J. Chem. 69:1639-1643.
 
Jiang M, Xie MX, Zheng D, Liu Y, Li XY, Chen X (2004). Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin. J. Mol Structure. 692:71-80.
Crossref
 
Kandagal PB, Shaikh SMT, ManjunathaDH, Seetharamappa J, Nagaralli BS (2007). Spectroscopic studies on the binding of bioactive phenothiazine compounds to human serum albumin. J. Photochem. Photobiol. A-Chem. 189(1):121-127.
Crossref
 
Kang J, Liu Y, Xie MX, Li S, Jiang M, Wang YD (2004). Interactions of human serum albumin with chlorogenic acid and ferulic acid. Biochimica et Biophysica Acta.1674:205-214.
Crossref
 
Kang S, Wu Y, X Li (2004). Effects of statin therapy on theprogression of carotid atherosclerosis: a systematic review and meta-analysis. Atherosclerosis 177(2):433-442.
Crossref
 
Kim CA, Berg JM (1993). Thermodynamic beta-sheet propensities measured using a zinc-finger host peptide. Nature 362:267-270.
Crossref
 
Kragh-Hansen U (1981). Molecular aspects of ligand binding to serum albumin. Pharmacol. Rev. 33:17- 53.
Pubmed
 
Krimm S, Bandekar J (1986). Vibrational spectroscopy and conformationof peptides, polypeptides and proteins. Adv. Protein Chem. 38:181-364.
Crossref
 
Kumar VK, Ramasamy R (2002). Spectral and normal coordinate analysis of 6-methoxypurine. Indian J. Pure Appl. Phys. 40:252.
 
Lakowicz JR (1999). Principles of fluorescence spectroscopy. Kluwer Academic Publishers/Plenum Press, Dordrecht/New York.
Crossref
 
Lakowicz JR, Weber G (1973). Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale Biochemistry 12 : 4161.
Crossref
 
Li Y, He WY, Dong YM, Sheng F, Hu ZD (2006). Human serum albumin interaction with formononetin studied using fluorescence anisotropy, FT-IR spectroscopy and molecular modeling methods. Bioorg. Med. Chem. 14:1431-1436.
Crossref
 
Liu JQ, Tian JN, He WY, Xie JP, Hu ZD, Chen XG (2004). J. Pharm. Biomed. Anal. 35:671.
Crossref
 
Liu XP, Du YX, Sun W, Kou JP, Yu BY (2009). Study on the interaction of levocetirizine dihydrochloride with human serum albumin by molecular spectroscopy. Spectrochim. Acta Part A 74:1189. 59:2747-2758.
 
Liu Y, Xie MX, Kang J, Zheng D (2003). Studies on the interaction of total saponins of panax notoginseng and human serum albumin by Fourier transform infrared spectroscopy. Spectrochim. Acta. Part A.
Crossref
 
Locht F, Dorcbe G, Anbert G, Boissier C, Bertrand AM, Branon J (1990). The penetration of ceftriaxone into human brain tissue. J. Antimicrob. Chemother. 26:81-86.
Crossref
 
Mcnamara P, TruebV, Stoeckel K (1990). Ceftriaxone binding to human serum albumin. Inderect displacement by probenecid and diazepam. ochem. Pharmacol. 40:1247-1253.
 
Muravchick S, Smith DS (1995). Parkinsonian symptoms during emergence from general anesthesia. Anesthesiology 82:305-307.
Crossref
 
Nerli B, Farruggia B, Picó G (1996). A comparative study of the binding characteristic of of ceftriaxone, cefoperazone and cefsulodin to human serum albumin. Biochem. Mol. Biol. Int. 40:823-831.
PMid:8950041
 
Oberg KA, Ruysschaert JM, Goormaghtigh E (2004). The optimization of protein secondary structure determination with infrared and circular dichroism spectra. Eur. J. Biochem. 271:2937-2948.
Crossref
 
Pan J, Ye Z, Cai X, Wang L, Cao Z (2012). Biophysical study on the interaction of ceftriaxone sodium with bovine serum albumin using spectroscopic methods. J. Biochem. Mol. Toxicol. 26:487-492.
Crossref
 
Patrick J, Mcnamara VrenyTruebs, Klaus Stoeckel (1990). Ceftriaxone binding to human serum albumin indirect displacement. Biochem. Pharmacol. 40(6):1247-1253.
Crossref
 
Peters T (1985). Serum albumin. Adv. Protein Chem. 37:161-245.
Crossref
 
Peters T Jr. (1985). Ado. Protein Chem. 37:161-245.
Crossref
 
Qing Y, Xi-min Z, Xing-guo C (2011). Combined molecular docking and multi-spectroscopic investigation on the interaction between Eosin B and human serum albumin. J. Lumin. 131:880-887.
 
Quaglia MG, Bossu E, Dell'Aquila C, Guidotti M (1997). Determination of the binding of a β2-blocker drug, frusemide and ceftriaxone to serum proteins by capillary zone electrophoresis. J. Pharm. Biomed. Analys. 15:1033-1039.
Crossref
 
Rabia S, Shiori T, Leonid B, Sylvie D, Yves F, Dufr E, Vasanthy N, Erik G, Jean-Marie R, Vincent R (2009). Antiparallel β-sheet: a signature structure of the oligomeric amyloid β-peptide Emilie CERF. Biochem. J. 421:415-423.
Crossref
 
Reynold Spector (1987). Ceftriaxone transport through the blood-brain barrier. J. Infect. Dis. 156(1):209-211.
Crossref
 
Rondeau P, Armenta S, Caillens H, Chesne S, Bourdon E (2007). Assessment of temperature effects on b-aggregation of native and glycated albumin by FTIR spectroscopy and PAGE: Relations between structural changes and antioxidant properties. Archives Biochem. Biophys. 460:141-150.
Crossref
 
Royer CA (1995). Approaches to teaching fluorescence spectroscopy. Biophys. J. 68:1191-1195.
Crossref
 
Scott VM, William AP Jr, Kristin KJ, Lori K, Joseph AP (2008). Safety of ceftriaxone sodium at extremes of age. Expert Opin. Drug Saf. 7(5):515-523.
Crossref
 
Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006). Bone marrow-derived microglia play a critical role in restricting senile plaque formation in alzheimer's disease. Neuron 49:489-502.
Crossref
 
Sirotkin VA, Zinatullin AN, Solomonov BN, Faizullin DA, Fedotov VD (2001). Calorimetric and Fourier transform infrared spectroscopic study of solid proteins immersed in low water organic solvents. Biochimica et Biophysica Acta. 1547:359-369.
Crossref
 
Sudip Bhattacharyya, Tod ES, Jean H, Swank, Craig BMarkwardt (2006). RXTEObservationsof1A1744361: correlated spectral and timing behavior. Astrophys. J. 652:603-609.
Crossref
 
Sulkowska A (2002). Interaction of drugs with bovine and human serum albumin. J. Mol. Struct. 614:227-232.
Crossref
 
Surewicz WK, Mantsch HH, Chapman D (1993). Determination of protein secondary structure by Fourier transform infrared spectroscopy: A critical assessment. Biochemistry 32:389-394.
Crossref
 
Surewicz WK, Moscarello MA, Mantsch HH (1987). Secondary structure of the hydrophobic myelin protein in a lipid environment as determined by Fourier- transform infrared spectrometry. J. Biol. Chem. 262:8598-8609.
Pubmed
 
Tian JN, Liu JQ, Zhang JY, Hu ZD, Chen XG (2003). Chem. Pharm. Bull. 51:579.
Crossref
 
Ulrich H, Cleber AT, Arthur AN 2006). DNA and RNA apta-mers: from tools for basic research towards therapeutic applications. Comb. Chem. High Throughput Screen 9:619-32.
Crossref
 
Vandenbussche G, Clercx A, Curstedt T, Johansson J, Jornvall H, Ruysschaert JM (1992). Structure and orientation of the surfactant associated protein C in a lipid bilayer. Eur. J. Biochem. 203:201-209.
Crossref
 
Vass E, Holly S, Majer Z, Samu J, Laczko I, Hollosi M (1997). FTIR and CD spectroscopic detection of H-bonded folded polypeptide structures. J. Mol. Struct. 408/409:47-56.
Crossref
 
Wang C, Wu Q, Li C, Wang Z, Ma J, Zang X, Qin N (2007). Interaction of tetrandrine with human serum albumin: a Fluorescence quenching study. Analyt. Sci. 23:429-433.
Crossref
 
Wang T, Xiang B, Wang Y, Chen C, Dong Y, Fang H, Wang M (2008). Spectroscopic investigation on the binding of bioactive pyridazinone derivative to human serum albumin and molecular modeling. Colloids Surf. B. 65:113-119.
Crossref
 
Workman JR (1998). Applied Spectroscopy: Optical Spectrometers, Academic Press, San Diego. pp. 21-53.
 
Yue Q, Shen T, Wang C, Gao C, Liu J (2012). Study of the interaction of bovine serum albumin with ceftriaxone and the inhibition effect of Zinc (II). Int. J. Spectrosc. Article ID 284173, doi: 10.1155/2012/284173.
Crossref
 
Zhang FL, Jespersen KG, Bjorstrom C, Svensson M, Andersson MR, Sundstrom V, Magnusson K, Moons E, Yartsev A, Inganas O (2006). Influence of guest solvents on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends. Adv. Funct. Mater. 16:667-674
Crossref

 


APA Abu Teir, M. M., Ghithan, J., Abu-Taha, M. I., Darwish, S. M., & Abu-hadid, M. M. (2014). Spectroscopic approach of the interaction study of ceftriaxone and human serum albumin. Journal of Biophysics and Structural Biology, 6(1), 1-12.
Chicago Abu Teir M. M., Ghithan J., Abu-Taha M. I., Darwish S. M. and Abu-hadid M. M.. "Spectroscopic approach of the interaction study of ceftriaxone and human serum albumin." Journal of Biophysics and Structural Biology 6, no. 1 (2014): 1-12.
MLA Abu Teir M. M., et al. "Spectroscopic approach of the interaction study of ceftriaxone and human serum albumin." Journal of Biophysics and Structural Biology 6.1 (2014): 1-12.
   
DOI 10.5897/JBSB2013.0045
URL http://academicjournals.org/journal/JBSB/article-abstract/337345B44936

Subscription Form