Journal of Biophysics and Structural Biology
Subscribe to JBSB
Full Name*
Email Address*

Article Number - 473AD5E10939


Vol.4(1), pp. 13-20 , March 2012
DOI: 10.5897/JBSB12.002
ISSN: 2141-2200



Full Length Research Paper

Using electrical impedance tomography in following up skin conductivity change for different sonophoresis conditions


Mamdouh M. Shawki* and Abdel-Rahman M. Hereba




Bio-Medical Physics Department, Medical Research Institute, Alexandria University, Egypt.


Email: mamdouh971@hotmail.com






 Accepted: 29 February 2012  Published: 31 March 2012

Copyright © 2012 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Sonophoresis is the using of ultrasound waves to increase the entrancement of genes and drugs surpassing the skin barrier. Many mechanisms have been described to illustrate the sonophoresis mode of action; some describe changes in skin resistance during sonophoresis. Electrical impedance tomography (EIT) technique uses voltage measurement through a group of electrodes and reconstructs the data to a conductivity picture. The aim of this work is to evaluate the possibility of using EIT in order to detect changes in mice skin conductivity under pulsed ultrasound waves with powers of 1 and 3 W/cm2 and times of exposure of 2, 4, and 6 min. EIT system was designed and performed locally. The mice skin was obtained from ten albino mice. Immediately after the skin part was exposed to certain sonophoretic condition, its complex biological impedance was measured using the EIT device. The resultant pictures then were analysed using special software. The results indicate that EIT can be used as a good technique for skin conductivity scan. The data analysis shows that as the ultrasound power increases, the skin conductivity increases. However, there is no significant decrease in skin impedance with time in the same ultrasound power at the time range used.

 

Key words: Electrical impedance tomography (EIT), sonophoresis, skin conductivity.

Allenby A, Schock C, Tees TF (1961). The effect of heat and organic solvents on the electrical impedance and permeability of excised human skin. Br. J. Dermatol., 81: 31–62.
http://dx.doi.org/10.1111/j.1365-2133.1969.tb16059.x
 
Bagshaw P, Liston D, Bayford H, Tizzard A, Gibson P, Thomas A, Sparkes K, Dehghani H, Binnie D, Holder S (2003). Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method. NeuroImage, 20: 752–764.
http://dx.doi.org/10.1016/S1053-8119(03)00301-X
 
Bodenstein M, Matthias D, Markstaller K (2009). Principles of electrical impedance tomography and its clinical application. Crit. Care Med., 37: 713-724.
http://dx.doi.org/10.1097/CCM.0b013e3181958d2f
PMid:19114889
 
Cancel M, Tarbell M, Jebria A (2004). Fluorescein permeability and electrical resistance of human skin during low frequency ultrasound application. JPP. 56: 1109–1118.
PMid:15324479
 
Cheneyy M, Isaacsony D, Newell C (1993). Electrical Impedance Tomography. SIAM. Review, 41: 85–101.
http://dx.doi.org/10.1137/S0036144598333613
 
Costaa LV, Limab R, Amato BP (2009). Electrical impedance tomography, Curr. Opin. Crit. Care, 15: 18–24.
http://dx.doi.org/10.1097/MCC.0b013e3283220e8c
 
Johnson ME, Blankschtein D, Langer R (1997). Evaluation of solute permeation through the stratum corneum: Lateral bilayer diffusion as the primary transport mechanism. J. Pharm. Sci., 86: 1162-1172.
http://dx.doi.org/10.1021/js960198e
PMid:9344175
 
Hadgraft J, Guy RH (1989). Transdermal drug delivery, New York, Marcel Dekker. Reference to a chapter in an edited book : Developmental issues and research initiatives.
 
Kalluri H, Banga AK (2011). Transdermal delivery of proteins, AAPS. Pharm. Sci. Tech., 12: 431-441.
http://dx.doi.org/10.1208/s12249-011-9601-6
PMid:21369712 PMCid:PMC3066337
 
Levy D, Kost J, Meshulam Y, Langer R (1989). Effect of ultrasound on transdermal drug delivery to rats and guineapigs. J. Clin. Invest., 83: 2074–2078.
http://dx.doi.org/10.1172/JCI114119
PMid:2498396 PMCid:PMC303933
 
Metherall P, Barber DC, Smallwood RH, Brown BH (1996). Three dimensional electrical impedance tomography. Nature, 380: 509–512.
http://dx.doi.org/10.1038/380509a0
PMid:8606768
 
Pahade A, Jadhav VM, Kadam VJ (2010). Sonophoresis: An Overview. Int. J. Pharm. Sci. Rev. Res., 3: 24-32.
 
Polat BE, Blankschtein D, Langer R (2010). Low-frequency sonophoresis: application to the transdermal delivery of macromolecules and hydrophilic drugs. Expert Opin. Drug Deliv., 7: 1415-1432.
http://dx.doi.org/10.1517/17425247.2010.538679
PMid:21118031 PMCid:PMC3050019
 
Polat BE, Hart D, Langer R, Blankschtein D (2011). Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J. Control Release, 152: 330-348.
http://dx.doi.org/10.1016/j.jconrel.2011.01.006
PMid:21238514 PMCid:PMC3436072
 
Prausnitz MR, Bose VG, Langer R, Weaver JC (1993). Electroporation of mammalian skin: A mechanism to enhance transdermal drug delivery. Proc. Nat. Acad. Sci., 90: 10504-10508.
http://dx.doi.org/10.1073/pnas.90.22.10504
PMid:8248137 PMCid:PMC47805
 
Sarheed O, Abdul Rasool BK (2011). Development of an optimised application protocol for sonophoretic transdermal delivery of a model hydrophilic drug. Open Biomed. Eng. J., 5: 14-24.
http://dx.doi.org/10.2174/1874120701105010014
PMid:21629673 PMCid:PMC3103896
 
Schaefer H, Redelmeier TE (1996). Skin barrier. Reference to a chapter in an edited book: principles of percutaneous absorption, K. Basel.
 
Smith NB (2007). Perspectives on transdermal ultrasound mediated drug delivery. Int. J. Nanomed., 2: 585-594.
 
Tachibana K, Tachibana S (1993). Use of ultrasound to enhance the local-anesthetic effect of topically applied aqueous lidocane. Anesthesiology, 78: 1091–1096.
http://dx.doi.org/10.1097/00000542-199306000-00011
PMid:8512102
 
Tang H, Mitragotri S, Blankschtein D, Langer R (2001). Theoretical Description of Transdermal Transport of Hydrophilic Permeants: Application to Low-Frequency Sonophoresis. J. Pharm. Sci., 90: 545-568.
http://dx.doi.org/10.1002/1520-6017(200105)90:5<543::AID-JPS1012>3.0.CO;2-J
http://dx.doi.org/10.1002/1520-6017(200105)90:5<545::AID-JPS1012>3.0.CO;2-H
 
Takasuga S, Yamamoto R, Mafune S, Sutoh C, Kominami K, Yoshida Y, Ito M, Kinoshita M (2011). In-vitro and in-vivo transdermal iontophoretic delivery of tramadol, a centrally acting analgesic. J. Pharm. Pharmacol., 63:1437-1445.
http://dx.doi.org/10.1111/j.2042-7158.2011.01355.x
PMid:21988424

 


APA (2012). Using electrical impedance tomography in following up skin conductivity change for different sonophoresis conditions. Journal of Biophysics and Structural Biology, 4(1), 13-20.
Chicago Mamdouh M. Shawki and Abdel-Rahman M. Hereba. "Using electrical impedance tomography in following up skin conductivity change for different sonophoresis conditions." Journal of Biophysics and Structural Biology 4, no. 1 (2012): 13-20.
MLA Mamdouh M. Shawki and Abdel-Rahman M. Hereba. "Using electrical impedance tomography in following up skin conductivity change for different sonophoresis conditions." Journal of Biophysics and Structural Biology 4.1 (2012): 13-20.
   
DOI 10.5897/JBSB12.002
URL http://academicjournals.org/journal/JBSB/article-abstract/473AD5E10939

Subscription Form