Journal of Biophysics and Structural Biology
Subscribe to JBSB
Full Name*
Email Address*

Article Number - 9C9A69A10916

Vol.3(3), pp. 49-65 , November 2011
DOI: 10.5897/JBSB11.008
ISSN: 2141-2200

Full Length Research Paper

pH uniquely modulates protein arginine methylation

Wen Xie1, George Merz2 and Robert B. Denman3*

1Division of Hematology and Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA.

2Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.

3Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities,

1050 Forest Hill Road, Staten Island, NY 10314, USA.


 Accepted: 02 August 2011  Published: 30 November 2011

Copyright © 2011 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0

Protein arginine methyltransferases (PRMTs) function in the alkaline milieu of the nucleus and at neutral pH of the cytosol. Accordingly, several PRMTs are broadly active over a range of pHs. We investigated the effect altering pH had on protein arginine methylation using a variety of defined substrates, recombinant PRMTs and cell extracts.We demonstrate that pH-induced alterations in the extent of methylation and the methyl-product formed depend both on the particular substrate assayed and the PRMT that modifies it. We also find that transient intracellular alkalinization of mouse embryonic P19 neurons by NH4Cl results in sustained changes in substrate methylation.  Altogether our results are consistent with a hypothesis in which altered substrate methylation resulting from pH-induced changes of PRMT activities coupled with low levels of demethylation may provide the long-term tag(s) necessary for the formation and maintenance of “molecular memory”.


Key words: Arginine methylation, protein arginine methyltransferase, pH, P19 cells, insect cell lysate, SmD1 peptide.

Abad MFC, Di Benedetto G, Magalhaes PJ, Filippin L, Pozzan T (2004). Mitochondrial pH monitored by a new engineered green fluorescent protein mutant. J. Biol. Chem. 279(12):11521-11529.
Adinolfi S, Bagni C, Musco G, Gibson T, Mazzarella L, Pastore A (1999). Dissecting FMR1, the protein responsible for fragile X syndrome, in its structural and functional domains. RNA. 5(9):1248-1258.
PMid:10496225 PMCid:PMC1369847
Berthet C, Guehenneux F, Revol V, Samarut C, Lukaszewicz L, Dehay C, Dumontet C, Magaud J-P, Rouault J-P (2002). Interaction of PRMT1 with BTG/TOB proteins in cell signalling: molecular analysis and functional aspects. Genes Cells. 7(1):29-39.
Bierman AJ, Tertoolen LG, de Laat SW, Moolenaar WH (1987). The Na+/H+ exchanger is constitutively activated in P19 embryonal carcinoma cells, but not in a differentiated derivative. Responsiveness to growth factors and other stimuli. J. Biol. Chem. 262(20):9621-9628.
Chen YC, Milliman EJ, Goulet I, Cote J, Jackson CA, Vollbracht JA, Yu MC (2010). Protein arginine methylation facilitates cotranscriptional recruitment of pre-mRNA splicing factors. Mol. Cell. Biol. 30(21):5245-5256.
PMid:20823272 PMCid:PMC2953043
Chen YF, Zhang AY, Zou AP, Campbell WB, Li PL (2004). Protein methylation activates reconstituted ryanodine receptor-Ca2+ release channels from coronaryartery myocytes. J. Vasc. Res. 41(3):229-240.
Cheng X, Collins RE, Zhang X (2005). Structural and sequence motifs of protein (histone) methylation enzymes In: Annual Reviews of Biophysics Biomolecular Structure. vol. 34. Palo Alto, CA: Ann. Rev. pp. 267-294.
Chesler M (2003). Regulation and modulation of pH in the brain. Physiol. Rev. 83(4):1183-1221.
Chin HG, Estève PO, Pradhan M, Benner J, Patnaik D, Carey MF, Pradhan S (2007). Automethylation of G9a and its implication in wider substrate specificity and HP1 binding. Nucleic Acids Res. 35(21):7313-7323.
PMid:17962312 PMCid:PMC2175347
Deng X, Gu L, Liu C, Lu T, Lu F, Lu Z, Cui P, Pei Y, Wang B, Hu S (2010). Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing. Proc. Natl. Acad. Sci. 107(44):19114-19119.
PMid:20956294 PMCid:PMC2973915
Denman RB (2006). Improved PRMT substrate detection. In: Science STKE,eletter.;2001/2093/pl2001.
Denman RB (2008). Protein methyltransferase activities in commercial in vitro translation systems. J. Biochem. 144(2):223-233.
Dhaka A, Uzzell V, Dubin AE, Mathur J, Petrus M, Bandell M, Patapoutian A (2009). TRPV1 is activated by both acidic and basic pH. J. Neurosci. 29(1):153-158.
PMid:19129393 PMCid:PMC2729567
Dolzhanskaya N, Merz G, Denman RB (2006). Alternative splicing modulates PRMT-dependent methylation of FMRP. Biochemistry, 45(34):10385-10393.
Dolzhanskaya N, Bolton DC, Denman RB (2008). Chemical and structural probing of the N-terminal residues encoded by FMR1 exon 15 and their effect on downstream arginine methylation. Biochemistry. 47(33):8491-8503.
Dolzhanskaya N, Merz G, Aletta JM, Denman RB (2006). Methylation regulates FMRP's intracellular protein-protein and protein-RNA interactions. J. Cell Sci. 119(9):1933-1946.
Fersht A (1977). The pH dependence of enzyme catalysis. In: Enzyme structure and mechanism San Francisco: W. H. Freeman: pp.134-155.
Frankel A, Yadav N, Lee J, Branscombe TL, Clarke S, Bedford MT (2002). The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J. Biol. Chem., 277(5):3537-3543.
Friesen WJ, Massenet S, Paushkin S, Wyce A, Dreyfuss G (2001). Smn, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol. Cell. 7(5):1111-1117.
Friesen WJ, Paushkin S, Wyce A, Massenet S, Pesiridis GS, Van Duyne G, Rappsilber J, Mann M, Dreyfuss G (2001). The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol. Cell Biol. 21(24):8289-8300.
PMid:11713266 PMCid:PMC99994
Garcia-Moreno B (2009). Adaptations of proteins to cellular and subcellular pH. J. Biol. 8(11):98.
PMid:20017887 PMCid:PMC2804283
Guderian G, Peter C, Wiesner J, Sickmann A, Schulze-Osthoff K, Fischer U, Grimmler M (2011). RioK1, a new interactor of protein arginine methyltransferase 5 (PRMT5), competes with pICln for binding and modulates PRMT5 complex composition and substrate specificity. J. Biol. Chem., 286(3):1976-1986.
PMid:21081503 PMCid:PMC3023494
Hung ML, Hautbergue GM, Snijders APL, Dickman MJ, Wilson SA (2010). Arginine methylation of REF/ALY promotes efficient handover of mRNA to TAP/NXF1. Nucleic Acids Res., 38(10):3351-3361.
PMid:20129943 PMCid:PMC2879514
Infantino S, Benz B, Waldmann T, Jung M, Schneider R, Reth M (2010). Arginine methylation of the B cell antigen receptor promotes differentiation. J. Exp. Med. 207(4):711-719.
PMid:20231378 PMCid:PMC2856019
Izzo A, Schneider R (2010). Chatting histone modifications in mammals. Brief. Funct. Genomics. 9(5-6):429-443.
PMid:21266346 PMCid:PMC3080777
Jankowski A, Kim JH, Collins RF, Daneman R, Walton P, Grinstein S (2001). In situ measurements of the pH of mammalian peroxisomes using the fluorescent protein pHluorin. J. Biol. Chem. 276(52):48748-48753.
Jiang W, Roemer ME, Newsham IF (2005). The tumor suppressor DAL-1/4.1B modulates protein arginine N-methyltransferase 5 activity in a substrate-specific manner. Biochem. Biophys. Res. Commun. 329(2):522-530.
Jones-Villeneuve EM, McBurney MW, Rogers KA, Kalnins VI (1982). Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J. Cell Biol. 94(2):253-262.
Kowenz-Leutz E, Pless O, Dittmar G, Knoblich M, Leutz A (2010). Crosstalk between C/EBP[beta] phosphorylation, arginine methylation, and SWI/SNF/Mediator implies an indexing transcription factor code. EMBO J. 29(6):1105-1115.
PMid:20111005 PMCid:PMC2845275
Kuhn P, Chumanov R, Wang Y, Ge Y, Burgess RR, Xu W (2010). Automethylation of CARM1 allows coupling of transcription and mRNA splicing. Nucleic Acids Res. 39(7):2717-2726.
PMid:21138967 PMCid:PMC3074151
Lim Y, Kwon Y-H, Won NH, Min B-H, Park I-S, Paik WK, Kim S (2005). Multimerization of expressed protein-arginine methyltransferases during the growth and differentiation of rat liver. Biochim. Biophys. Acta. 1723(1-3):240-247.
Majumdar D, Bevensee MO (2010). Na-coupled bicarbonate transporters of the solute carrier 4 family in the nervous system: function, localization, and relevance to neurologic function. Neuroscience. 171(4):951-972.
PMid:20884330 PMCid:PMC2994196
Meister G, Eggert C, Bühler D, Brahms H, Kambach C, Fischer U (2001). Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr. Biol. 11(24):1990-1994.
Miranda TB, Khusial P, Cook JR, Lee JH, Gunderson SI, Pestka S, Zieve GW, Clarke S (2004). Spliceosome Sm proteins D1, D3, and B/B' are asymmetrically dimethylated at arginine residues in the nucleus. Biochem. Biophys. Res. Comm. 323(2):382-387.
Murer H, Hopfer U, Kinne R (1976). Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem. J. 154:597-604.
PMid:942389 PMCid:PMC1172760
Raley-Susman KM, Cragoe EJ, Sapolsky RM, Kopito RR (1991). Regulation of intracellular pH in cultured hippocampal neurons by an amiloride-insensitive Na+/H+ exchanger. J. Biol. Chem. 266(5):2739-2745.
Ramos A, Hollingsworth D, Adinolfi S, Castets M, Kelly G, Frenkiel TA, Bardoni B, Pastore A (2006). The structure of the N-terminal domain of the fragile X mental retardation protein: a platform for protein-protein interaction. Structure. 14(1):21-31.
Roberts EL (1999). Using hippocampal slices to study how aging alters ion regulation in brain tissue. Methods. 18(2):150-159.
Seksek O, Bolard J (1996). Nuclear pH gradient in mammalian cells revealed by laser microspectrofluorimetry. J. Cell Sci., 109(1):257-262.
Stetler A, Winograd C, Sayegh J, Cheever A, Patton E, Zhang Z, Clarke S, Ceman S(2006). Identification and characterization of the methyl arginines in the fragile X mental retardation protein Fmrp. Hum. Mol. Genet. 15(1):87-96.
Sung Y-J, Dolzhanskaya N, Nolin SL, Brown WT, Currie JR, Denman RB (2003). The fragile X mental retardation protein FMRP binds elongation factor 1A mRNA and negatively regulates its translation in vivo. J. Biol. Chem. 278(18):15669-15678.
Tabares L, Betz B (2010). Multiple functions of the vesicular proton pump in nerve terminals. Neuron. 68(6):1020-1022.
Tresguerres M, Buck J, Levin L (2010). Physiological carbon dioxide, bicarbonate, and pH sensing. Pflugers Arch. 460(6):953-964.
PMid:20683624 PMCid:PMC2967379
Troffer-Charlier N, Cura V, Hassenboehler P, Moras D, Cavarelli J (2007). Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains. EMBO J. 26(20):4391-4401.
PMid:17882262 PMCid:PMC2034665
Wang H, Singh D, Fliegel L (1997). The Na+/H+ Antiporter Potentiates Growth and Retinoic Acid-induced Differentiation of P19 Embryonal Carcinoma Cells. J. Biol. Chem. 272(42):26545-26549.
Xie W, Denman RB (2011). Protein methylation and stress granules: Post-translational modifier or innocent bystander? Molecular Biology International, Article ID: 137459:1-14.
Xie W, Dolzhanskaya N, LaFauci G, Dobkin C, Denman RB(2009). Tissue and developmental regulation of fragile X mental retardation protein exon 15 isoforms. Neurobiol. Dis. 35(1):52-62.
Yu MC (2011). The Role of Protein Arginine Methylation in mRNP Dynamics. Molecular Biology International, Article ID: 163827.
PMid:22091396 PMCid:PMC3195771
Zhang X, Cheng X (2003). Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure. 11(5):509-520.


APA (2011). pH uniquely modulates protein arginine methylation. Journal of Biophysics and Structural Biology, 3(3), 49-65.
Chicago Wen Xie, George Merz and Robert B. Denman. "pH uniquely modulates protein arginine methylation." Journal of Biophysics and Structural Biology 3, no. 3 (2011): 49-65.
MLA Wen Xie, George Merz and Robert B. Denman. "pH uniquely modulates protein arginine methylation." Journal of Biophysics and Structural Biology 3.3 (2011): 49-65.
DOI 10.5897/JBSB11.008

Subscription Form