Journal of Biophysics and Structural Biology
Subscribe to JBSB
Full Name*
Email Address*

Article Number - 9C9A69A10916


Vol.3(3), pp. 49-65 , November 2011
DOI: 10.5897/JBSB11.008
ISSN: 2141-2200



Full Length Research Paper

pH uniquely modulates protein arginine methylation


Wen Xie1, George Merz2 and Robert B. Denman3*




1Division of Hematology and Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA.

2Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.

3Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities,

1050 Forest Hill Road, Staten Island, NY 10314, USA.


Email: rbdenman@yahoo.com






 Accepted: 02 August 2011  Published: 30 November 2011

Copyright © 2011 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Protein arginine methyltransferases (PRMTs) function in the alkaline milieu of the nucleus and at neutral pH of the cytosol. Accordingly, several PRMTs are broadly active over a range of pHs. We investigated the effect altering pH had on protein arginine methylation using a variety of defined substrates, recombinant PRMTs and cell extracts.We demonstrate that pH-induced alterations in the extent of methylation and the methyl-product formed depend both on the particular substrate assayed and the PRMT that modifies it. We also find that transient intracellular alkalinization of mouse embryonic P19 neurons by NH4Cl results in sustained changes in substrate methylation.  Altogether our results are consistent with a hypothesis in which altered substrate methylation resulting from pH-induced changes of PRMT activities coupled with low levels of demethylation may provide the long-term tag(s) necessary for the formation and maintenance of “molecular memory”.

 

Key words: Arginine methylation, protein arginine methyltransferase, pH, P19 cells, insect cell lysate, SmD1 peptide.

Abad MFC, Di Benedetto G, Magalhaes PJ, Filippin L, Pozzan T (2004). Mitochondrial pH monitored by a new engineered green fluorescent protein mutant. J. Biol. Chem. 279(12):11521-11529.
http://dx.doi.org/10.1074/jbc.M306766200
PMid:14701849
 
Adinolfi S, Bagni C, Musco G, Gibson T, Mazzarella L, Pastore A (1999). Dissecting FMR1, the protein responsible for fragile X syndrome, in its structural and functional domains. RNA. 5(9):1248-1258.
http://dx.doi.org/10.1017/S1355838299990647
PMid:10496225 PMCid:PMC1369847
 
Berthet C, Guehenneux F, Revol V, Samarut C, Lukaszewicz L, Dehay C, Dumontet C, Magaud J-P, Rouault J-P (2002). Interaction of PRMT1 with BTG/TOB proteins in cell signalling: molecular analysis and functional aspects. Genes Cells. 7(1):29-39.
http://dx.doi.org/10.1046/j.1356-9597.2001.00497.x
PMid:11856371
 
Bierman AJ, Tertoolen LG, de Laat SW, Moolenaar WH (1987). The Na+/H+ exchanger is constitutively activated in P19 embryonal carcinoma cells, but not in a differentiated derivative. Responsiveness to growth factors and other stimuli. J. Biol. Chem. 262(20):9621-9628.
PMid:3036868
 
Chen YC, Milliman EJ, Goulet I, Cote J, Jackson CA, Vollbracht JA, Yu MC (2010). Protein arginine methylation facilitates cotranscriptional recruitment of pre-mRNA splicing factors. Mol. Cell. Biol. 30(21):5245-5256.
http://dx.doi.org/10.1128/MCB.00359-10
PMid:20823272 PMCid:PMC2953043
 
Chen YF, Zhang AY, Zou AP, Campbell WB, Li PL (2004). Protein methylation activates reconstituted ryanodine receptor-Ca2+ release channels from coronaryartery myocytes. J. Vasc. Res. 41(3):229-240.
http://dx.doi.org/10.1159/000078178
PMid:15118362
 
Cheng X, Collins RE, Zhang X (2005). Structural and sequence motifs of protein (histone) methylation enzymes In: Annual Reviews of Biophysics Biomolecular Structure. vol. 34. Palo Alto, CA: Ann. Rev. pp. 267-294.
PMCid:PMC2733851
 
Chesler M (2003). Regulation and modulation of pH in the brain. Physiol. Rev. 83(4):1183-1221.
PMid:14506304
 
Chin HG, Estève PO, Pradhan M, Benner J, Patnaik D, Carey MF, Pradhan S (2007). Automethylation of G9a and its implication in wider substrate specificity and HP1 binding. Nucleic Acids Res. 35(21):7313-7323.
http://dx.doi.org/10.1093/nar/gkm726
PMid:17962312 PMCid:PMC2175347
 
Deng X, Gu L, Liu C, Lu T, Lu F, Lu Z, Cui P, Pei Y, Wang B, Hu S (2010). Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing. Proc. Natl. Acad. Sci. 107(44):19114-19119.
http://dx.doi.org/10.1073/pnas.1009669107
PMid:20956294 PMCid:PMC2973915
 
Denman RB (2006). Improved PRMT substrate detection. In: Science STKE,eletter.http://stke.sciencemag.org/cgi/eletters/sigtrans;2001/2093/pl2001.
 
Denman RB (2008). Protein methyltransferase activities in commercial in vitro translation systems. J. Biochem. 144(2):223-233.
http://dx.doi.org/10.1093/jb/mvn061
PMid:18463115
 
Dhaka A, Uzzell V, Dubin AE, Mathur J, Petrus M, Bandell M, Patapoutian A (2009). TRPV1 is activated by both acidic and basic pH. J. Neurosci. 29(1):153-158.
http://dx.doi.org/10.1523/JNEUROSCI.4901-08.2009
PMid:19129393 PMCid:PMC2729567
 
Dolzhanskaya N, Merz G, Denman RB (2006). Alternative splicing modulates PRMT-dependent methylation of FMRP. Biochemistry, 45(34):10385-10393.
http://dx.doi.org/10.1021/bi0525019
PMid:16922515
 
Dolzhanskaya N, Bolton DC, Denman RB (2008). Chemical and structural probing of the N-terminal residues encoded by FMR1 exon 15 and their effect on downstream arginine methylation. Biochemistry. 47(33):8491-8503.
http://dx.doi.org/10.1021/bi702298f
PMid:18656952
 
Dolzhanskaya N, Merz G, Aletta JM, Denman RB (2006). Methylation regulates FMRP's intracellular protein-protein and protein-RNA interactions. J. Cell Sci. 119(9):1933-1946.
http://dx.doi.org/10.1242/jcs.02882
PMid:16636078
 
Fersht A (1977). The pH dependence of enzyme catalysis. In: Enzyme structure and mechanism San Francisco: W. H. Freeman: pp.134-155.
 
Frankel A, Yadav N, Lee J, Branscombe TL, Clarke S, Bedford MT (2002). The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J. Biol. Chem., 277(5):3537-3543.
http://dx.doi.org/10.1074/jbc.M108786200
PMid:11724789
 
Friesen WJ, Massenet S, Paushkin S, Wyce A, Dreyfuss G (2001). Smn, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol. Cell. 7(5):1111-1117.
http://dx.doi.org/10.1016/S1097-2765(01)00244-1
 
Friesen WJ, Paushkin S, Wyce A, Massenet S, Pesiridis GS, Van Duyne G, Rappsilber J, Mann M, Dreyfuss G (2001). The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol. Cell Biol. 21(24):8289-8300.
http://dx.doi.org/10.1128/MCB.21.24.8289-8300.2001
PMid:11713266 PMCid:PMC99994
 
Garcia-Moreno B (2009). Adaptations of proteins to cellular and subcellular pH. J. Biol. 8(11):98.
http://dx.doi.org/10.1186/jbiol199
PMid:20017887 PMCid:PMC2804283
 
Guderian G, Peter C, Wiesner J, Sickmann A, Schulze-Osthoff K, Fischer U, Grimmler M (2011). RioK1, a new interactor of protein arginine methyltransferase 5 (PRMT5), competes with pICln for binding and modulates PRMT5 complex composition and substrate specificity. J. Biol. Chem., 286(3):1976-1986.
http://dx.doi.org/10.1074/jbc.M110.148486
PMid:21081503 PMCid:PMC3023494
 
Hung ML, Hautbergue GM, Snijders APL, Dickman MJ, Wilson SA (2010). Arginine methylation of REF/ALY promotes efficient handover of mRNA to TAP/NXF1. Nucleic Acids Res., 38(10):3351-3361.
http://dx.doi.org/10.1093/nar/gkq033
PMid:20129943 PMCid:PMC2879514
 
Infantino S, Benz B, Waldmann T, Jung M, Schneider R, Reth M (2010). Arginine methylation of the B cell antigen receptor promotes differentiation. J. Exp. Med. 207(4):711-719.
http://dx.doi.org/10.1084/jem.20091303
PMid:20231378 PMCid:PMC2856019
 
Izzo A, Schneider R (2010). Chatting histone modifications in mammals. Brief. Funct. Genomics. 9(5-6):429-443.
http://dx.doi.org/10.1093/bfgp/elq024
PMid:21266346 PMCid:PMC3080777
 
Jankowski A, Kim JH, Collins RF, Daneman R, Walton P, Grinstein S (2001). In situ measurements of the pH of mammalian peroxisomes using the fluorescent protein pHluorin. J. Biol. Chem. 276(52):48748-48753.
http://dx.doi.org/10.1074/jbc.M109003200
PMid:11641408
 
Jiang W, Roemer ME, Newsham IF (2005). The tumor suppressor DAL-1/4.1B modulates protein arginine N-methyltransferase 5 activity in a substrate-specific manner. Biochem. Biophys. Res. Commun. 329(2):522-530.
http://dx.doi.org/10.1016/j.bbrc.2005.01.153
PMid:15737618
 
Jones-Villeneuve EM, McBurney MW, Rogers KA, Kalnins VI (1982). Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J. Cell Biol. 94(2):253-262.
http://dx.doi.org/10.1083/jcb.94.2.253
PMid:7107698
 
Kowenz-Leutz E, Pless O, Dittmar G, Knoblich M, Leutz A (2010). Crosstalk between C/EBP[beta] phosphorylation, arginine methylation, and SWI/SNF/Mediator implies an indexing transcription factor code. EMBO J. 29(6):1105-1115.
http://dx.doi.org/10.1038/emboj.2010.3
PMid:20111005 PMCid:PMC2845275
 
Kuhn P, Chumanov R, Wang Y, Ge Y, Burgess RR, Xu W (2010). Automethylation of CARM1 allows coupling of transcription and mRNA splicing. Nucleic Acids Res. 39(7):2717-2726.
http://dx.doi.org/10.1093/nar/gkq1246
PMid:21138967 PMCid:PMC3074151
 
Lim Y, Kwon Y-H, Won NH, Min B-H, Park I-S, Paik WK, Kim S (2005). Multimerization of expressed protein-arginine methyltransferases during the growth and differentiation of rat liver. Biochim. Biophys. Acta. 1723(1-3):240-247.
http://dx.doi.org/10.1016/j.bbagen.2005.02.015
PMid:15837430
 
Majumdar D, Bevensee MO (2010). Na-coupled bicarbonate transporters of the solute carrier 4 family in the nervous system: function, localization, and relevance to neurologic function. Neuroscience. 171(4):951-972.
http://dx.doi.org/10.1016/j.neuroscience.2010.09.037
PMid:20884330 PMCid:PMC2994196
 
Meister G, Eggert C, Bühler D, Brahms H, Kambach C, Fischer U (2001). Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr. Biol. 11(24):1990-1994.
http://dx.doi.org/10.1016/S0960-9822(01)00592-9
 
Miranda TB, Khusial P, Cook JR, Lee JH, Gunderson SI, Pestka S, Zieve GW, Clarke S (2004). Spliceosome Sm proteins D1, D3, and B/B' are asymmetrically dimethylated at arginine residues in the nucleus. Biochem. Biophys. Res. Comm. 323(2):382-387.
http://dx.doi.org/10.1016/j.bbrc.2004.08.107
PMid:15369763
 
Murer H, Hopfer U, Kinne R (1976). Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem. J. 154:597-604.
PMid:942389 PMCid:PMC1172760
 
Raley-Susman KM, Cragoe EJ, Sapolsky RM, Kopito RR (1991). Regulation of intracellular pH in cultured hippocampal neurons by an amiloride-insensitive Na+/H+ exchanger. J. Biol. Chem. 266(5):2739-2745.
PMid:1847131
 
Ramos A, Hollingsworth D, Adinolfi S, Castets M, Kelly G, Frenkiel TA, Bardoni B, Pastore A (2006). The structure of the N-terminal domain of the fragile X mental retardation protein: a platform for protein-protein interaction. Structure. 14(1):21-31.
http://dx.doi.org/10.1016/j.str.2005.09.018
PMid:16407062
 
Roberts EL (1999). Using hippocampal slices to study how aging alters ion regulation in brain tissue. Methods. 18(2):150-159.
http://dx.doi.org/10.1006/meth.1999.0768
PMid:10356345
 
Seksek O, Bolard J (1996). Nuclear pH gradient in mammalian cells revealed by laser microspectrofluorimetry. J. Cell Sci., 109(1):257-262.
PMid:8834810
 
Stetler A, Winograd C, Sayegh J, Cheever A, Patton E, Zhang Z, Clarke S, Ceman S(2006). Identification and characterization of the methyl arginines in the fragile X mental retardation protein Fmrp. Hum. Mol. Genet. 15(1):87-96.
http://dx.doi.org/10.1093/hmg/ddi429
PMid:16319129
 
Sung Y-J, Dolzhanskaya N, Nolin SL, Brown WT, Currie JR, Denman RB (2003). The fragile X mental retardation protein FMRP binds elongation factor 1A mRNA and negatively regulates its translation in vivo. J. Biol. Chem. 278(18):15669-15678.
http://dx.doi.org/10.1074/jbc.M211117200
PMid:12594214
 
Tabares L, Betz B (2010). Multiple functions of the vesicular proton pump in nerve terminals. Neuron. 68(6):1020-1022.
http://dx.doi.org/10.1016/j.neuron.2010.12.012
PMid:21172605
 
Tresguerres M, Buck J, Levin L (2010). Physiological carbon dioxide, bicarbonate, and pH sensing. Pflugers Arch. 460(6):953-964.
http://dx.doi.org/10.1007/s00424-010-0865-6
PMid:20683624 PMCid:PMC2967379
 
Troffer-Charlier N, Cura V, Hassenboehler P, Moras D, Cavarelli J (2007). Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains. EMBO J. 26(20):4391-4401.
http://dx.doi.org/10.1038/sj.emboj.7601855
PMid:17882262 PMCid:PMC2034665
 
Wang H, Singh D, Fliegel L (1997). The Na+/H+ Antiporter Potentiates Growth and Retinoic Acid-induced Differentiation of P19 Embryonal Carcinoma Cells. J. Biol. Chem. 272(42):26545-26549.
http://dx.doi.org/10.1074/jbc.272.42.26545
PMid:9334233
 
Xie W, Denman RB (2011). Protein methylation and stress granules: Post-translational modifier or innocent bystander? Molecular Biology International, Article ID: 137459:1-14.
 
Xie W, Dolzhanskaya N, LaFauci G, Dobkin C, Denman RB(2009). Tissue and developmental regulation of fragile X mental retardation protein exon 15 isoforms. Neurobiol. Dis. 35(1):52-62.
http://dx.doi.org/10.1016/j.nbd.2009.03.015
PMid:19362146
 
Yu MC (2011). The Role of Protein Arginine Methylation in mRNP Dynamics. Molecular Biology International, Article ID: 163827.
PMid:22091396 PMCid:PMC3195771
 
Zhang X, Cheng X (2003). Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure. 11(5):509-520.
http://dx.doi.org/10.1016/S0969-2126(03)00071-6

 


APA (2011). pH uniquely modulates protein arginine methylation. Journal of Biophysics and Structural Biology, 3(3), 49-65.
Chicago Wen Xie, George Merz and Robert B. Denman. "pH uniquely modulates protein arginine methylation." Journal of Biophysics and Structural Biology 3, no. 3 (2011): 49-65.
MLA Wen Xie, George Merz and Robert B. Denman. "pH uniquely modulates protein arginine methylation." Journal of Biophysics and Structural Biology 3.3 (2011): 49-65.
   
DOI 10.5897/JBSB11.008
URL http://academicjournals.org/journal/JBSB/article-abstract/9C9A69A10916

Subscription Form