Journal of Computational Biology and Bioinformatics Research
Subscribe to JCBBR
Full Name*
Email Address*

Article Number - 19EC4499816

Vol.5(1), pp. 6-14 , April 2013
ISSN: 2141-2227

 Total Views: 0
 Downloaded: 0

Full Length Research Paper

Annotation of virulence factors in schistosomes for the development of a SchistoVir database

Adewale S. Adebayo1 and Chiaka I. Anumudu2*

1Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Oyo State, Nigeria

2Cellular Parasitology Programme, Department of Zoology, University of Ibadan, Oyo State, Nigeria.

Email: [email protected], [email protected]

 Accepted: 08 March 2013  Published: 30 April 2013

Copyright © 2013 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0

Scientific efforts in the eradication of neglected tropical diseases, such as those caused by the parasitic helminthes, can be improved if a database of key virulence factors directly implicated in pathogenesis is available. As a first step towards creating SchistoVir, a database of virulence protein factors in schistosomes, in this study, we curated, annotated and aligned sequences of twenty virulence factors identified from the literature, using several bioinformatics tools including UniProtKB, SchistoDB, VirulentPred, InterProScan, ProtScale, MotifScan, TDRtarget, SignalP, MODBASE, PDB and MUSCLE. Among the protein entries, the most frequently occurring amino acid residues were lysine, serine, leucine, glutamine, glycine and cysteine in order of magnitude. Although sequence repeat regions (SRRs) of significant value were identified manually in fifty percent of the proteins (while dipeptide repeats (DiPs) and single amino acid repeats (SAARs) were not), nevertheless, seventy-two percent of the protein entries were classified as virulent by the prediction model, VirulentPred. Most of the entries (eighty percent) did not have target compounds based on the database of available chemical compounds at TDRtargets. Fourteen of the twenty entries (seventy percent) had more than 30 consecutively negative amino acid residues based on the ProtScale’s Kyte and Doolittle hydrophobicity plot. Hence, they would be hydrophobic enough to be transmembrane in location or secretory in nature. Only 7 (tyrosinase, serine protease1, Tspan-1, VAL4, cathepsin b and L and calreticulin) had cleavage sites and signal peptides, while none had a significant signal anchor probability. The annotations and characterization provided by this work and the development of a SchistoVir database will aid in further research of schistosome pathogenesis and control.


Key words: Protein database, bioinformatics tools, virulence proteins/factors, annotation, schistosomes.

Aslam A, Quinn P, McIntosh RS, Shi J, Ghumra A, McKerrow JH, Bunting KA, Dunne DW, Doenhoff MJ, Sherie LM, Ke Z, Richard JP (2008). Proteases from Schistosoma mansoni cercariae cleave IgE at solvent exposed interdomain region. Mol. Immunol. 45(2):567-574.
Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004). Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340:783-795.
Berriman M, Haas BJ,LoVerdo PT, Wilson RA, Dillon GP, Cerquiera GC, El Sayed NM (2009). The genome of the blood fluke Schistosoma mansoni. Nature 460:352-358
PMid:19606141 PMCid:PMC2756445
Bos DH, Mayfield C, Minchella DJ (2009). Analysis of regulatory protease sequences identified through bioinformatic data mining of the Schistosoma mansoni genome. BMC Genomics 10: 488-492.
PMid:19845954 PMCid:PMC2772863
Boumis G, Angelucci F, Bellelli A, Brunori M, Dimastrogiovanni D, Miele AE (2011). Structural and functional characterization of Schistosoma mansoni Thioredoxin. Protein Sci. 20(6):1069-1076.
PMid:21465612 PMCid:PMC3104236
Blanco MT, Sacristán B, Lucio L, Blanco J, Pérez-Giraldo C, Gómez-García AC (2010). Cell surface hydrophobicity as an indicator of other virulence factors in Candida albicans. Rev. Iberoam Micol. 27(4):195-199.
Braschi S, Borges WC, Wilson RA (2006). Proteomic analysis of the schistosome tegument and its surface membranes. Mem Inst Oswaldo Cruz. 101(I): 205-212.
Caprona A, Riveaua G, Caprona M, Trottein F (2005). Schistosomes: the road from host–parasite interactions to vaccines in clinical trials. Trends Parasitol. 21(3): 143-149.
Cardoso FC, Macedo GC, Gava E, Kitten GT, Mati VL (2008). Schistosoma mansoni Tegument Protein Sm29 Is Able to Induce a Th1-Type of Immune Response and Protection against Parasite Infection. PLoS Negl Trop Dis. 2(10): e308.
PMid:18827884 PMCid:PMC2553283
Chalmers IW, McArdle AJ, Coulson RM, Wagner MA, Schmid R, Hirai H, Hoffmann KF (2008). Developmentally regulated expression, alternative splicing and distinct sub-groupings in members of the Schistosoma mansoni venom allergen-like (SmVAL) gene family. BMC Genomics 9:89.
PMid:18294395 PMCid:PMC2270263
Crowther GJ, Shanmugam D, Carmona SJ, Doyle MA, Hertz-Fowler C, Berriman M, Nwaka S, Ralph SA, Roos DS, Van Voorhis WC, Agüero F (2010). Identification of Attractive Drug Targets in Neglected-Disease Pathogens Using an In Silico Approach. PLoS Negl Trop Dis. 4(8): e804.
PMid:20808766 PMCid:PMC2927427
Curwen RS, Ashton PD, Sundaralingam S, and Wilson RA (2006). Identification of Novel Proteases and Immunomodulators in the Secretions of Schistosome Cercariae That Facilitate Host Entry. Mol. Cell. Proteomics 5(5):835-844.
Dalton JP, Clough FA, Jones MK, Brindley PJ (1997). The cysteine proteinases of Schistosoma mansoni cercariae. Parasitology 114: 105-112.
Depledge DP, Lower RP, Smith DF (2007). RepSeq – A database of amino acid repeats present in lower eukaryotic pathogens. BMC Bioinformatics 8:122.
PMid:17428323 PMCid:PMC1854910
Dvorak J, Mashiyama ST, Braschi S, Sajid M, Knudsen GM, Hansell E, Lim KC, Hsieh I, Bahgat M, Mackenzie B, Medzihradszky KF, Babbitt PC, Caffrey CF and McKerrow JH (2008). Differential use of protease families for invasion by schistosome cercariae. Biochimie 90: 345-358.
Edgar RC (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113.
PMid:15318951 PMCid:PMC517706
Emanuelsson O, Brunak S, von Heijne G and Nielsen H (2007). Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2:953-971.
Fankhauser N, Nguyen-Ha T, Adler J, Mäse P (2007). Surface antigens and potential virulence factors from parasites detected by comparative genomics of perfect amino acid repeats. Proteome Sci. 5: 20.
PMid:18096064 PMCid:PMC2254594
Fitzpatrick JM, Hirai YHH, Hoffmann KF (2007). Schistosome egg production is dependent upon the activities of two developmentally regulated tyrosinases. FASEB J. 21: 823-835.
Fumagalli M, Pozzoli U, Cagliani R, Comi GP, Bresolin N, Clerici M, Sironi M (2010). The landscape of human genes involved in the immune response to parasitic worms. BMC Evol. Biol. 10:264.
PMid:20807397 PMCid:PMC2940816
Garg A, Gupta D (2008). VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinformatics 9:62.
PMid:18226234 PMCid:PMC2254373
Gomez C, Ramirez ME, Calixto-Galvez M, Medel O and Rodríguez MA (2010). Regulation of Gene Expression in Protozoa Parasites. J Biomed. Biotechnol. 2010: 726045.
PMid:20204171 PMCid:PMC2830571
Gravekamp C, Rosner B, Madoff LC (1998). Deletion of repeats in the alpha C protein enhances the pathogenicity of group B streptococci in immune mice. Infect. Immun. 66:4347-4354.
PMid:9712787 PMCid:PMC108525
Guillou F, Roger E, Moné Y, Rognon A, Grunau C, Théron A, Mitta G, Coustau C, Gourbal BE (2007). Excretory–secretory proteome of larval Schistosoma mansoni and Echinostoma caproni, two parasites of Biomphalaria glabrata. Mol. Biochem. Parasitol. 155 (1):45-56.
Hansell E, Braschi S, Medzhiradszsky KF, Sajid M, Debnath M (2008). Proteomic Analysis of Skin invasion by blood fluke larvae. PLoS Negl. Trop. Dis. 2(7):e262.
PMid:18629379 PMCid:PMC2467291
Herve M, Angeli V, Pinzar E, Wintjens R, Faveeuw C, Narumiya S, Capron A (2003). Pivotal roles of the parasite PGD2 synthase and of the host D prostanoid receptor 1 in schistosome immune evasion. Eur. J. Immunol. 33: 2764–2772.
Hogeweg P (2011). The Roots of Bioinformatics in Theoretical Biology. PLoS Comput. Biol. 7(3): e1002021.
PMid:21483479 PMCid:PMC3068925
Kalita MK, Ramasamy G, Duraisamy S, Chauhan VS and Gupta D (2006). ProtRepeatsDB: a database of amino acid repeats in genomes. BMC Bioinformatics (database) 7:336.
PMid:16827924 PMCid:PMC1538635
Kane CM, Cervi L, Sun J, McKee AS, Katherine SM, Sagi S, Christopher AH, Edward JP (2004). Helminth Antigens Modulate TLR-Initiated Dendritic Cell Activation. J. Immunol. 173(12):7454-61.
Karlin S, Brocchieri L, Bergman A, Mrazek J, Gentles AJ (2002). Amino acid runs in eukaryotic proteomes, disease associations. Proc. Natl. Acad. Sci. USA 99:333-338.
PMid:11782551 PMCid:PMC117561
Katsir LE, Schilmiller AL, Staswick PE, He SY, Howe GA (2008). COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl. Acad. Sci. 105(19): 7100-7105
PMid:18458331 PMCid:PMC2383947
Kim KH, Willger SD, Park SW, Puttikamonkul S, Grahl N (2009). TmpL, a Transmembrane Protein Required for Intracellular Redox Homeostasis and Virulence in a Plant and an Animal Fungal Pathogen. PLoS Pathog 5(11): e1000653.
PMid:19893627 PMCid:PMC2766074
Lin YL, He S (2006). Sm22.6 antigen is an inhibitor to human thrombin. Mol. Biochem. Parasitol. 147(1):95-100.
Lopez Quezada LA, McKerrow JH (2011). Schistosome serine protease inhibitors: parasite defense or homeostasis. Anais da Academia Brasileira de Ciências (Annals of the Brazilian Academy of Sciences) 83(2): 663-672.
MacDonald AS, Araujo MI, Pearce EJ (2002). Immunology of Parasitic Helminth Infections. Infect. Immun. 70(2):427–433.
Matisz CE, McDougall JJ, Sharkey KA, McKay DM (2011). Helminth Parasites and the Modulation of Joint Inflammation. J. Parasitol. Res. 2011:942616.
PMid:21584243 PMCid:PMC3092582
Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Buillard V, Cerutti L (2007). New developments in the InterPro database. Nucleic Acids Res. 35: D224-D228.
PMid:17202162 PMCid:PMC1899100
Nielsen H, Engelbrecht J, Brunak S and von Heijne G (1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10:1-6.
Pieper U, Webb BM, Barkan DT, Schneidman-Duhovny D, Schlessinger A, Braberg H et al (2011). MODBASE, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 39:465-474.
PMid:21097780 PMCid:PMC3013688
Quezada CM, Hicks SW, Galán JE, Stebbins CE (2009). A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. Proc. Natl. Acad. Sci. 106(12): 4864-4869.
PMid:19273841 PMCid:PMC2653562
Rabia I, El-Ahwany E, El-Komy W, Nagy F (2010). Immunomodulation of Hepatic Morbidity in Murine Schistosoma mansoni Using Fatty Acid Binding Protein. J. Am. Sci. 6(7):170-176.
Ramana J, Gupta D (2009). ProtVirDB: a database of protozoan virulent proteins. Bioinformatics 25 (12):1568-1569.
Ramos CR, Figueredo RC, Pertinhez TA, Vilar MM, Nascimento AL et al (2003). Gene structure and M20T polymorphism of the Schistosoma mansoni Sm14 fatty acid-binding protein: structural, functional and immunoprotection analysis. J. Biol. Chem. 278:12745-12751.
Ramos CR, Spisni A, Oyama S Jr, Sforca ML, Ramos HR, Vilar MM et al (2009). Stability Improvement of the fatty acid binding protein Sm14 from S mansoni by Cys rep: Structural and functional characterization of a vaccine candidate. J. Biochim. Biophys. Acta 1794(4):655-662.
Reis EAG, Mauadi Carmo TA, Athanazio R, Reis MG, Harn DA Jr (2008). Schistosoma mansoni triose phosphate isomerase peptide MAP4 is able to trigger naıve donor immune response towards a type-1 cytokine profile. Scand. J. Immunol. (Clinical Immunology) 68:169–176.
Sharma M, Khanna S, Bulusu G, Mitra A (2009). Comparative modeling of thioredoxin reductase from Schistosoma mansoni: a multifunctional target for antischistosomal therapy. J. Mol. Graph Model 27(6):665-675.
Schulz GE, Vogt J (1999). The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence. Structure 7 (10): 1301–1309.
Sigrist CJA, Cerutti L, De Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, Hulo N (2010). PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res. (Database) 38: 161–166.
PMid:19858104 PMCid:PMC2808866
Tsai CT, Huang WL, Ho SJ, Shu LS, Ho SY (2009). Virulent-GO: Prediction of Virulent Proteins in Bacterial Pathogens Utilizing Gene Ontology Terms. Int. J. Biol. Life Sci. 5(4):2009
Verjovski-Almeida S, DeMarco R (2008). Current developments on Schistosoma proteomics. Acta Tropica 108:183-185.
World Health Organisation (WHO) Document (2010). Parasitic Diseases-Schistosomiasis. Available at 13 July 2011.
Zhou CE, Smith J, Lam M, Zemla A, Dyer MD, Slezak T (2007). MvirDB—a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications. Nucleic Acids Res. (database) 35:391–394.
PMid:17090593 PMCid:PMC1669772


APA (2013). Annotation of virulence factors in schistosomes for the development of a SchistoVir database. Journal of Computational Biology and Bioinformatics Research, 5(1), 6-14.
Chicago Adewale S. Adebayo and Chiaka I. Anumudu. "Annotation of virulence factors in schistosomes for the development of a SchistoVir database." Journal of Computational Biology and Bioinformatics Research 5, no. 1 (2013): 6-14.
MLA Adewale S. Adebayo and Chiaka I. Anumudu. "Annotation of virulence factors in schistosomes for the development of a SchistoVir database." Journal of Computational Biology and Bioinformatics Research 5.1 (2013): 6-14.

Subscription Form