Journal of Cell Biology and Genetics
Subscribe to JCBG
Full Name*
Email Address*

Article Number - 5C3A3F748035


Vol.4(2), pp. 15-26 , September 2014
DOI: 10.5897/JCBG2013.0037
ISSN: 2141-6516



Full Length Research Paper

Constitutive activation of AMP-activated protein kinase (AMPK) propel mitochondrial biogenesis



Paul B. Bokko*
  • Paul B. Bokko*
  • School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia. Department of Veterinary Surgery and Theriogenology, University of Maiduguri, PMB 1069, Nigeria.
  • Google Scholar
Afsar U. Ahmed
  • Afsar U. Ahmed
  • School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia. Monash Medical Research Institute, Monash University, Clayton, VIC 3800 Australia.
  • Google Scholar
Paul R. Fisher
  • Paul R. Fisher
  • School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia.
  • Google Scholar







 Received: 03 August 2014  Accepted: 19 September 2014  Published: 30 September 2014

Copyright © 2014 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Mitochondrial biogenesis is primarily a critical adaptation aimed to balance an increased workload in an attempt to maintain appropriate body perfusion. Until recently, the signaling mechanisms responsible for this response are poorly understood. To examine the role of AMP-activated protein kinase (AMPK), an evolutionarily conserved fuel sensor, in mitochondrial biogenesis, we used constitutively active and antisense inhibition genetic tools in Dictyostelium discoideum. Constitutive activation of AMPK culminated in mitochondrial proliferation and elevated ATP generation; this became marked with higher plasmid copies. Antisense inhibition of AMPK yielded non–significant decrease in the mitochondrial content at low levels. However, the more severe the antisense inhibition, the more significant the diminution of AMPK function, resulting in the more apparent decrease in the Advanced Technology Program (ATP) and mitotracker fluorescence. This finding provides direct genetic evidence that AMPK plays a significant role in ameliorating the effects of cellular energy deficit through mitochondrial proliferation. Thus, the constitutive activation of AMPK initiates signalling to downstream targets. The result perturbation of these pathways would culminate in the mitochondrial biogenesis. Taken together, these findings show the constitutive activation of AMPK propels in vivo mitochondrial biogenesis and ATP generation in D. discoideum as in other organisms.

 

Key words: Antisense, constitutive activation, Dictyostelium discoideum, mitochondrial mass, plasmid copies.  

Adams J, Chen ZP, Van Denderen BJ, Morton CJ, Parker MW, Witters LA, Stapleton D, Kemp BE (2004). Intrasteric control of AMPK via the γ1 subunit AMP allosteric regulatory site. J. Environ. Prot. Sci. 13:155-165.
Crossref
 
Ausubel FM, Albright LM (1995). Molecular Techniques and Gene Cloning. In: Ausubel FM, Brent R, Kingston RE, Moore D, Seidman JG, Smith JA, Struhl K (Eds.), Current Protocols in Molecular Biology. John Wiley New York, USA. pp. 337–525.
 
Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, Young LH, Semenkovich CF, Shulman GI (2001). Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am. J. Physiol. Endocrinol. Metab. 281: E1340–E1346.
Pubmed
 
Black BL, Olson EN (1998). Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Ann. Rev. Cell. Dev. Biol. 14: 167–196.
Crossref
 
Bokko BP Said F, Bandala E, Ahmed A, Annesely SJ, Huang X, Khurana T, Kimmel AR, Fisher PR (2007). Diverse cytopathologies in mitochondrial disease are caused by AMPK. J. Mol. Cell Biol. 18: 1874 –1886.
Crossref
 
Carling D (2004). The AMP-activated protein kinase cascade--a unifying system for energy control. Trends Biochem. Sci. 29: 18–24.
Crossref
 
Carling D, Aguan K, Woods A, Verhoeven AJM, Beri RK, Brennan CH, Sidebottom C, Davison MD, Scott J (1994). Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J. Biol. Chem. 269: 11442–11448.
Pubmed
 
Carlson M (1999). Glucose repression in yeast. Curr. Opin. Microbiol. 2: 202–207.
Crossref
 
Chan DC (2006). "Mitochondria: Dynamic Organelles in Disease, Aging, and Development". Cell 125(7):1241–1252.
Crossref
 
Clayton DA (1992). Transcription and replication of animal mitochondrial DNAs. Int. Rev. Cytol. 141:217–232.
Crossref
 
Corton JM, Gillepsie JG, Hawley SA, Hardie DG (1995). 5'-Aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem. 229:558–565.
Crossref
 
Crute BE, Seefeld K, Gamble J, Kemp BE, Witters LA (1998). Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase. J. Biol. Chem. 273:35347–35354.
Crossref
 
Czubryt MP, McAnally J, Fishman GI, Olson EN (2003). Regulation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1 α) and mitochondrial function by MEF2 and HDAC5. Proc. Natl. Acad. Sci. 100:1711–1716.
Crossref
 
Fey P, Compton K, Cox E (1995). Green fluorescent protein production in the cellular slime molds Polysphondylium pallidum and Dictyostelium. Gene 165:127–130.
Crossref
 
Goffart S, von Kleist-Retzow JC, Wiesner RJ (2004). Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy. Cardiovasc. Res. 64: 198–207.
Crossref
 
Grozinger CM, Schreiber SL (2000). Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3- 3-dependent cellular localization. Proc. Natl. Acad. Sci. 97:7835–7840.
Crossref
 
Gulick T, Cresci S, Caira T, Moore DD, Kelly DP (1994). The peroxisome proliferator activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc. Natl. Acad. Sci. 91:11012-11016.
Crossref
 
Hardie DG, Hawley SA (2001). "AMP-activated protein kinase: the energy charge hypothesis revisited". Bioessays 23:1112–1119.
Crossref
 
Hawley SA, Selbert MA, Goldstein EG, Edelman AM, Carling D, Hardie DG (1995). 5'-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J. Biol. Chem. 270:27186–27191.
Crossref
 
Hayashi T, Hirshman MF, Fujii N, Habinowski SA, Witters LA, Goodyear LJ (2000). Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 49:527–531.
Crossref
 
Hermann GJ, Thatcher JW, Mills JP, Hales KG, Fuller MT, Nunnari J, Shaw JM (1998). "Mitochondrial Fusion in Yeast Requires the Transmembrane GTPase Fzo1p". J. Cell. Biol. 143(2):359–373.
Crossref
 
Hermann JM, Neupert W (2000). "Protein transport into mitochondria". Curr. Opin. Microbiol. 3(2):210–214.
Crossref
 
Hinas A, Söderbom F (2007). Treasure hunt in an amoeba: non-coding RNAs in Dictyostelium discoideum. Curr. Genet. 51:141–159.
Crossref
 
Ihlemann J, Ploug T, Hellsten Y, Galbo H (1999). Effect of tension on contraction-induced glucose transport in rat skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 277:E208–E214.
 
Jones AWE, Yao Z, Vicencio JM, Karkucinska-Wieckowska A, Szabadkai G (2012). PGC-1 family coactivators and cell fate: Roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria–nucleus signalling. Mitochondrion 12:86–99.
Crossref
 
Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000). Peroxisome proliferator–activated receptor g coactivator-1 promotes cardiac mitochondrial biogenesis. J. Clin. Investig. 106(7):847 – 856.
Crossref
 
Lehman JJ, Kelly DP (2002). Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin. Exp. Pharmacol. Physiol. 29: 339-345.
Crossref
 
Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel- Duby R, Spiegelman BM (2002). Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418:797–801.
Crossref
 
Liu Y, Wan Q, Guan Q, Gao L, Zhao J (2006). High-fat diet feeding impairs both the expression and activity of AMPK α in rats' skeletal muscle. Biochem. Biophys. Res. Commun. 339:701-707.
Crossref
 
McKinsey TA, Zhang CL, Olson EN (2001). Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol. Cell Biol. 21:6312–6321.
Crossref
 
Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, Kelly DP, Spiegelman BM (2001). Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl. Acad. Sci. 98:3820-3825.
Crossref
 
Nellen W, Silan C, Firtel RA (1984). DNA-mediated transformation in Dictyostelium discoideum: Regulated expression of an actin gene fusion. Mol. Cell Biol. 4:2890–2898.
Pubmed
 
Nisoli E, Clement E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncad AS, Carruba MO (2003). Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899.
Crossref
 
Pan DA, Hardie DG (2002). A homologue of AMP-activated protein kinase in Drosophila melanogaster is sensitive to AMP and is activated by ATP depletion. Biochem. J. 367:179–186.
Crossref
 
Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839.
Crossref
 
Reznick RM, Shulman GI (2006). The role of AMP-activated protein kinase in mitochondrial biogenesis. J. Physiol. 574(1):33–39.
Crossref
 
Salt IP, Celler JW, Hawley SA, Prescott A, Woods A, Carling D, Hardie DG (1998). AMP-activated protein kinase - greater AMP dependence, and preferential nuclear localization, of complexes containing the α2 isoform. Biochem. J. 334:177–187.
Pubmed
 
Scarpulla RC, Vega RB, Kelly DP (2012). Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol. Metab. 23(9):459–466.
Crossref
 
Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG (2004). CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest. 113:274–284.
Crossref
 
Stein SC, Woods A, Jones NA, Davison MD, Carling D (2000). The regulation of AMP-activated protein kinase by phosphorylation. Biochem. J. 345:437–443.
Crossref
 
Sung S, Bisson S, Koehler S, Podgorski GJ (1999). The Dictyostelium Snf1/AMP- activated kinase. Unpublished. EMBL/GenBank ID AF118151.
 
Suzuki A, Okamot, S, Lee S, Saito K, Shiuchi T, Minokoshi Y (2007). Leptin stimulates fatty acid oxidation and peroxisome proliferator-activated receptor alpha gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the α2 form of AMP-activated protein kinase. J. Mol Cell Biol. 27:4317–4327.
Crossref
 
Thornton C, Snowden MA, Carling D (1998). Identification of a novel AMP-activated protein kinase β subunit isoform which is highly expressed in the skeletal muscle. J. Biol. Chem. 273:12443–12450.
Crossref
 
Vega RB, Huss JM, Kelly DP (2000). The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell Biol. 20:1868–1876.
Crossref
 
Ventura-Clapier R, Garnier A, Veksler V (2008). Transcriptional control of mitochondrial biogenesis: the central role of PGC-1α. Cardiovasc. Res. 79:208-217.
Crossref
 
Wakerhage H, Woods NM (2002). Exercise-induced signal transduction and gene regulation in skeletal muscle. J. Sports Sci. Med. 1:103–114.
 
Watts DJ, Ashworth JM (1970). Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem. J. 119:171–174.
Pubmed
 
Weekes J, Hawley SA, Corton J, Shugar D, Hardie DG (1994). Activation of rat liver AMP-activated protein kinase by kinase kinase in a purified, reconstituted system. Effects of AMP and AMP analogues. Eur. J. Biochem. 219:751–757.
Crossref
 
Williams RS, Salmons S, Newsholme EA, Kaufman RE, Mellor J (1986). Regulation of nuclear and mitochondrial gene expression by contractile activity in skeletal muscle. J. Biol. Chem. 261:376-380.
Pubmed
 
Wilson WA, Hawley SA, Hardie DG (1996). The mechanism of glucose repression/derepression in yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr. Biol. 6:1426–1434.
Crossref
 
Winder WW, Hardie DG (1999). "AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes". Am. J. Physiol. 277(1):E1–10.
Pubmed
 
Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO (2000). "Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle". J. Appl. Physiol. 88(6):2219–2226.
Pubmed
 
Witke W, Nellen W, Noegel A (1987). Homologous recombination in the Dictyostelium α-actin gene leads to an altered mRNA and lack of the protein. EMBO J. 6:4143–4148.
Pubmed
 
Woods A, Azzout-Marniche D, Foretz M, Stein SC, Lemarchand P, Ferre P, Foufelle F, Carling D (2000). Characterisation of the Role of AMP-Activated Protein Kinase in the Regulation of Glucose-Activated Gene Expression Using Constitutively Active and Dominant Negative Forms of the Kinase. Mol. Cell Biol. 20(18):6704–6711.
Crossref
 
Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R, Williams RS (2002). Regulation of Mitochondrial Biogenesis in Skeletal Muscle by CaMK. Science 296:349–352.
Crossref
 
Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98: 115–124.
Crossref
 
Xia Y, Buja LM, Scarpulla RC, McMillin JB (1997). Electrical stimulation of neonatal cardiomyocytes results in the sequential activation of nuclear genes governing mitochondrial proliferation and differentiation. Proc. Natl. Acad. Sci. 94:11399–11404.
Crossref
 
Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, Shulman GI (2002). AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc. Natl. Acad. Sci. 99:15983-15987.
Crossref

 


APA Bokko*, P. B., Ahmed, A. U., & Fisher, P. R. (2014). Constitutive activation of AMP-activated protein kinase (AMPK) propel mitochondrial biogenesis. Journal of Cell Biology and Genetics, 4(2), 15-26.
Chicago Paul B. Bokko, Afsar U. Ahmed, and Paul R. Fisher. "Constitutive activation of AMP-activated protein kinase (AMPK) propel mitochondrial biogenesis." Journal of Cell Biology and Genetics 4, no. 2 (2014): 15-26.
MLA Paul B. Bokko, et al. "Constitutive activation of AMP-activated protein kinase (AMPK) propel mitochondrial biogenesis." Journal of Cell Biology and Genetics 4.2 (2014): 15-26.
   
DOI 10.5897/JCBG2013.0037
URL http://academicjournals.org/journal/JCBG/article-abstract/5C3A3F748035

Subscription Form