Journal of Cell Biology and Genetics
Subscribe to JCBG
Full Name*
Email Address*

Article Number - E0DD1B81158


Vol.3(2), pp. 22-28 , March 2013
DOI: 10.5897/JCBG11.012
ISSN: 2141-6516



Full Length Research Paper

Blockade of Akt/mTOR pathway and enhancement of histone acetylation by PHI to induce cells apoptosis in prostate cancer PC3 cells



Zhiming Zhuang,
  • Zhiming Zhuang,
  • Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, 363000, China.
  • Google Scholar
Xudong Ma
  • Xudong Ma
  • Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, 363000, China.
  • Google Scholar
Yiqun Huang
  • Yiqun Huang
  • Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, 363000, China.
  • Google Scholar
Zhouda Zheng
  • Zhouda Zheng
  • Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, 363000, China.
  • Google Scholar
Yacai Zheng
  • Yacai Zheng
  • Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, 363000, China.
  • Google Scholar
Shaohong Jiang
  • Shaohong Jiang
  • Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, 363000, China.
  • Google Scholar







 Accepted: 01 September 2011  Published: 31 March 2013

Copyright © 2013 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Mammalian target of rapamycin (mTOR) has merged an important therapeutic target for cancers. Our object is to demonstrate that phenyhexyle isothiocyanate (PHI), a synthetic isothiocyanate, blocked Akt/mTOR signaling in prostate cancer PC3 cell line, in addition to inhibited histone deacetylase to induce cell apoptosis. Apoptotic cells were measured by TUNEL assay. Histone acetylated H3, H4 and the protein of Akt signaling pathway (Akt, p-Akt, mTOR, p-mTOR, p70S6K, p-p70S6K) and apoptosis pathway (caspase-3, caspase-9, MCL-1, Cyt-1, XIAP) were detected by Western Blot. Apoptotic cells were increased after exposure to PHI with a concentration dependent manner. PHI significantly induced an accumulation of histone acetylated H3, H4, as assessed by decreased levels of the phosphorylated (p)-Akt, p-p70 ribosomal S6 kinase (p70S6K) and p-S6K after exposure to PHI for 7 h. The change of proteins of Akt, mTOR, p70S6K was not seen. PHI induced apoptosis through intrinsic pathway. PHI increases histone acetylated H3, H4, which activates gene transcription, induces tumor cell apoptosis. PHI induces Akt dephosphorylation, thus blocking Akt signaling pathway, which is an important therapeutics target.

 

Key words: Phenyhexyle isothiocyanate (PHI), prostate cancer, Akt/mammalian target of rapamycin (mTOR) , histone deacetylase, inhibitor.

 

Asnaghi L, Bruno P, Priulla M, Nicolin A (2004). mTOR: a Protein kinase switching between life and death. Phanmacol. Res. 50(6):545-549.
http://dx.doi.org/10.1016/j.phrs.2004.03.007
PMid:15501691
 
Bali P, George P, Cohen P, Tao J, Guo F, Sigua C (2004). Superior activity of the combination of histone deacetylase inhibitor LAQ824 and the FLT-3 kinase inhibitor PKC412 against human acute myelogenous leukemia cells with mutant FLT-3. Clin. Cancer Res. 10:4991–4997.
http://dx.doi.org/10.1158/1078-0432.CCR-04-0210
PMid:15297399
 
Brazil DP, Park J, Hemmings BA (2002). PKB binding proteins: getting in on the Akt. Cell 111:293–303.
http://dx.doi.org/10.1016/S0092-8674(02)01083-8
 
Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857-68.
http://dx.doi.org/10.1016/S0092-8674(00)80595-4
 
Chen CS, Wemg SC, Tsent PH, Lin HP, Chen CS (2008). Hisotne acetylation-independent effect of histone deacetylatse inhoibitors in AKt through the resulting if protein phosphalase 1 complexes. J. Biol. Chem. 280(46):38879-38887.
http://dx.doi.org/10.1074/jbc.M505733200
PMid:16186112
 
Chiao JW, Chung FL, Kancherla R (2002). Sulforaphane and its metabolite growth arrest and apoptosis in human prostate cancer cells. Int. J. Oncol. 20(3):631-636.
PMid:11836580
 
Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y (1997). Akt phosphorylation of BAD couples's survival signals to the cell-intrinsic death machinery. Cell 91:231-41.
http://dx.doi.org/10.1016/S0092-8674(00)80405-5
 
Denlinger CE, Rundall BK, Jones DR (2005). Inhibition of phosphatidylinositol 3-kinase/Akt and histone deacetylase activity induces apoptosis in non-small cell lung cancer in vitro and in vivo. J. Thorac. Cardiovasc. Surg. 130(5):1422-1429.
http://dx.doi.org/10.1016/j.jtcvs.2005.06.051
PMid:16256798
 
Enomoto A, Murakami H, Asai N, Morone N, Watanabe T, Kawai K (2005). Akt/PKB regulates actin organization and cell motility via Girdin/APE. Dev. Cell 9:389–402.
http://dx.doi.org/10.1016/j.devcel.2005.08.001
PMid:16139227
 
Fuino L, Bali P, Wittmann S, Donapaty S, Guo F, Yamaguchi H (2003). Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol. Cancer Ther. 2:971–984.
PMid:14578462
 
Gupta AK, Cerniglia GJ, Mick R, Ahmed MS, Bakanauskas VJ, Muschel RJ (2003). Radiation sensitization of human cancer cells in vivo by inhibiting the activity of PI3K using LY294002. Int. J. Radiat. Oncol. Biol. Phys. 56:846-853.
http://dx.doi.org/10.1016/S0360-3016(03)00214-1
 
Hill MM, Hemmings BA (2002). Inhibition of protein kinase B/Akt implications for cancer therapy. Pharmacol. Ther. 93:243-251.
http://dx.doi.org/10.1016/S0163-7258(02)00193-6
 
Huang WC, Chen CC (2005). Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. J. Mol. Cell Biol. 25(15):6592-6602.
http://dx.doi.org/10.1128/MCB.25.15.6592-6602.2005
PMid:16024795 PMCid:PMC1190347
 
Huang WC, Chen CC (2005). Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. Mol. Cell Biol. 25(15):6592~6602.
http://dx.doi.org/10.1128/MCB.25.15.6592-6602.2005
PMid:16024795 PMCid:PMC1190347
 
Huang YQ, Ma XD, Lai YD, Wang XZ, Chiao JW, Liu DL (2010). Phenylhexyl isothiocyanate (PHI) regulates histone methylation and acetylation and induces apoptosis in SMMC-7721 cells. Zhonghua Gan Zang Bing Za Zhi Mar 18(3):209-12.
 
Jiang S, Ma X, Huang Y, Xu Y, Zheng R, Chiao JW (2010). Reactivating aberrantly hypermethylated p15 gene in leukemic T cells by a phenylhexyl isothiocyanate mediated inter-active mechanism on DNA and chromatin. J. Hematol. Oncol. 29(3):48
http://dx.doi.org/10.1186/1756-8722-3-48
PMid:21114827 PMCid:PMC3009608
 
Kawamata N, Chen J. Koeffer HP (2007). Suberoylanilide hydroxarmic acid (SAHA; vorinostal) suppresses translation of cyclin D1 in mantle cell lymphoma cell. Blood 110(7):2667-2673.
http://dx.doi.org/10.1182/blood-2005-11-026344
PMid:17606765 PMCid:PMC1988938
 
Kumar V, Zhang MX, Swank MW, Kunz J, Wu GY (2005). Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. J. Neurosci. 25(49):11288-11299.
http://dx.doi.org/10.1523/JNEUROSCI.2284-05.2005
PMid:16339024
 
Kumar V, Zhang MX, Swank MW, Kunz J, Wu GY (2005). Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. J. Neurosci. 25(49):11288-11299.
http://dx.doi.org/10.1523/JNEUROSCI.2284-05.2005
PMid:16339024
 
Lim Y, Han I, Kwon HJ, Oh ES (2002). Trichostatin A-induced detransformation correlates with decreased focal adhesion kinase phosphorylation at tyrosine 861 in ras-transformed fibroblasts. Biol. Chem. 277(15):12735–12740
http://dx.doi.org/10.1074/jbc.M111011200
PMid:11821402
 
Ma XD, Fang YQ, Liu DL, Dai W, Feng J, Ahmed T (2006). Phenyhexyl isothiocyanate inhibits histone deacetylases and remodels chromatin to induce growth arrest in human leukemia cells. Int. J. Oncol. 26:1287-94.
 
Madrid LV, Mayo MW, Reuther JY, Baldwin AS (2001). Akt stimulates the transactivation potential of the Rel A/p65 subunit of NF-ƙB through utilization of the I_B kinase and activation of the mitogen-activated protein kinase p38, J. Biol. Chem. 276:18934-40.
http://dx.doi.org/10.1074/jbc.M101103200
PMid:11259436
 
Mayo MW, Denlinger CE, Broad RM, Yeung F, Reily ET, Shi Y (2003). Ineffectiveness of histone deacetylase inhibitors to induce apoptosis involves the transcriptional activation of NF-kappa B through the Akt pathway. J. Biol. Chem. 278:18980-9.
http://dx.doi.org/10.1074/jbc.M211695200
PMid:12649266
 
Murillo H, Huang H, Schmidt LJ, Smith DI, Tindall DJ (2001). Role of PI3K signaling in survival and Progression of LNCaP Prostate cancer cells to the androgen refractory state. Endocrinology 142:4795-4805.
http://dx.doi.org/10.1210/endo.142.11.8467
http://dx.doi.org/10.1210/en.142.11.4795
PMid:11606446
 
Rege YD, Rangnekar VM (2004). Molecular therapy intervention prospects in prostate cancer. J. Curr. Pharm. Des. 10(5):523-530.
http://dx.doi.org/10.2174/1381612043453234
 
Rohde JR, Cardenas ME (2003). The TOR pathway regulates gene expression by linking nutrient sensing to histone acetylation. J. Mol. Cell Biol. 23(2):629-635.
http://dx.doi.org/10.1128/MCB.23.2.629-635.2003
PMCid:PMC151550
 
Romashkova JA, Makorov SS (1999). NF-ƙB B is a target of Akt in antiapoptotic PDGF signaling. Nature 401:86-90.
http://dx.doi.org/10.1038/43474
PMid:10485711
 
Shirra MK, Rogers SE, Alexander DE, Arndt KM (2005). The Snf1 protein kinase and Sit4 protein phosphatase have opposing functions in regulating TATA-binding protein association with the Saccharomyces cerevisiae INO1 promoter. Genetics 169(4):1957-1972.
http://dx.doi.org/10.1534/genetics.104.038075
PMid:15716495 PMCid:PMC1449608
 
Testa JR, Bellacosa A (2001). AKT plays a central role in tumorigenesis. Proc. Nat. Acad. Sci. USA. 98:10983–10985.
http://dx.doi.org/10.1073/pnas.211430998
PMid:11572954 PMCid:PMC58668
 
Vivanco I, Sawyers CL (2002). The phosphatidylinositol 3-kinase-Akt pathway in human cancer. Nat. Rev. Cancer 2:489-501.
http://dx.doi.org/10.1038/nrc839
PMid:12094235
 
Gan YH, Shan Z (2009). PTEN/AKT pathway involved in histone deacetylases inhibitor induced cell growth inhibition and apoptosis of oral squamous cell carcinoma cells. Oral Oncol. 45:e150–e154.
http://dx.doi.org/10.1016/j.oraloncology.2009.05.563
PMid:19574087
 
Zhou X, Tan M, Stone Hawthome V, Klos KS, Lan KH, Yang Y (2004). Activation of the Akt/mammalian target of RaPamycin /4E-BP1 pathway by ErbB-over expression predicts tumor Progression in breast cancers. Clin. Cancer Res. 10:6779-6788.
http://dx.doi.org/10.1158/1078-0432.CCR-04-0112
PMid:15501954

 


APA (2013). Blockade of Akt/mTOR pathway and enhancement of histone acetylation by PHI to induce cells apoptosis in prostate cancer PC3 cells. Journal of Cell Biology and Genetics, 3(2), 22-28.
Chicago Zhiming Zhuang, Xudong Ma, Yiqun Huang, Zhouda Zheng, Yacai Zheng and Shaohong Jiang. "Blockade of Akt/mTOR pathway and enhancement of histone acetylation by PHI to induce cells apoptosis in prostate cancer PC3 cells." Journal of Cell Biology and Genetics 3, no. 2 (2013): 22-28.
MLA Zhiming Zhuang, et al. "Blockade of Akt/mTOR pathway and enhancement of histone acetylation by PHI to induce cells apoptosis in prostate cancer PC3 cells." Journal of Cell Biology and Genetics 3.2 (2013): 22-28.
   
DOI 10.5897/JCBG11.012
URL http://academicjournals.org/journal/JCBG/article-abstract/E0DD1B81158

Subscription Form