Journal of Chemical Engineering and Materials Science
Subscribe to JCEMS
Full Name*
Email Address*

Article Number - 11AB3A554117

Vol.6(2), pp. 9-14 , July 2015
ISSN: 2141-6605

 Total Views: 0
 Downloaded: 0

Full Length Research Paper

Preparation of phosphoric acid activated carbons from Canarium Schweinfurthii Nutshell and its role in methylene blue adsorption

Adegboyega Surajudeen Olawale1, Olusegun Ayoola Ajayi2*, Michael Sunday Olakunle1,

Mku Thaddeus Ityokumbul3 and Sam Sunday Adefila4

1Department of Chemical Engineering, Ahmadu Bello University, Zaria, Nigeria.

2Department of Chemical and Petroleum Engineering, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria.

3Department of Energy and Mineral Processing, Penn State University, Pennsylvania, U.S.A.

4Engineering and Environmental Services Limited, Suite 5 ZM Plaza, Ahmadu Bello Way, Garki 11, Abuja, Nigeria.

Email: [email protected]

 Received: 30 April 2015  Accepted: 08 July 2015  Published: 22 July 2015

Copyright © 2015 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0

Activated carbons were prepared by phosphoric acid activation of Canarium Schweinfurthii spent nutshell. The activation conditions for particles with average diameter of 2.36 mm, conducted in nitrogen chamber, were evaluated at 40 and 60% acid concentration, substrate/activating agent  (impregnation) ratio of 1:1 to 1:4, activation time of 20 to 60 min and temperatures of 200 and 400°C. The results showed that the yield, BET surface area and adsorption capacities of activated carbon produced increased with impregnation ratio, activation time and temperatures. The activated carbon obtained using 1:4 impregnation ratios at 60 min with 40 wt% acid solution have BET surface area and adsorption capacity of 741 m2/g and 8.5 gMB/g Carbon while those for 60wt% acid solution were determined as 779 m2/g and 9.2 gMB/g Carbon, respectively.


Key words: Canarium schweinfurthii, activated carbon, phosphoric acid, methylene blue, impregnation ratio, dyes.

Adefila SS, Aderemi BO, Ajayi OA and Baderin DA (2003). "Comparative surface area determination using water adsorption method". Nig. J. Eng. 11(1):89-97.
Ajayi OA, Olawale AS (2009). "A Comparative study of Thermal and Chemical Activation of Canarium schweinfhurthi Nutshell. J. Appl. Sci. Res. pp. 2148-2152.
AOAC (2010)‎, assessed on 13th February, 2012.
Benadjemia M, Milliere L, Reinert L, Douche NB, Duclaux L (2011). "Preparation, characteristics and methylene blue absorption of phosphoric acid activated carbon from globe artichoke leaves". J. Fuel Process. Technol. 92(6):1203-1212.
Bestani B, Benderdouche N, Benstaali B, Belhakem M, Addou A (2008). "Methylene blue and iodine adsorption onto an activated desert plant." Bior. Tech. 99(17):8441–8444.
Ehrampoush MH, Moussavi GHR, Ghaneian MT, Rahimi S, Ahmadian M (2011). "Removal of methylene blue dye from textile simulated sample using tubular reactor and TiO2/UV-C photocatalytic process"'. Iran. J. Environ. Health Sci. Eng. 8(1):35-40.
Espulgas SJ, Gimenez S, Contreras EP, Rodriguez M (2002). "Comparison of Different Advanced Oxidation Processes for Phenol Degradation". Water Res. 36:1034-1042.
Girgis BS, Ishak MF (1999). "Activated carbons from cotton stalks by impregnation with phosphoric acid". Mat. Letts. 39(2):107-114.
Gratuito MKB, Panyathanmaporn T, Chumnanklang RA, Sirinuntawittaya N, Dutta A (2008). Production of activated carbon from coconut shell: Optimization using response surface methodology. Bioresour. Technol. 99:4887-4895.
Gregorio C (2006). "Non-conventional low-cost adsorbents to dye removal. Bioresour. Technol. 97:1061-1085.
Jagtoyen M, Derbyshire F (1998). "Activated carbons from yellow poplar and white oak by Hydrogen tetraoxophosphate activation". Carbon 36:1085-1097.
Kanawade SM, Gaikwad RW (2011). Removal of Methylene Blue from Effluent by Using Activated Carbon and Water Hyacinth as Adsorbent. Int. J. Chem. Eng. Applic. 2(5):317-319.
Kant R (2012). Textile dyeing industry an environmental hazard. Nat. Sci. 4(1):22-26.
Lim WC, Srinivasakanan C, Balasubramanian N (2010). "Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon". J. Anal. Appl. Pyrolysis 88:181-186.
Meyer V, Carlsson FHH, Aoellemann R (1992). "Decolourisation of textile effluents using a low cost natural adsorbent material. Water Sci. Technol. P. 16.
Montane D, Torne-Fernandez VF (2005). "Activated carbons from lignin: kinetic modeling of the pyrolysis of Kraft lignin activated with phosphoric acid". Chem. Eng. J. 106(1):1-12.
Natos M, Barreiro MF, Gandini A (2010). "Olive stone as a renewable source of biopolyols". Ind. Crop Prod. 32:7-12.
Olawale AS (2012). "Solid-liquid extraction of oils of African elemis (Canarium schweinfhurthi) fruit. Agric. E. Int: CIGR J. 14(2):155-161.
Pelekani C, Snoeyink VL (2000). "Competitive absorption between atrazine and methylene blue on activated carbon: the importance of pore size distribution". Carbon 38:1423-1436.
Ramakrishna KR, Viraraghavan T (1997). "Dye Removal Using Low Cost Adsorbents". Wat. Sci. Tech. 36:189-196.
Raposo F, De La Rubia MA and Borja R (2009). Methylene blue number as useful indicator to evaluate the adsorptive capacity of granular activated carbon in batch mode: Influence of adsorbate /adsorbent mass ratio and particle size. J. Hazard. Mater. 165:291-299.
Shaobih W, Zhwa ZH, Anthony C, Harghseresht F (2005). "The physical and surface chemical characteristics of activated carbons and the absorption of methylene blue from waste water". J. Colloid Inter. Sci. 284:440-446.
Sreedhar S, Kotaiah B (2006). "Comparative evaluation of commercial and sewage sludge based activated carbons for the removal of textile dyes from aqueous solutions". Iran. J. Environ. Health Sci. Eng. 3:239-246.
Srinivasakannan C, Abu Bakar MZ (2004). Production of activated carbon from wood sawdust. Bioresour. Technol. 27:89-96.
Suarez-Garcia F, Martinez-Alonso A, Tascon JMD (2004). Activated carbon fibers from Nomex by chemical activation with phosphoric acid. Carbon 42:1419-1426.
Wang XS, Zhoub Y, Jiang Y, Sun C (2008). "The removal of basic dyes from aqueous solutions using agricultural by-products". J. Hazard. Mater. 157:374-385.
Weisburger JH (2002). "Comments on the history and importance of aromatic and heterocyclic amines in public health". Mat. Res. pp. 506–507, 9–20.
Yakout SM, Sharaf-el-Deen G (2012). "Characteristics of activated carbon prepared by phosphoric acid activation of olive stones". Arab. J. Chem. 


APA Olawale AS , Olusegun AA, Michael SO, Mku TI & Sam SA (2015). Preparation of phosphoric acid activated carbons from Canarium Schweinfurthii Nutshell and its role in methylene blue adsorption. Journal of Chemical Engineering and Materials Science, 6(2), 9-14.
Chicago Adegboyega Surajudeen Olawale, Olusegun Ayoola Ajayi, Michael Sunday Olakunle, Mku Thaddeus Ityokumbul and Sam Sunday Adefila. "Preparation of phosphoric acid activated carbons from Canarium Schweinfurthii Nutshell and its role in methylene blue adsorption." Journal of Chemical Engineering and Materials Science 6, no. 2 (2015): 9-14.
MLA Adegboyega Surajudeen Olawale, et al. "Preparation of phosphoric acid activated carbons from Canarium Schweinfurthii Nutshell and its role in methylene blue adsorption." Journal of Chemical Engineering and Materials Science 6.2 (2015): 9-14.

Subscription Form