Journal of Chemical Engineering and Materials Science
Subscribe to JCEMS
Full Name*
Email Address*

Article Number - 35E9A8B41707


Vol.4(7), pp. 93 - 102 , November 2013
DOI: 10.5897/JCEMS2013.0148
ISSN: 2141-6605



Full Length Research Paper

Characterization and optimization of poly (3-hexylthiophene-2, 5- diyl) (P3HT) and [6, 6] phenyl-C61-butyric acid methyl ester (PCBM) blends for optical absorption



G. Kalonga
  • G. Kalonga
  • Department of Physics, School of Natural Sciences, University of Zambia, P. O. Box 32379, Lusaka, 10101 Zambia.
  • Google Scholar
G. K. Chinyama
  • G. K. Chinyama
  • Department of Physical Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, P.O. Box 21692, Kitwe, Zambia.
  • Google Scholar
M. O. Munyati
  • M. O. Munyati
  • Department of Chemistry, School of Natural Sciences, University of Zambia, P. O. Box 32379, Lusaka, 10101 Zambia.
  • Google Scholar
M. Maaza
  • M. Maaza
  • Nanosciences Laboratories, Materials Research Department, iThemba LABS, P. O. Box 722, Somerset West 7129, Western Cape, South Africa.
  • Google Scholar







 Accepted: 19 August 2013  Published: 30 November 2013

Copyright © 2013 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Thin films were developed, characterized, and optimized for optical absorbance from blends of organic polymer poly (3-hexylthiophene-2, 5- diyl) (P3HT) and the fullerene derivative [6, 6] phenyl-C61-butyric acid methyl ester (PCBM). The materials of both pristine and blends were analyzed using X-ray diffraction spectroscopy and high resolution transmission electron microscopy for structural properties, and fourier transform infra-red and UV-VIS spectroscopy for optical properties. The study evaluated the effects of altering the blend ratio and annealing temperature on absorption. The ratios were made by varying the weight of PCBM whilst keeping that of P3HT constant. Eleven different ratios were made with each exhibiting its own optimal annealing temperature and absorption. The optimum ratio was determined and found to be at 1:1 with an annealing temperature of 100ºC for 30 min duration.

Key words: Poly (3-hexylthiophene-2, 5- diyl) (P3HT), [6, 6] phenyl-C61-butyric acid methyl ester (PCBM), blend ratio, thin films, organic, polymer.

Adam D, Closs F, Frey T, Funhoff D, Haarer D, Ringsdorf H, Schuhmacher P, Siemensmeyer K (1993). Transient photoconductivity in a discotic liquid crystal. Phys. Rev. Lett. 70(4):457-460.
http://dx.doi.org/10.1103/PhysRevLett.70.457
PMid:10054117
 
Beal RM, Stavrinadis A, Warner JH, Smith JM, Assender HE, Watt AAR (2010). The molecular structure of polymer-fullerene composite solar cells and its influence on device performance. Macromolecules 43(5):2343-2348.
http://dx.doi.org/10.1021/ma902211u
 
Brabec CJ, Sariciftci NS, Hummelen JC (2001). Plastic solar cells. Adv. Funct. Mater. 11(1):15-26.
http://dx.doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
 
Camaioni N, Ridolfi G, Miceli GC, Possamai G, Maggini M (2002). The effect of a mild thermal treatment on the performance of poly(3-alkylthiophene)/fullerene solar cells. Adv. Mater. 14(23):1735-1738.
http://dx.doi.org/10.1002/1521-4095(20021203)14:23<1735::AID-ADMA1735>3.0.CO;2-O
 
Chen LM, Hong Z, Li G, Yang Y (2009). Recent progress in polymer solar cells: manipulation of polymer-fullerene morphology and the formation of efficient inverted polymer solar cells. Adv. Mater. 21(14-15):1434–1449.
http://dx.doi.org/10.1002/adma.200802854
 
Chirvase D, Parisi JC, Hummelen JM, Dyakonov V (2004). Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites. Nanotechnol. 15(9):1317-1323.
http://dx.doi.org/10.1088/0957-4484/15/9/035
 
Dennler G, Scharber MC, Brabec CJ (2009). Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater., 21(13):1323-1338.
http://dx.doi.org/10.1002/adma.200801283
 
Dunlap DH, Parris PE, Kenkre VM (1996). Charge-dipole model for the universal field dependence of mobilities in molecularly doped polymers. Phys. Rev. Lett. 77(3):542-545.
http://dx.doi.org/10.1103/PhysRevLett.77.542
PMid:10062837
 
Friend RH, Denton GJ, Halls JJM, Harrison NT, Holmes AB, Kohler A, Lux A, Moratti SC, Pichler K, Tessler N, Towns K (1997). Electronic processes of conjugated polymers in semiconductor device structures. Synth.Met. 84(1-3):463-470.
http://dx.doi.org/10.1016/S0379-6779(97)80830-2
 
Gartstein YN, Conwel EM (1995). High-field hopping mobility in molecular systems with spatially correlated energetic disorder. Chem. Phys. Lett. 245(4-5):351-358.
http://dx.doi.org/10.1016/0009-2614(95)01031-4
 
Green MA (1982). Solar cells: operating principles, technology and system applications. Prentice-Hall, Englewood Cliffs, New Jersey.
 
Hoppe H, Drees M, Schwinger W, Schaffler F, Sariciftci NS (2005). Nano-crystalline fullerene phases in polymer/fullerene bulk-heterojunction solar cells: A transmission electron microscopy study. Synth. Met.152(1-3):117-120.
http://dx.doi.org/10.1016/j.synthmet.2005.07.217
 
Hugger S, Thomann R, Heizel T, Albiecht TT (2003). Semicrystalline morphology in thin films of poly(3-hexylthiophene). Colloid Polym. Sci. 282(8):932-938.
 
Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, Mcculloch I, Chang-Sik HA, Ree M (2006). A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nature Mater. 5(5):197-203.
http://dx.doi.org/10.1038/nmat1574
 
Klimov E, Li W, Yang X, Hoffmann GG, Loos J (2006). Scanning near-field and confocal raman microscopic investigation of P3HT-PCBM systems for solar cell applications. Macromolecules 13:4493-4496.
http://dx.doi.org/10.1021/ma052590x
 
Koster LJA (2007). Device physics of donor-acceptor/blend solar cells, PhD Thesis, University of Groningen, The Netherlands.
 
Lane PA, Rostalski J, Giebeler C, Martin SJ, Bradley DDC, Meissner D (2000). Electroabsorption studies of phthalocyanine/perylene solar cells. Solar Energy Mater. Solar Cells 63(1):3-13.
http://dx.doi.org/10.1016/S0927-0248(00)00013-1
 
Ma W,Yang C, Gong X, Lee K, Heeger AJ (2005). Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15(10):1617-1622.
http://dx.doi.org/10.1002/adfm.200500211
 
Marchaut S, Foot PJS (1997). Annealing behaviour of conductive poly(3-hexylthiophene) films. Polymer 38(7):1749-1751.
http://dx.doi.org/10.1016/S0032-3861(96)00905-6
 
Mattis BA, Chang PC, Subramanian V (2003). Effect of thermal cycling on performance of poly(3-hexylthiophene) transistors. Mater. Res. Soc. Symp. Proc. MRS Spring Meeting, Symp. L, 771:369-374.
 
Muhlbacher D, Scharber M, Morana M, Zhu Z, Waller D, Gaudiana R, Brabec C (2006). High photovoltaic performance of a low-bandgap polymer. Adv. Mater. 18(21):2884–2889.
http://dx.doi.org/10.1002/adma.200600160
 
Nguyen LH, Hoppe H, Erb T, Gunes S, Gobsch G, Sariciftci NS (2007). Effects of annealing on the nanomorphology and performance of poly(alkylthiophene): Fullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 17(7):1071-1078.
http://dx.doi.org/10.1002/adfm.200601038
 
Quist PAC, Savenije TJ, Koetse MM, Veenstra SC, Kroon JM, Siebbeles LDA (2005). The effect of annealing on the charge-carrier dynamics in a polymer/polymer bulk heterojunction for photovoltaic applications. Adv. Funct. Mater. 15(3):469–474.
http://dx.doi.org/10.1002/adfm.200400104
 
Shaheen SE, Brabec CJ, Sariciftci NS, Hummelen JC (2001). 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78(6):841-843.
http://dx.doi.org/10.1063/1.1345834
 
Shockley W, Queisser HJ (1961). Detailed balance limit of efficiency of P N junction solar cells. J. Appl. Phys. 32(3):510–519.
http://dx.doi.org/10.1063/1.1736034
 
Shrotriya V, Ouyang J, Tseng RJ, Li G, Yang Y (2005). Absorption spectra modification in poly (3-hexylthiophene): Methanofullerene blend thin films. Chem. Phys. Lett. 411(1-3):138-143.
http://dx.doi.org/10.1016/j.cplett.2005.06.027
 
Sze SM (1981). Physics of semiconductor devices, 2nd Edition, Wiley, New York.
PMCid:PMC348793
 
Taghavi HV, Hirata A (2010). Deposition of unhydrogenated amorphous carbon films by sublimation of C60 fullerene in electron beam excited plasma. Mater. Lett. 64(1):83-85.
http://dx.doi.org/10.1016/j.matlet.2009.08.063
 
Usami A (2000). Theoretical simulations of optical confinement in dye-sensitized nanocrystalline solar cells. Solar Energy Mater. Solar Cells 64(1):73-83.
http://dx.doi.org/10.1016/S0927-0248(00)00049-0
 
Verploegen E, Mondal R, Bettinger CJ, Sok S, Toney MF, Bao Z (2010). Effects of thermal annealing upon the morphology of polymer-fullerene blends. Adv. Funct. Mater. 20(20):3519-3529.
http://dx.doi.org/10.1002/adfm.201000975
 
Woehrle D, Meissner D (1991). Organic solar cells. Adv. Mater. 3(3):129–138.
http://dx.doi.org/10.1002/adma.19910030303
 
Zeng L, Tang CW, Chen SH (2010). Effects of active layer thickness and thermal annealing on polythiophene: Fullerene bulk heterojunction photovoltaic devices. Appl. Phys. Lett. 97:5. doi:10.1063/1.3474654.
http://dx.doi.org/10.1063/1.3474654
 
Zhao J, Swinnen A, van Assche G, Manca J, Vanderzande D, van Mele B (2009). Phase diagram of P3HT/PCBM blends and its implication for the stability of morphology. J. Phys. Chem. B 113(6):1587-1591.
http://dx.doi.org/10.1021/jp804151a
PMid:19159197
 
Zhao Y, Yuan G, Roche P (1995). A calorimetric study of the phase transitions in poly(3-hexylthiophene). Polymer 36(11):2211-2214.
http://dx.doi.org/10.1016/0032-3861(95)95298-F

 


APA (2013). Characterization and optimization of poly (3-hexylthiophene-2, 5- diyl) (P3HT) and [6, 6] phenyl-C61-butyric acid methyl ester (PCBM) blends for optical absorption. Journal of Chemical Engineering and Materials Science, 4(7), 93 - 102.
Chicago G. Kalonga, G. K. Chinyama, M. O. Munyati and M. Maaza. "Characterization and optimization of poly (3-hexylthiophene-2, 5- diyl) (P3HT) and [6, 6] phenyl-C61-butyric acid methyl ester (PCBM) blends for optical absorption." Journal of Chemical Engineering and Materials Science 4, no. 7 (2013): 93 - 102.
MLA G. Kalonga, et al. "Characterization and optimization of poly (3-hexylthiophene-2, 5- diyl) (P3HT) and [6, 6] phenyl-C61-butyric acid methyl ester (PCBM) blends for optical absorption." Journal of Chemical Engineering and Materials Science 4.7 (2013): 93 - 102.
   
DOI 10.5897/JCEMS2013.0148
URL http://academicjournals.org/journal/JCEMS/article-abstract/35E9A8B41707

Subscription Form