Journal of Evolutionary Biology Research
Subscribe to JEBR
Full Name*
Email Address*

Article Number - 241F47261238


Vol.8(1), pp. 1-14 , October 2016
DOI: 10.5897/JEBR2014.0062
ISSN: 2141-6583



Full Length Research Paper

The genome of a landlocked Atlantic salmon Salmo salar characterized through high-throughput sequencing



H. Hauge
  • H. Hauge
  • Norwegian Veterinary Institute, P. O. Box 750 Sentrum, 0106 Oslo, Norway.
  • Google Scholar
M. K. Dahle
  • M. K. Dahle
  • Norwegian Veterinary Institute, P. O. Box 750 Sentrum, 0106 Oslo, Norway.
  • Google Scholar
A. B. Kristoffersen
  • A. B. Kristoffersen
  • Norwegian Veterinary Institute, P. O. Box 750 Sentrum, 0106 Oslo, Norway.
  • Google Scholar
S. Grove
  • S. Grove
  • Norwegian Veterinary Institute, P. O. Box 750 Sentrum, 0106 Oslo, Norway.
  • Google Scholar
C. R. Wiik-Nielsen
  • C. R. Wiik-Nielsen
  • Norwegian Veterinary Institute, P. O. Box 750 Sentrum, 0106 Oslo, Norway.
  • Google Scholar
T. Tengs*
  • T. Tengs*
  • Norwegian Veterinary Institute, P. O. Box 750 Sentrum, 0106 Oslo, Norway.
  • Google Scholar







 Received: 04 November 2014  Accepted: 29 September 2016  Published: 31 October 2016

Copyright © 2016 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


A wide range of life-history tactics can be found within salmonid fish. The genetic basis for these adaptations remains largely unknown, but we have sought to investigate any large scale genetic changes associated with a non-anadromous life cycle. After the most recent ice age (approximately 9,500 years ago), some populations of Atlantic salmon Salmo salar L., were trapped in fresh water and developed into isolated landlocked populations that managed to complete a full life cycle without ever reaching the marine environment. To explore whether this transition was accompanied by gene-loss events, high-throughput sequencing of a non-migratory Namsblank (‘småblank’), an Atlantic salmon from the river Namsen in Norway, was performed. There were no indications of loss of coding regions and a phylogenetic analysis based on the mitochondrial genome revealed a close genetic relationship between anadromous Atlantic salmon and Namsblank. Lack of large-scale genomic changes suggests that fine-scale (epi)genetic alterations and population genetics processes underlie adaptation to the landlocked life-style.

Key words: Landlocked, gene-loss, salmon, Illumina.

Adams CE, Woltering C, Alexander G (2003). Epigenetic regulation of trophic morphology through feeding behaviour in Arctic charr, Salvelinus alpinus. Biol. J. Linn. Soc. 78(1):43-49.
Crossref

 

Allendorf FW, Stahl G, Ryman N (1984). Silencing of duplicate genes: a null allele polymorphism for lactate dehydrogenase in brown trout (Salmo trutta). Mol. Biol. Evol. 1(3):238-248.

 

Arbour JH, Hardie DC, Hutchings JA (2011). Morphometric and genetic analyses of two sympatric morphs of Arctic char (Salvelinus alpinus) in the Canadian High Arctic. Can. J. Zool. 89(1):19-30.
Crossref

 

Berg M (1956). A relict salmon, Salmo salar L., called "småblank" from the river Namsen, North Trøndelag. Acta Borealia A. Scientia 6, 17s.

 

Berg OK (1985). The formation of non-anadromous populations of Atlantic salmon, Salmo salar L., in Europe. J. Fish Biol. 27(6):805-815.
Crossref

 

Björnsson BT, Stefansson SO, McCormick SD (2011). Environmental endocrinology of salmon smoltification. Gen. Comp. Endocrinol. 170(2):290-298.
Crossref

 

Bourret V, Kent MP, Primmer CR, Vasemagi A, Karlsson S, Hindar K, McGinnity P, Verspoor E, Bernatchez L, Lien, S (2013). SNP-array reveals genome-wide patterns of geographical and potential adaptive divergence across the natural range of Atlantic salmon (Salmo salar). Mol. Ecol. 22(3):532-551.
Crossref

 

Comai L (2005). The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6(11):836-846.
Crossref

 

Dufour S, Rousseau K, Kapoor BG (2012). Metamorphosis in fish. Enfield, NH. Boca Raton, FL, Science Publishers, distributed by CRC Press.

 

Duston J, Astatkie T, Zhang C (2011). Hypo-osmoregulatory capacity during smolting of endangered inner Bay of Fundy Atlantic salmon and other eastern Canadian stocks. Aquac. 319(1-2):221-225.
Crossref

 

Frankham R (1997). Do island populations have less genetic variation than mainland populations? Heredity 78(3):311-327.
Crossref

 

Garcia de Leaniz C, Fleming IA, Einum S, Verspoor E, Jordan WC, Consuegra S, Aubin-Horth N, Lajus D, Letcher BH, Youngson AF, Webb JH, Vollestad LA, Villanueva B, Ferguson A, Quinn TP (2007). A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Biol. Rev. 82(2):173-211.
Crossref

 

Gibson RJ, Williams DD, McGowan C, Davidson WS (1996). The ecology of dwarf fluvial Atlantic salmon, Salmo salar L., cohabiting with brook trout, Salvelinus fontinalis (Mitchill), in southeastern Newfoundland, Canada. Proceedings of the 5th international symposium on the ecology of fluvial fishes, Pol. Arch. Hydrobiol. 43:145-166.

 

Giger T, Excoffier L, Amstutz U, Day PJ, Champigneulle A, Hansen MM, Kelso J, Largiadèr CR (2008). Population transcriptomics of life-history variation in the genus Salmo. Mol. Ecol. 17(13):3095-108.
Crossref

 

Gouy M, Guindon S, Gascuel O (2010). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27(2):221-224.
Crossref

 

Gross JB, Borowsky R, Tabin, CJ (2009). A Novel Role for Mc1r in the Parallel Evolution of Depigmentation in Independent Populations of the Cavefish Astyanax mexicanus. PLoS Genet. 5(1):e1000326.
Crossref

 

Hara T, Nagase T, Ozaki A, Sakamoto T, Okamoto N, Danzmann RG, Tokuhara T, Kuwada T (2007). A genetic linkage map of amago salmon (Oncorhynchus masou ishikawae) and mapping of quantitative trait loci associated with smoltification. Aquac. 272(1):S266-S267.
Crossref

 

Hardie DC, Hebert PD (2003). The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes. Genome 46(4):683-706.
Crossref

 

Hendry AP, Morbey YE, Berg OK, Wenburg JK (2004). Adaptive variation in senescence: reproductive lifespan in a wild salmon population. Proc. R. Soc. Lond. B Biol. Sci. 271(1536):259-66.
Crossref

 

Jeffery WR (2001). Cavefish as a model system in evolutionary developmental biology. Dev. Biol. 231(1):1-12.
Crossref

 

Kazakov RV (1992). Distribution of Atlantic salmon Salmo salar L., in freshwater bodies of Europe. Aquac. Fish. Manag. 23(4):461-475.
Crossref

 

King TL, Verspoor E, Spidle AP, Gross R, Phillips RB, Koljonen ML, Sanchez JA, Morrison C (2007). Biodiversity and population structure; The Atlantic Salmon: Genetics, Conservation and Management. Blackwell, Oxford, pp. 117-166.
Crossref

 

Kjærner-Semb E, Ayllon F, Furmanek T, Wennevik V, Dahle G, Niemelä E, Ozerov M, Vähä JP, Glover KA, Rubin CJ, Wargelius A, Edvardsen RB (2016). Atlantic salmon populations reveal adaptive divergence of immune related genes - a duplicated genome under selection. BMC Genomics 17(1):610.
Crossref

 

Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, Hvidsten TR, Leong JS, Minkley DR, Zimin A, Grammes F, Grove H, Gjuvsland A, Walenz B, Hermansen RA, von Schalburg K, Rondeau EB, Di Genova A, Samy JK, Olav Vik J, Vigeland MD, Caler L, Grimholt U, Jentoft S, Våge DI, de Jong P, Moen T, Baranski M, Palti Y, Smith DR, Yorke JA, Nederbragt AJ, Tooming-Klunderud A, Jakobsen KS, Jiang X, Fan D, Hu Y, Liberles DA, Vidal R, Iturra P, Jones SJ, Jonassen I, Maass A, Omholt SW, Davidson WS (2016). The Atlantic salmon genome provides insights into rediploidization. Nat. 533(7602):200-205.
Crossref

 

Macqueen DJ, Johnston IA (2014). A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc. R. Soc. Lond. B Biol. Sci. 281(1778):20132881.

 

McCormick SD (2009). Evolution of the hormonal control of animal performance: Insights from the seaward migration of salmon. Integr. Comp. Biol. 49(4):408-22.
Crossref

 

Nichols KM, Edo AF, Wheeler PA, Thorgaard GH (2008). The genetic basis of smoltification-related traits in Oncorhynchus mykiss. Genet. 179(3):1559-1575.
Crossref

 

Nilsen TO, Ebbesson LO, Kiilerich P, Bjornsson BT, Madsen, SS, McCormick SD, Stefansson SO (2008). Endocrine systems in juvenile anadromous and landlocked Atlantic salmon (Salmo salar): seasonal development and seawater acclimation. Gen.Comp. Endocrinol. 155(3):762-772.
Crossref

 

Norman JD, Robinson M, Glebe B, Ferguson MM, Danzmann RG (2012). Genomic arrangement of salinity tolerance QTLs in salmonids: a comparative analysis of Atlantic salmon (Salmo salar) with Arctic charr (Salvelinus alpinus) and rainbow trout (Oncorhynchus mykiss). BMC Genomics 13:420.
Crossref

 

Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010). Phenotypic plasticity's impacts on diversification and speciation. Trend. Ecol. Evol. 25(8):459-467.
Crossref

 

Protas ME, Hersey C, Kochanek D, Zhou Y, Wilkens H, Jeffery WR, Zon LI, Borowsky R, Tabin CJ (2006). Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat. Genet. 38(1):107-111.
Crossref

 

Sandlund OT, Karlsson S, Thorstad EB, Berg OK, Kent MP, Norum IC, Hindar K (2014). Spatial and temporal genetic structure of a river-resident Atlantic salmon (Salmo salar) after millennia of isolation. Ecol. Evol. 4(9):1538-1554.
Crossref

 

Thompson JD, Higgins DG, Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22):4673-4680.
Crossref

 

Verspoor E, Stradmeyer L, Nielsen JL and the Atlantic Salmon Trust (2007). The Atlantic salmon: genetics, conservation and management. Blackwell, Oxford.
Crossref

 

Waters JM, Wallis GP (2001). Cladogenesis and loss of the marine life-history phase in freshwater galaxiid fishes (Osmeriformes: Galaxiidae). Evolution 55(3):587-597.
Crossref

 

Zhang Z, Schwartz S, Wagner L, Miller W (2000). A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7(1-2):203-214.
Crossref

 


APA Hauge, H., Dahle, M. K., Kristoffersen, A. B., Grove, S., Wiik-Nielsen, C. R., & Tengs, T. (2016). The genome of a landlocked Atlantic salmon Salmo salar characterized through high-throughput sequencing. Journal of Evolutionary Biology Research, 8(1), 1-14.
Chicago H. Hauge, M. K. Dahle, A. B. Kristoffersen, S. Grove, C. R. Wiik-Nielsen and T. Tengs. "The genome of a landlocked Atlantic salmon Salmo salar characterized through high-throughput sequencing." Journal of Evolutionary Biology Research 8, no. 1 (2016): 1-14.
MLA H. Hauge, et al. "The genome of a landlocked Atlantic salmon Salmo salar characterized through high-throughput sequencing." Journal of Evolutionary Biology Research 8.1 (2016): 1-14.
   
DOI 10.5897/JEBR2014.0062
URL http://academicjournals.org/journal/JEBR/article-abstract/241F47261238

Subscription Form