Journal of Engineering and Computer Innovations
Subscribe to JECI
Full Name*
Email Address*

Article Number - 1A366B68625


Vol.3(1), pp. 1-10 , February 2012
DOI: 10.5897/JECI11.008
ISSN: 2141-6508



Full Length Research Paper

Optimization of spatial join using constraints based- clustering techniques


V. Pattabiraman




School of Computing Science and Engineering, VIT University - Chennai - 600 048, Tamil Nadu, India


Email: pattabiraman.v@vit.ac.in






 Accepted: 11 December 2011  Published: 28 February 2012

Copyright © 2012 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


 

Spatial joins are used to combine the spatial objects. The efficient processing depends upon the spatial queries. The execution time and input/output (I/O) time of spatial queries are crucial, because the spatial objects are very large and have several relations. In this article, we use several techniques to improve the efficiency of the spatial join; 1. We use R*-trees for spatial queries since R*-trees are very suitable for supporting spatial queries as it is one of the efficient member of R-tree family; 2. The different shapes namely point, line, polygon and rectangle are used for isolating and clustering the spatial objects; 3. We use scales with the shapes for spatial distribution. We also present several techniques forimproving its execution time with respect to the central processing unit (CPU) and I/O-time. In the proposed constraints based spatial join algorithm, total execution time is improved compared with the existing approach in order of magnitude. Using a buffer of reasonable size, the I/O time is optimal. The performance of the various approaches is investigated with the synthesized and real data set and the experimental results are compared with the large data sets from real applications.

 

Key words: Spatial data mining, spatial clustering, spatial queries, spatial join


APA (2012). Optimization of spatial join using constraints based- clustering techniques. Journal of Engineering and Computer Innovations, 3(1), 1-10.
Chicago V. Pattabiraman. "Optimization of spatial join using constraints based- clustering techniques." Journal of Engineering and Computer Innovations 3, no. 1 (2012): 1-10.
MLA V. Pattabiraman. "Optimization of spatial join using constraints based- clustering techniques." Journal of Engineering and Computer Innovations 3.1 (2012): 1-10.
   
DOI 10.5897/JECI11.008
URL http://academicjournals.org/journal/JECI/article-abstract/1A366B68625

Subscription Form