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The electrocardiogram (ECG) is not only a very useful diagnostic tool for clinical purposes, but also is 
a potential new biometric tool for human identification. The ECG may be useful as a biometric in the 
future, since it can easily be combined with other biometrics to provide a liveness check with little 
additional cost. This research focused on short-term, resting, Lead-I ECG signals recorded from the 
palms. A total of 168 young college volunteers were investigated for identification as a predetermined 
group.  Fifty persons were randomly selected from this ECG biometric database as the development 
dataset. Then, the identification algorithm developed from this group was tested on the entire 
database. In this research, two algorithms were evaluated for ECG identification during system 
development. The algorithms included template matching and distance classification methods. Signal 
averaging was applied to generate ECG databases and templates for reducing the noise recorded with 
palm ECG signals. When a single algorithm was applied to the development dataset, the identification 
rate (that is, rank one probability) was up to 98% (49 out of 50 persons). However, when the 
prescreening process was added to construct a combined system model, the identification rate 
increased to 100% accuracy on the development dataset. The combined model formed our ECG 
biometric system model based on results from the development dataset. The identification rate was 
95.3% when the same combined system model was tested on the entire ECG biometric database.  
 
Key words: Biometrics, biometric liveness tests, electrocardiogram (ECG), ECG features, identification, 
template matching, distance classification. 

 
 
INTRODUCTION 
 
Biometric techniques provide one strategy for identity 
verification. Biometrics use anatomical, physiological or 
behavioral characteristics that are significantly different 
from person to person and are difficult to falsify. Several 
biometric systems that have been used commercially for 
human identity verification are facial geometry, 
fingerprints, and voice analysis. Unfortunately, these 
biometric systems may be deceived without liveness 
check (Willmore, 2002). ECG analysis (Tompkins, 1993; 
Webster,  1998)  is   not   only  a   very  useful  diagnostic 
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tool for clinical proposes, it is    also    potentially   a     
good   biometric   for    human identification. The ECG 
differs from person to person because of the position, 
size, and anatomy of the heart even among normal 
people. In addition, age, sex, relative body weight, chest 
geometry, and various other factors create ECG variants 
among persons with the same cardiac conditions (Simon 
and Eswaran, 1997). However, modeling those 
physiological conditions to ECG biometric features are 
extremely complicated. For instance, ECG features 
explain only 25.3% of the variability of the BMI (Shen et 
al., 2005). 

Recently applying ECG for biometric identity 
recognition has drawn more attention in the research 
community which is expected to  be  more  universal  and 



 
 
 
 
be hard to mimic. Some pioneer studies showed that it is 
possible to identify people with a one-lead ECG signal on 
a small population (<30). Biel et al. (1999; 2001) and 
Israel et al. (2005) used principle components analysis  
(PCA) method and our previous research applied 
correlation coefficients to identified 20 arrhythmia 
persons from the MIT/BIH database (Shen et al., 2002). 
Current studies have involved various approaches. Khalil 
et al. (2008) found the most unique signature bearing 
parts on QRS Complex of ECG for human identification 
by applying the high-order Legendre Polynomials. Wang 
et al. (2008) proposed a combined model on 
autocorrelation (AC) in conjunction with discrete cosine 
transform (DCT). Also, the discrete wavelet transform 
was applied for extracting ECG features from wavelet 
coefficients. Their experimental results demonstrated that 
the proposed approach worked well for normal 35 
subjects, but the accuracy is reduced on 10 arrhythmia 
patients (Chiu et al. 2009). 

It is challenge to applied ECG identification on 
arrhythmia patients.  The previous work by Agrafioti 
shows that abnormal ECG or ECG with arrhythmia may 
affect morphological changes of the signal (Agrafioti, 
2009), so their proposed method discards PVC windows 
to increase the robustness. This may alter the 
classification decision and performance especially when 
the system had never been trained with such data. Chen 
et al. introduce complexity-based approach to deal with 
abnormal ECG for biometric identification purpose (Chen 
et al. 2007). 

In this article, not only is one-lead ECG analysis for 
human identification investigated with a larger sample 
size, but also, all of the one-lead ECG signals are 
recorded from the subjects’ palms. Our database 
indicates that, even though two people are very similar in 
size, age, and sex, their ECGs are different. Figure 1 
shows an example of two persons with the exact same 
age, sex, weight and height who have completely 
different ECG patterns.  
 
 
Background and significance 
 
The ECG fiducial point detection is essential for temporal 
feature extraction and template generation. Several 
digital signal processing technologies were utilized on 
raw ECG signals to detect PQRST fiducial points, 
including digital filtering, Pan and Tompkins method, first 
derivative ECG  method (that is, dECG) (Kamath, 2007), 
and the zero-crossing method. In order to accomplish 
ECG analysis, it is obvious that the R point is the major 
landmark which needs to be detected first. After digital 
filtering to limit the ECG bandwidth from 0.01 to 50 Hz, a 
reliable, real-time QRS detection algorithm is essential to 
apply. Pan and Tompkins method (Pan, 1985) was used 
in this research to determine all the R points in order to 
calculate R-R intervals. 
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Once the R point is found, the Q and S points are limited 

within the 150 ms period which is centered by the R 
point. In addition, the T wave is complete within a 400 ms 
period backward from the R point, and the P wave is a 
200ms advance from the R point. By using these 
statistical data with the first derivative ECG, the P, Q, S, 
and T points can be detected by searching minimum 
(valley) or maximum (peaks) of all the zero-crossing 
points within the certain window period ]:[ rightleft tt . For 

example, to detect P points, leftt  and rightt  were set at 

200ms and 40ms advance from R points. 
The details are described as following equations: 

 
[ ] { }))0]:[((min

points S Q,, == rightleftSQ ttdECGfindECGyx …  (1) 

 

[ ] { }))0]:[((max
points T P,, == rightleftTP ttdECGfindECGyx …   (2) 

 
where )(tECG is the de-noised ECG waveform, and 

)(tdECG  is the first derivative of the )(tECG waveform  

)(tdECG  combines with zero-crossing method to detect 
PQST points. After fiducial points are correctly detected, 
each ECG heart beats is segmented for identification. 
Henceforth, biometric features are able to be extracted 
and interested ECG templates are created with 50 points  
before  and  after   P   and   T   points.  In   this  research, 
template matching, distance classification, and combined  
models were investigated for ECG-based human 
identification. 
 
 
Template matching method 
 
Signals are correlated if the shapes of the waveforms of 
two signals match one another. The correlation 
coefficient provides a quantitative measure of how similar 
the signals look. It is important to note that the amplitude 
differences of two signals do not affect the correlation 
coefficient. The equation for the correlation coefficient is: 
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x n( ) − x{ } y n( ) − y{ }

n=1

N

�

x n( ) − x{ }2
y n( ) − y{ }2

n=1

N

�
n =1

N

�
 …                  (3) 

 
where the value of rxy varies between 1 and –1 
depending on the degree of similarity of the shapes of x 
and y. 
 
 
LDA distance classification 
 
The  distance  in  R  space  can  be  represented  as   the 
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Figure 1. Two subjects (No. 217 and No. 225) have completely different ECG patterns, even though they are the same gender 
(female), age (21 years old), weight (56.7 kg; 125 lb), and height (170 cm; 5’ 7”). The units on the x axis are sample data point 
numbers. The sampling rate of these ECG signals is 500 sps. The units on the y axis are millivolts.   

 
 
 
similarity between feature vectors px  and qx  in the 
Euclidean metric system by: 
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However, in the feature space, not all the features are 
equally weighted. So, this relation can be adjusted by 
adding a weight vector ],...,,[ 21 Rwwww = . 
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The smaller the value of ),( qp xxd  the closer the 

distance between vector px  and qx . And the distance 
between two classes, called LS  and KS , can be 
described by: 
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Figure 2. System structure for human identification.  

 
 
 

  
 
Figure 3.  Disposable electrodes were attached to each subject’s palms; The measurement layout can 
be implemented by using dry metal electrodes. 
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System structure 
 
In this research, Lead I ECG signals were recorded from 
the palms of 168 young college volunteers. Figure 2 
shows the block diagram of the human identification 
system. 
 
 
EXPERIMENTAL SETUP 
 
Unlike the MIT/BIH database (Goldberger et al., 2000) of ECG 
signals from cardiology patients,  this  research  focuses  on  normal, 

healthy persons. Short-term, resting, Lead-I ECG signals were 
measured from 168 individuals (113 females and 55 males) to create 
our ECG biometric database. The ranges of age, weight and height 
were 19 to 52 years, 45 to 118 kg and 155 to 208 cm, respectively. 
The interquartile ranges (IQR) of age, weight, and height were 3 
years, 13 kg and 15.2 cm, respectively. The subjects’ ECG signals 
were measured and collected with an ECG data acquisition unit 
(BIOPAC Student Lab PRO system, MP30 with software), electrodes 
(disposable silver-silver chloride electrodes from BIOPAC Systems, 
Inc.), and computers (IBM-compatible PCs). 

For the lead recording, two electrodes were placed on the left 
palm and one electrode was placed on the right palm as shown in 
Figure 3. These subjects were in a resting position and sitting 
upright, and they were asked to relax with their palms open and 
resting on their legs. The ECG was recorded for 90 s at a sampling 
rate of 500 sps for the enrollment process. A calibration procedure 
was applied by the acquisition software (BIOPAC Student Lab PRO 
system). 

Three sets of ECG databases were generated during enrollment. 
Because this research surveyed a normal healthy population, all 
ECG signals were from college students   with    similar  background,    
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Figure 4. Two similar ECG signals can yield a false positive if only template matching is applied. 

 
 
 
such as   age  and education background. Fifty individuals (33 
females and 17 males) were randomly chosen from the database for 
the system development dataset. Then 20 sequential normal 
heartbeats were randomly selected by our computer program from 
each of the 50 individuals in this investigation to form a 1000-beat 
group as our original ECG database. Next, signal averaging was 
applied on each 20-heartbeat group to create 50 mean 
averageheartbeats and 50 median average heartbeats as our 
second and third databases. 

Five methods were used to generate real-time ECG templates (or 
testing ECG signals). The testing ECG signals were randomly 
selected from different time slots in the group databases; that is, 
there is no temporal overlap between the ECG templates and the 
group database. Five normal heartbeats were picked from each 
person as testing ECG signals (or real-time ECG templates). Then, 
each five-beat group was transformed to five different templates by 
applying signal averaging methods (Tompkins, 1993) for partly 
eliminating both outliner beats and high frequency interferences: (1) 
A single heartbeat (randomly chosen without a signal average), (2) A 
signal-averaged heartbeat using a five-heartbeat-mean method, (3) 
A signal-median heartbeat using a five-heartbeat-median method, 
(4) A signal-averaged heartbeat using a three-heartbeat-mean 
method, and (5) A signal-median heartbeat  using  a  three-
heartbeat-median  method. Only  
one heartbeat was contained in each template. Finally, five input 
template sets were built. 
 
 
Preprocessing 
 
ECG preprocessing included selection of appropriate beats and 
removal of various artifacts. Baseline wander, dc shift, power-line 
noise, and high-frequency interference were removed (Maglaveras, 
1998; Haykin, 2001; Ma et al., 1999). Standard ECG machines  have 

a bandwidth of 0.05 to 150 Hz. However, the noise was so severe 
for a palm ECG that the signal was band limited to the frequency 
range between 1 and 50 Hz. 
 
 
Prescreening 
 
Template matching was used as a prescreening tool. The template 

(or real-time input) was matched by all the members of the 
determined group. Correlation coefficients showed to what extent 
two signals were similar between each template and the pre-
determined database. In order to reduce the group size for the 
identification process, a certain threshold, typically between 0.92 and 
0.95, was set on the correlation coefficient to eliminate those 
members that were not likely candidates. In addition, the maximum 
size of the candidate group was limited to 10% of the whole sample 
size. Template matching is limited in its ability to distinguishing 
among waveforms which are very similar because it ignores 
amplitude information, which is part of the essential information for 
identification. An example is shown in Figure 4. ECG machines from 
all manufacturers use a standard amplitude calibration and a 
standard bandwidth, so the amplitude and  appearance  of  
the ECG should be the same for a particular individual regardless of 
when it recorded or what ECG machines it is recorded on. 
 
 
Improvement of the template matching method 
 
Our goal was to find the best match result of databases and 
templates. Recursively, the template matching method was applied 
among the three database sets and five template sets, resulting in a  
total of fifteen dataset matches. Twelve of these dataset matches 
are two-single-heartbeat matches, and three dataset matches are 
20-to-single-heartbeat   matches.   Our  previous  study  showed  the  
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Figure 5. Potential features for classification.   

 
 
 

Table 1. Seventeen selected features used for classification. 
 

 Selected features  Selected features  Selected features 
1 RQ amplitude 8 RS amp./TS amp. 15 Angle Q 
2 QS duration  9 RS2 amplitude 16 Angle R 
3 RS amplitude 10 PQ amplitude 17 Angle S 
4 ST amplitude  11 QS amplitude   
5 QT duration** 12 RP amplitude   
6 RS slope 13 RT amplitude   
7 QRS triangular Area 14 ST slope   

 

**The definition of QT duration is different from the clinical definition of QT interval. The QT duration is the time delay between the 
Q and T point. It has to be normalized with heart rate if not a resting ECG (as is QT interval). 

 
 
 
procedure used to obtain 20-to-single-heartbeat matches (Shen, 
2002, 2005). 
 
 
Feature extraction 
 

The 17 ECG features shown in Figure 5 and Table 1 were extracted 
from ECG waveforms. For comparing among features with different 
units, all features were normalized using: 
 

Normalized feature = 
minmax

min
−

−feature
…                    (7)  

 
Where max and min represent the maximum and minimum values 
among 17 features, which came from the development dataset.  
 
These features were selected for identify verification purposes, so 
some of them may not be meaningful for clinical diagnosis. Most 
features were extracted from the QRS complex because this 

waveform is most easily recognized, easy to detect, essential for life, 
and stable with different heart rates. 

The QT time duration depends on heart rate, so normalization 
must be applied to make sure the QT measurements are usable. 
One of the commonly used techniques is Bazett’s formula, in which 
the QT interval is adjusted for heart rate by dividing it by the square 
root of the R-R interval. However, this formula has been criticized for 
being inaccurate with fast heart rates (Al-Khatib et al., 2003). Our 
experimental data showed that the Bazett formula fits better with 
resting heart rate status than the Framingham linear regression 
equation. In addition, RS2 amplitude is defined as amplitude from 
point R to the point after 0.024 s delay. An exhaustive test was used 
to eliminate the bad features or to diminish their weights in order to 
enhance the identification rate. 
 
 
Identification process 
 
To avoid misidentification, distance classifications  were used  in  the 
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Table 2. Template matching results with different template and /or database sets. 
 

  Template database 
Single heartbeat***  

(%) 
Five-heartbeat 

mean (%) 
Five-heartbeat 

median (%) 
Three-heartbeat 

mean (%) 
Three-heartbeat 

median (%) 

Twenty heartbeats 42-45/50 (84-90) 45/50 (90) 45/50 (90) 43/50 (86) 44/50 (88) 
Mean heartbeat 46/50(92) 49/50 (98) 49/50 (98) 48/50 (96) 48/50 (96) 
Median heartbeat 43-45/50 (86-90) 49/50 (98) 49/50 (98) 48/50(96) 48/50 (96) 

 

*** By randomly choosing a single heartbeat as an input template, the results vary with the heartbeat we chose. So, the results are unstable and 
highly dependent on the chosen heartbeat. 

 
 
 
identification process after selecting the possible candidates using 
the template-matching prescreening. Seventeen features were used 
for distance classification. The class of an input template can be 
found by calculating the minimum distances between the feature 
vectors in an input template and all pre-selected candidates.  

Equations (5) to (7) show the mathematical method for finding the 
distance relationship between two feature vectors and between 
classes. This method was selected in a combined model for the 
identification process and used in conjunction with the prescreening 
process to increase the accuracy of identification. 
 
 
RESULTS 
 
The template matching method used five different types of 
template sets to match three different types of database 
sets. The 15 matching results in Table 2 show that it is not  
a good idea to pick a single heartbeat randomly as a 
template because the performance is unstable and highly 
dependent on the chosen heartbeat. The more heartbeats 
for signal average processing can provide performance 
improvement. However, for trade-off on signal quality and 
system access time, we suggest to capture 5 to 6 
continuous heart beats for template making. The entire 
ECG identification expects to be done within 10 seconds. 
The best matching results giving 98% accuracy (49 out of 
50) occurred when five-heartbeat templates were matched 
with databases which use averaged heartbeats from 50 to 
20-heartbeat groups. That is, the signal averaging 
approach provided much better template matching 
performance when the averaged heartbeats were applied 
to both templates and databases. The templates with 
more averaged heartbeats offered better performance on 
the palm ECG biometric system but required more 
computation time. Even though the signal averaging 
method removes some high frequencies (Tompkins, 
1993), the overall identification rate was still increased. 
That is, signal averaging removed more interference while 
preserving biometric traits. Also, there was no difference 
in using the mean or median as a noise reduction method 
for template matching. 

Without using the entire ECG waveforms, the distance 
classification calculates the distance from a template 
feature vector to database feature vectors as described in 
Equation (6). Exhaustive tests were utilized to determine 
the  appropriate  weight  vector   ],...,,[ 21 Rwwww =    by  

ranking these features. The features were eliminated 
earlier by exhaustive tests; the lower numbers of weights 
were set. Four levels of weights were used on 17 features. 
They are 0, 0.2, 1 and 2. However, system performance 
drops when too many features are assigned to zero (that 
is, removed). After the weight vector ],...,,[ 21 Rwwww =  
was determined, a 98% (49 out of 50) identification rate 
was found as the overall performance. In addition, no 
training process is needed to use distance classification. 

The combined system model was investigated using 
template matching plus LDA distance classification. In 
Figure 6, the combined system model which unites the 
template matching method and distance classification was 
investigated.  

There is no training process in this model, so it needs 
much less time than the previous combined model 
(DBNN) (Shen, 2005). Hence, the model is more suitable 
than DBNN for use on a large population. 

In the predetermined group with 10, 20, and 50 persons, 
a 100% identification rate (rank one probability) was also 
achieved. The rank one probability represents that the 
identified subjects matched their own templates at the top 
rank over the entire database. Moreover, the combined 
system model was further tested in the predetermined 
group with 100 and 168 people to get 96% and 95.3% 
identification rates respectively. Figure 7 show that the 
classification error rate (CER) increased when the number 
of people in the predetermined group increased. This 
phenomenon in which the numerical error rate increases 
when  the  number  of  group  members  increase  is  fairly 
typical. The statistical explanation and real data evidence 
according to the fingerprint biometric can be found in the 
NIST report to Congress (NIST, 2004). 
 
 
DISCUSSION  
 
Unlike a clinical ECG database with 12-lead records 
including limb and thoracic signals, this research focused 
on palm ECG signals. The ECG recorded from the palms 
has more noise than the ECG recorded from the torso, but 
the waveform morphologies are the same as the Lead I 
ECG. The electromyogram (EMG) interference and 
baseline wander become more significant when ECGs are 
recorded   from   palms;  that  is,  the  signal-to-noise  ratio 
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Figure 6. ECG identification model by combining template matching and distance classification.  

 
 
 
(SNR) of the palm ECG signal is lower than of the chest 
ECG signal. However, the big advantages for palm ECG 
are easy to access, to combine with fingerprint/palm 
biometrics, and to use mental/dry electrodes. The signal 
averaging method successfully increased the signal-to-
noise ratio thereby improving system performance. 
However, signal averaging introduces low-pass filtering if 
the averaged heartbeats are not aligned perfectly, and 
some identifying features may be distorted by such 
filtering. Fortunately, benefits gained from reducing 
interference are much greater than the disadvantages of 
feature losses using the signal averaging method. Hence, 
those modified features in the filtered frequency band are 
insignificant in comparison to the interference from noise.  

The feature, angle Q, is not a useful feature because of 
serious measurement problems. According to Sherwood 
(1997) and Dubin (2000), Q deflection is small and 
sometimes absent. Our exhaustive tests confirmed this 
statement because in our experiments, the accuracy rate 
always improved if the feature, angle Q, was dropped. 

For comparison of identification methods, the major 
advantage of our combined  model  (Figure  7)  is  that  no 

training process needed permitting this technique to be 
implemented in real-time systems applied to a large 
population.  
 
 
Conclusions 
 
This research concentrates on measurements of palm 
ECG signals from 50 normal healthy persons for human 
identification. For the combined system model, the 
identification rate (i.e., rank one probability) was 100% in 
the predetermined group and 95.3% (160 out of 168 
persons) when the same combined system model was 
tested on the entire ECG biometric database. Based on 
these results, the Lead-I ECG can be viewed as a 
potential new biometric for human identity verification. 
More filter development is desirable for future analysis of 
palm ECG signals to preserve biometric attributes while 
improving the signal-to-noise ratio. In addition, the long-
term changes of an individual’s ECG signals and their 
implications for implementing a practical biometric system 
also need to be investigated. 
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Figure 7. Classification error rate (CER) increased when the number of people in the predetermined 
group increased. 

 
 
 
FUTURE WORK 
 
In this research, only static ECG identification was 
studied.  The current waveform analysis and recognition 
on ECG biometrics may not be robust on exercise ECGs 
with unavoidable heart rate increase. Hence, more heart-
beat resistance features may come from time-frequency, 
frequency and other signal decomposition methods. More 
exquisite equipment and advanced artificial intelligent 
algorithms would be very helpful to discover other 
significant ECG features for future human identification. 
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