Journal of Electrical and Electronics Engineering Research
Subscribe to JEEER
Full Name*
Email Address*

Article Number - 18FC8AE8469


Vol.5(2), pp. 22 - 27 , August 2013
https://doi.org/10.5897/JEEER11.102
ISSN: 1993-8225


 Total Views: 0
 Downloaded: 0

Review

A review on energy conversion efficiency mechanisms in quantum dot intermediate band nanostructure solar cells



Nima E. Gorji
  • Nima E. Gorji
  • Department of Solid State Physics, Faculty of Physics, University of Tabriz, Tabriz 51566, Iran.
  • Google Scholar







 Accepted: 29 July 2013  Published: 30 August 2013

Copyright © 2013 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Quantum Dots used in so-called third-generation Solar Cells have the potential to significantly increase the photon conversion efficiency in two ways: (1) the production of multiple excitons from a single photon of sufficient energy and (2) the formation of intermediate bands in the bandgap that enhances its photogenerated current, via the two-step absorption of sub-band gap photons.

 

Key words: Quantum Dot Solar Cells, Multiple Exciton Generation, Intermediate Band.

Arango AC, Carter SA, Brock PJ (1999). "Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO2 nanoparticles". Appl. Phys. Lett. 74:1698-1700.
http://dx.doi.org/10.1063/1.123659
 
Aroutiounian V, Petrosyan S, Khachatryan A (2005). "Studies of the photocurrent in quantum dot solar cells by the application of a new theoretical model." Sol. Energ. Mater. Sol. C. 89:165–173.
http://dx.doi.org/10.1016/j.solmat.2005.02.011
 
Aroutiounian V, Petrosyan S, Khachatryan A, Touryan K (2001), "Quantum Dot Solar Cell". J. Appl. Phys. 89:2268–2271.
http://dx.doi.org/10.1063/1.1339210
 
Boudreaux DS, Williams F, Nozik AJ (1980). "Hot carrier injection at semiconductor-electrolyte junctions." J. Appl. Phys. 51:2158-2164.
http://dx.doi.org/10.1063/1.327889
 
Colvin V, Schlamp M, Alivisatos AP (1994). "Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer". Nature 370:354–357.
http://dx.doi.org/10.1038/370354a0
 
Dabbousi BO, Bawendi MG, Onitsuka O, Rubner MF (1995). "Electroluminescence from CdSe quantum-dot/polymer composites". Appl. Phys. Lett. 66:1316-1318.
http://dx.doi.org/10.1063/1.113227
 
Ellingson RJ, Beard MC, Johnson JC, Yu P, Micic OI, Nozik AJ, Shabaev A, Efros AL (2005). "Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots". Nano Lett. 5:865–871.
http://dx.doi.org/10.1021/nl0502672
PMid:15884885
 
Franceschetti A, An JM, Zunger A (2006). "Impact Ionization Can Explain Carrier Multiplication in PbSe Quantum Dots". Nano Lett. 6:2191-2195.
http://dx.doi.org/10.1021/nl0612401
PMid:17034081
 
Greenham NC, Peng X, Alivisatos AP (1996). "Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity". Phys. Rev. B. 54:17628–17637.
http://dx.doi.org/10.1103/PhysRevB.54.17628
 
Greenham NC, Peng X, Alivisatos AP (1997). "A CdSe Nanocrystal/MEH-PPV Polymer Composite", Future generation photovoltaic technologies. AIP Conf. Proc. 404:295-302.
http://dx.doi.org/10.1063/1.53475
 
Hagfeldt A, Gratzel M (2000). "Molecular Photovoltaics". Acc. Chem. Res. 33:269–277.
http://dx.doi.org/10.1021/ar980112j
PMid:10813871
 
Hanna MC, Nozik AJ (2006). "Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers". J. Appl. Phys. 10:074510-074518.
http://dx.doi.org/10.1063/1.2356795
 
Hoyer P, Konenkamp R (1995). "Photoconduction in porous TiO sensitized by PbS quantum dots". Appl. Phys. Lett. 66:349-351.
http://dx.doi.org/10.1063/1.114209
 
Huynh WU, Dittmer JJ, Libby WC, Whiting GL, Alivisatos AP (2003). "Controlling the Morphology of Nanocrystal-Polymer Composites for Solar Cells". Adv. Funct. Mater. 11:73-79.
http://dx.doi.org/10.1002/adfm.200390009
 
Kolodinski S, Werner JH, Wittchen T, Queisser HJ (1993). "Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells". Appl. Phys. Lett. 63:2405.
http://dx.doi.org/10.1063/1.110489
 
Landsberg PT, Nussbaumer H, Willeke G (1993). "Band-band impact ionization and solar cell efficiency". J. Appl. Phys. 74:1451-1452.
http://dx.doi.org/10.1063/1.354886
 
Liu D, Kamat PV (1993). "Photoelectrochemical behavior of thin cadmium selenide and coupled titania/cadmium selenide semiconductor films". J. Phys. Chem. 97:10769–10773.
http://dx.doi.org/10.1021/j100143a041
 
Luque A, Marti A (1997). "Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels". Phys. Rev. Lett. 78:5014-5017.
http://dx.doi.org/10.1103/PhysRevLett.78.5014
 
Luque A, Martí A (2001). "A metallic intermediate band high efficiency solar cell". Prog. Photovolt.: Res. Appl. 9:73-86.
http://dx.doi.org/10.1002/pip.354
 
Luque A, Martí A, Cuadra L (2002). "Design constraints of the quantum-dot intermediate band solar cell". Phys. E. 14:107-114.
http://dx.doi.org/10.1016/S1386-9477(02)00366-1
 
Luque A, Martí A, Cuadra L (2003). "Impact-ionization-assisted intermediate band solar cell". IEEE Trans. Electron Dev. 50:447-454.
http://dx.doi.org/10.1109/TED.2003.809024
 
Luque A, Martí A, López N, Antolín E, Cánovas E, Stanley C, Farmer C, Caballero LJ, Cuadra L, Balenzategui JL (2005). "Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells". Appl. Phys. Lett. 87:083505-083508.
http://dx.doi.org/10.1063/1.2034090
 
Luque A, Martí A, López N, Antolín E, Cánovas E, Stanley CR, Farmer C, Díaz P (2006). "Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling of the intermediate band". J. Appl. Phys. 99:094503-083512.
http://dx.doi.org/10.1063/1.2193063
 
Luque A, Martí A, Stanley C, López N, Cuadra L, Zhou D, McKee A (2004). "General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence". J. Appl. Phys. 96:903-909.
http://dx.doi.org/10.1063/1.1760836
 
Martí A, Cuadra L, Luque A (2001). "Partial filling of a quantum dot intermediate band for solar cells". IEEE Trans. Electron Dev. 48:2394-2399.
http://dx.doi.org/10.1109/16.954482
 
Mattoussi H, Radzilowski LH, Dabbousi BO, Fogg DE, Schrock RR, Thomas EL, Rubner MF, Bawendi MG (1999). "Composite thin films of CdSe nanocrystals and a surface passivating/electron transporting block copolymer: Correlations between film microstructure by transmission electron microscopy and electroluminescence". J. Appl. Phys. 86:4390-4399.
http://dx.doi.org/10.1063/1.371376
 
Mattoussi H, Radzilowski LH, Dabbousi BO, Thomas EL, Bawendi MG, Rubner MF (1998). ''QD–IBSC prototype grown by molecular beam epitaxy''. J. Appl. Phys. 83:7965-7974.
http://dx.doi.org/10.1063/1.367978
 
Moser J, Bonnote P, Gratzel M (1998). "Molecular photovoltaics". Coord. Chem. Rev. 171:245-250.
http://dx.doi.org/10.1016/S0010-8545(98)90037-6
 
Mott NF (1968). "Metal-insulator transition". Rev. Mod. Phys. 40:677-683.
http://dx.doi.org/10.1103/RevModPhys.40.677
 
Mukai K, Sugawara M (1999). "Self-Assembled InGaAs/GaAs Quantum Dots". edited by Sugawara M, Semicond. Semimet. Academic Press, San Diego. 60:209-240.
 
Murphy JE, Beard MC, Norman AG, Ahrenkiel SP, Johnson JC, Yu P, Micic OI, Ellingson RJ, Nozik AJ (2006). "PbTe Colloidal Nanocrystals: Synthesis, Characterization, and Multiple Exciton Generation". J. Am. Chem. Soc. 128:3241–3247.
http://dx.doi.org/10.1021/ja0574973
PMid:16522105
 
Murray CB, Kagan CR, Bawendi MG (2000). "Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies". Annu. Rev. Mater. Sci. 30:545-610.
http://dx.doi.org/10.1146/annurev.matsci.30.1.545
 
Nakata Y, Sugiyama Y, Sugawara M (1999). "Self-Assembled InGaAs/GaAs Quantum Dots". Semicond. Semimet. edited by M. Sugawara, Academic Press, San Diego 60:117.
http://dx.doi.org/10.1016/S0080-8784(08)62528-4
 
Nozik AJ (2001). Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu. Rev. Phys. Chem. 52:193-231.
http://dx.doi.org/10.1146/annurev.physchem.52.1.193
PMid:11326064
 
Nozik AJ (2003). "The Next Generation Photovoltaics, High Efficiency through Full Spectrum Utilization". Edited by Martí A, Luque A, Institute of Physics, Bristol, UK. pp. 196-222.
 
Mićić OI, Ahrenkiel SP, Nozik AJ (2001). "Synthesis of extremely small InP quantum dots and electronic coupling in their disordered solid films". Appl. Phys. Lett. 78:4022-4024.
http://dx.doi.org/10.1063/1.1379990
 
Mićić OI, Jones KM, Cahill A, Nozik AJ (1998). Optical, electronic and structural properties of uncoupled and close-packed arrays of InP quantum dots. J. Phys. Chem. B. 102(49):9791–9796.
http://dx.doi.org/10.1021/jp981703u
 
Ross RT, Nozik AJ (1982). "Efficiency of hot-carrier solar energy converters". J. Appl. Phys. 53:3813-3818.
http://dx.doi.org/10.1063/1.331124
 
Schaller R, Klimov V (2004). "High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion". Phys. Rev. Lett. 92:186601-186604.
http://dx.doi.org/10.1103/PhysRevLett.92.186601
PMid:15169518
 
Schaller RD, Agranovich VM, Klimov VI (2005b). "High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states". Nat. Phys. 1:189-196.
http://dx.doi.org/10.1038/nphys151
 
Schaller RD, Petruska MA, Klimov VI (2005). "Effect of electronic structure on carrier multiplication efficiency: Comparative study of PbSe and CdSe nanocrystals". Appl. Phys. Lett. 87:253102.
http://dx.doi.org/10.1063/1.2142092
 
Schaller RD, Sykora M, Pietryga JM, Klimov VI (2006). "Seven excitons at a cost of one: Redefining the limits for conversion efficiency of photons into charge carriers". Nano Lett. 6:424–429.
http://dx.doi.org/10.1021/nl052276g
PMid:16522035
 
Schlamp MC, Peng X, Alivisatos AP (1997). "Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer". J. Appl. Phys. 82:2132-2134.
http://dx.doi.org/10.1063/1.366452
 
Shabaev A, Efros AL, Nozik AJ (2006). "Multiexciton Generation by a Single Photon in Nanocrystals". Nano Lett. 6:2856–2863.
http://dx.doi.org/10.1021/nl062059v
PMid:17163719
 
Shockley W, Queisser HJ (1961). Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 32:510-520.
http://dx.doi.org/10.1063/1.1736034
 
Vogel R, Hoyer P, Weller H (1994). "Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors". J. Phys. Chem. 98:3183–3188.
http://dx.doi.org/10.1021/j100063a022
 
Weller H (1991). Ber. Bunsen-Ges. Phys. Chem. 95:1361
http://dx.doi.org/10.1002/bbpc.19910951108
 
Woggon U (1996). "Optical Properties of Semiconductor Quantum Dots". Springer Tr. Mod. Phys. Springer-Verlag, Heidelberg p. 115.
 
Zaban A, Micic OI, Gregg BA, Nozik AJ (1998). "Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots". Langmuir 14:3153- 3156.
http://dx.doi.org/10.1021/la9713863

 


APA (2013). A review on energy conversion efficiency mechanisms in quantum dot intermediate band nanostructure solar cells. Journal of Electrical and Electronics Engineering Research, 5(2), 22 - 27.
Chicago Nima E. Gorji,. "A review on energy conversion efficiency mechanisms in quantum dot intermediate band nanostructure solar cells." Journal of Electrical and Electronics Engineering Research 5, no. 2 (2013): 22 - 27.
MLA Nima E. Gorji,. "A review on energy conversion efficiency mechanisms in quantum dot intermediate band nanostructure solar cells." Journal of Electrical and Electronics Engineering Research 5.2 (2013): 22 - 27.
   
DOI https://doi.org/10.5897/JEEER11.102
URL http://academicjournals.org/journal/JEEER/article-abstract/18FC8AE8469

Subscription Form