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The study investigates the accuracy of bagging ensemble models (i.e., bagged artificial neural 
networks (BANN) and bagged regression trees (BRT)) in monthly crude oil price forecasting. Two 
ensemble models are obtained by coupling bagging and two simple machine learning models (i.e., 
artificial neural networks (ANN) and classification and regression trees (CART)) and results are 
compared with those of the single ANN and CART models. Analytical results suggest that ANN based 
models (ANN & BANN) are superior to tree-based models (RT & BRT) and the bagging ensemble 
method could optimize the forecast accuracy of the both single ANN and CART models in monthly 
crude oil price forecasting.   
 
Key words: Artificial neural networks, bagging (bootstrap aggregating), classification and regression trees, 
ensemble models, forecasting. 

 
 
INTRODUCTION 
 
Oil is an important component of the economic activity 
and the adverse effect of the crude oil prices on the level 
of the output is widely recognized in numerous empirical 
studies (Hamilton, 1983; Hamilton and Herrera, 2004; 
Huntington, 2005; Barsky and Kilian, 2004; Kilian, 2008).  
Therefore, forecasting crude oil prices is a very important 
topic, although it is an extremely hard one due to its 
intrinsic difficulty and practical applications. The supply 
and demand forces which are influenced by factors like  

gross domestic product, stock market activities, foreign 
exchange rates, weather conditions and political events 
determine the crude oil prices (Bernabe et al., 2004; 
Yousefi and Wirjanto, 2004). These factors among others 
may cause the highly nonlinear and chaotic tendency of 
the crude oil prices (Yang et al., 2002). 

In the past decades, traditional statistical and 
econometric techniques have been widely applied to 
crude oil price forecasting. Abramson and Finizza (1991)
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utilized a probabilistic model for predicting oil prices. 
Gulen (1998) attempted to predict the West Texas 
Intermediate (WTI) price using co-integration analysis. 
Morana (2001) offered a semiparametric statistical 
method based on the GARCH properties of crude oil 
price. Similarly, the GARCH model was used by Morana 
(2001) to forecast short-term oil prices. Ye et al. (2002, 
2005, 2006) presented a single equation model to 
forecast short-run WTI crude oil prices, using OECD 
petroleum inventory levels, relative inventories, and high 
and low-inventory variables. Lanza et al. (2005) used 
error correction models to predict oil prices. Xie et al. 
(2006) employed a linear ARIMA model to forecast crude 
oil prices, argued that oil prices exhibit nonlinear behavior 
which cannot be captured by linear techniques.  

As the traditional and econometric models have some 
limitations, some non-linear and emerging artificial 
intelligent models like artificial neural networks (ANN), 
support vector machines (SVM) and genetic 
programming (GP) can provide powerful solutions to 
nonlinear crude oil prediction. Abramson and Finizza 
(1991) attempted to predict crude oil prices using neural 
network models. Tang and Hammoudeh (2002) used a 
non-linear regression model to forecast OPEC basket 
price. Mirmirani and Li (2004) applied the VAR and ANN 
techniques to make ex-post forecast of U.S. oil price 
movements. Their analysis suggests that the BPN-GA 
model noticeably outperforms the VAR model. Xie et al. 
(2006) proposed a support vector machine model to 
forecast WTI prices. To evaluate the forecasting ability of 
SVM, authors compared its performance with those of 
ARIMA and BPNN. The experiment results showed that 
SVM outperforms the other two methods. Shambora and 
Rossiter (2007) and Yu et al. (2007) also used the ANN 
model to predict crude oil price. Gori et al. (2007) 
forecasted oil prices and consumption in the short term 
under three scenarios: parabolic, linear and chaotic 
behavior. Silva et al. (2010) used a wavelet 
decomposition to forecast oil price trends. Azadeh et al. 
(2010) applied an adaptive intelligent algorithm for 
forecasting gasoline demand based of artificial neural 
network (ANN), conventional regression and design of 
experiment (DOE).  

In the recent years, there has been a growing interest 
in ensemble methods for integrating multiple predictions. 
To our knowledge there have been very few applications 
of ensemble models within energy economics. For 
example, Zhanga et al. (2008) used ensemble empirical 
mode decomposition (EEMD) for crude oil price analysis. 
Yu et al. (2008) proposed using an empirical mode 
decomposition (EMD) based neural network ensemble 
learning paradigm for crude oil forecasting. Authors found 
that across different forecasting models, for the two main 
crude oil prices – WTI crude oil spot price and Brent 
crude oil spot price – in terms of different criteria, the 
EMD-based   neural   network  ensemble  learning  model  

 
 
 
 
performs the best. The ensemble methods provide an 
enhancement of the forecasting accuracy of their 
individual constituent members such as artificial neural 
networks and classification and regression trees. The 
most popular and widely used method is bagging. Thus, 
we employ bagging in constructing ensemble models in 
the present study.  

The organization of this paper is as follows. Section two 
is devoted to bagging, classification and regression trees 
and artificial neural networks. Section tree describes the 
data, performance statics, application details and 
empirical results. Finally, some discussions, conclusions 
and future study directions are given in section four. 
 
 
METHODS AND DATA 
 
Bagging 
 
Bagging (short for bootstrap aggregating) was proposed by 
Breiman (1996). It works as follows (van-Wezel and Potharst 2007): 

A training set D consists of data  niYX ii ,...,2,1),,(   where 

iX  is a realization of a multidimensional predictor variable and iY  

contains the label of the case i . For a regression problem, iY  is a 

realization of a real valued variable. A replica dataset of size n  is 

randomly drawn with replacement from the original dataset of the 

n  patterns.  A bootstrap sample 
*D  may contain some in D  

multiple times, whereas others are not included. When a 
bootstrapped sample is drawn, approximately 37% of the data is 
excluded from the sample and the remaining data is replicated to 
bring the data to full size. The excluded one third of the samples is 
known as the out of bag samples (OOB), while the replicated 
dataset is known as the in bag samples (Ismail and Mutanga, 
2010). A more detailed version of bagging is described in Breiman 
(1996). Model structure of bagging ensemble developed in the 

present study is shown in Figure 1. Given a learning model h , 

bagging is defined for regression problems as follows (Pino-Mejias 
et al. 2008):  
 
 
Definition 1. Bagging. 
 
1 Input: 

Training sample  niYX ii ,...,2,1),,(  ; 

Base learning model h ; 

2 Process: 

I Construct a bootstrap sample  niYXD ii ,...,2,1),,( ***  , 

according to the empirical distribution of the pairs 

niU i ,...,2,1,  , in D .  

II Fit h  to 
*D , obtaining the bootstrapped model 

*h . 

3 Output: 

The bagged predictor is  DxhExh b /)()( **  . 

 

 

Classification and Regression Trees 
 

Classification  and   regression   trees   (CART)   was  proposed  by 
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Figure 1. Bagging ensemble model structure. 
 
 
 

 
 

Figure 2. A CART structure. 
 
 
 

Breiman et al. (1984) which is a nonlinear statistical technique (Cao 
et al., 2010).The CART method is based on binary recursive 
partitioning. A node, which is always partitioned into exactly two 
new nodes, is called a parent node. The new nodes are called child 
nodes. The method is recursive since the process can be repeated 
by treating each child node as a parent node (Grunwald et al., 
2009). A terminal node is anode that has no child nodes. The main 
aim of CART is to estimate the response y  by selecting some 

appropriate variables from a large dataset. It works as follows 
(Hancock et al., 2005): Each node within the tree has a partitioning 
rule. For regression problems, the partitioning rule is determined 
through minimization of the relative error statistic (RE): 
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Where ly  and ry  are the left and right branches with L  

and R observations of y in each, with respective means Ly  and 

Ry .The decision rule d  is a point in some predictor variable 

x that is used to determine the left and right branches. The 

partitioning rule that minimizes the RE is then used to construct a 

node in the tree. In the last decade, CART has gained popularity in 
machine community. However, CART is very sensitive to small 
changes in the training dataset. More specifically, minor changes in 
the values of the training dataset can lead to significant changes in 
the selection of variables (Hastie et al. 2008; Ismail and Mutanga, 
2010).Thus, CART is identified as unstable predictor that is prone 
to overfitting (Breiman, 1996). A CART structure is depicted in 
Figure 2. 
 
 
Artificial Neural Networks 
 

This study uses a multilayer perceptron (MLP) which is a 
conventional back-propagation artificial neural network. Back-
propagation process is applied in two phases. The first phase is the 
forward phase; it involves feeding an input data to the input layer 
and propagating the signal as far as the output of the network to 
obtain the prediction. Next, the second phase is the backward 
phase; the error is employed to adjust the weights of the 
connections from the hidden to the output neurons. The error is 
also back propagated and used to adjust the weights of the 
connections from the input to the hidden neurons (Oliveira et al., 
2010).The output signal for the lth neuron in the nth layer is given 
by, 
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subject to Nnl  and it can be revised as given by 
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where  is the learning rate, and 
n
jt

n
j uEt )(  is the local 

error gradient. To improve the back-propagation algorithm, a 

momentum term  is added  
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For the output layer, the local error gradient is given by 
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where )(td j  is the goal output signal, and )(  is the activation 

function. 
 
2.4. Dataset and experimental settings 
 
The data used in this analysis consist of the monthly West Texas 
Intermediate (WTI) spot price from January 1982 to November 2011 
gathered from the Federal Reserve Bank of St. Louis Federal 
Reserve Economic Data (FRED). There are various data sets for oil 
price in the literature, but WTI data is most common due to having 
long period and providing data continuously from FRED. Bagging 
ensemble model was applied in forecasting prices in the monthly 
WTI.  Prices are forecasted using time as inputs. In this study, the 
results are obtained by using a 10-fold cross-validation for each 
model. The 10-fold cross-validation procedure is applied as follows: 
First, the WTI dataset is randomized and then data are partitioned 
into three parts as training set (8 distinct folds), cross-validation set 
(1 fold) and testing set (1 fold). The training set is employed for the 
model training and the testing set is used to evaluate the accuracy 
of models. The cross-validation set is used to apply an early 
stopping process to avoid overfitting of the training data. Data 
mining toolkit WEKA (Waikato Environment for Knowledge 
Analysis) version 3.7.4 is used for experiment. WEKA is an open 
source toolkit, and it consists of a collection of machine learning 
algorithms for solving data mining problems (Witten and Frank, 
2005). 

In this study, the model-specific parameter values we use are as 
follows: the parameters for MLP are: the number of hidden layers is 
5 and 10; the learning rate is 0.3, 0.4 and 0.5; the momentum factor  

 
 
 
 
was 0.3, 0.4, and 0.5; and the training time is 300, 400 and 500. 
The experiments indicate that the best MLP parameters are as 
follows: the number of hidden layers is 5; the number of the 
learning rate is 0.3; the momentum factor is 0.4; and the training 
time is 500. The parameters for the CART are the following: number 
of folds; the minimum total weight; and number of seeds. In this 
case, the values for these parameters were 2, 2 and 1 for CART 
respectively. The bagging parameters are the size of each bag (as 
a percentage); the number of iterations; and the number of seeds. 
The best configuration parameters for the bagging are 100, 40, and 
1 respectively. The base models (i.e., CART, ANN) parameters are 
identical to the case in which are they are separately applied. In this 
study, we offer a better forecasting method for oil price, so we run 
the program for the each parameter values specified above and 
select giving the best value.  We examined the effects of all the 
model parameters from the highest values to the least that can be 
applied in a proper way through the method algorithms. The 
parameter values that give the highest first three ones are selected 
for further examination and analyzed for the best values through 
which we can obtain the least prediction error. Prediction results for 
each parameter values are compared by using the root mean 
squared error, the mean absolute error, relative absolute error and 
root relative squared error accuracy measures. 
 
 
APPLICATION AND EMPIRICAL RESULTS 
 
The predictive models proposed in this study (i.e., ANN, 
RT, BRT and BANN) are evaluated by using the four 
accuracy measures (i.e., the root mean squared error 
RMSE, the mean absolute error MAE, relative absolute 
error RAE and root relative squared error RRSE) and 
also six numerical descriptors (maximum, minimum, 
mean, variance, maximum under-prediction MUP and 
maximum under-prediction MOP) are computed to 
investigate the statistical relation between original data 
and predicted data.  

Mean absolute error:  
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Root relative squared error: 
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Table 1. The comparison of performance statics for ANN and BANN models. 
 

Model inputs 

ANN BANN 

MAE RMSE RAE (%) 
RRSE 

(%) 
MAE RMSE RAE (%) 

RRSE 

(%) 

WTI t-1 3,306 4,084 17,502 16,382 2,040 3,133 10,801 12,567 

WTI t-1, WTI t-2 2,238 2,952 11,849 11,840 1,868 2,526 9,893 10,131 

WTI t-1, WTI t-2, WTI t-3 2,317 3,081 12,269 12,359 1,712 2,271 9,063 9,109 

 
 
 

Table 2. Numerical descriptors for ANN models and actual data. 
 

Model Model inputs min max mean varience MOP MUP 

Actual  12,850 125,390 34,371 1181,370   

        

ANN 

WTI t-1 15,839 110,017 36,641 1342,529 6,816 -15,373 

WTI t-1, WTI t-2 15,057 112,815 35,595 1266,988 5,281 -12,575 

WTI t-1, WTI t-2, WTI t-3 15,023 113,344 35,700 1274,472 6,167 -12,046 

        

BANN 

WTI t-1 12,849 109,208 33,735 1138,021 3,707 -16,182 

WTI t-1, WTI t-2 13,193 113,394 33,861 1146,567 3,426 -11,996 

WTI t-1, WTI t-2, WTI t-3 13,439 116,530 34,267 1174,234 4,823 -8,860 

 
 
 
target. Three input combinations based on preceding 
monthly crude oil prices are developed to forecast current 
monthly crude oil price. The input combinations evaluated 
in the study are; (1) WTIt-1, (2) WTIt-1, WTIt-2 and (3) 
WTIt-1, WTIt-2, WTIt-3. In all cases, the output is the 
WTIt for the current month. We purposely do not give the 
training performance statistics, because good testing 
accuracy gives no guarantee for a low test error. The 
performance statistics of ANN and BANN models in the 
test period are given in Table 1. The table indicates that 
the BANN model whose inputs are the prices of three 
previous months (input combination 3) has the best 
accuracy. It can be seen from Table 1 that the BANN 
model performs better than the single ANN model from 
the various performance criteria viewpoints. The table 
shows that the relative MAE, RMSE, RAE and RRSE 
differences between the BANN (input combination 3) and 
ANN (input combination 2) models are 23.514%, 
23.065%, 2.786% and 2.731% in the test period, res-
pectively. Table 2 summarizes the numerical descriptors 
(max, min, mean, variance, maximum over prediction and 
maximum under prediction) for the ANN and BANN 
models. The numerical descriptors estimated for the ANN 
and BANN models indicate that the BANN model yields 
more similar estimates and distributions when compared 
with the actual WTI data.  

Table 3 indicates that the BRT model whose inputs are 
the prices of two previous months (input combination 2) 
has the smallest MAE, RMSE, RAE and RRSE in  testing 

period. And it is found that the RT model has the best 
accuracy for the input combination 3. Compared with the 
RT models, the BRT models yield better accuracy in 
monthly crude oil price forecasting. The relative MAE, 
RMSE, RAE and RRSE differences between the BRT 
(input combination 2) and RT (input combination 3) 
models are 14.581, 16.761, 2.403 and 3.918% in the test 
period, respectively. The numerical descriptors shown in 
Table 4 for the RT and BRT models show that the BRT 
model provides more similar estimates and distributions 
than RT. The BANN, ANN, BRT and RT residuals in test 
period are shown in Figure 3 for all input combinations 
respectively. It can be seen from the residuals that BANN 
approximates the actual values better than the others. 
The underestimations are obviously seen for the tree-
based models.  

The direct relationship between the MAE, RMSE, RAE 
and RRSE is very clear according to Tables 1 and 3.  The 
best model for minimizing MAE (1.712) and RMSE 
(2.271) is BANN, the 2nd model is ANN (MAE=2.238, 
RMSE =2.952), the 3th model is BRT (MAE=2.659, 
RMSE =4.850) and finally the worst model is RT 
(MAE=3.112, RMSE =5.827). Tables 1 and 3 indicate 
BANN (RAE=9.063, RRSE=9.109) and ANN models 
(RAE=11.849, RRSE=11.840) are superior to the BRT 
(RAE=14.076, RRSE=19.457) and RT (RAE=16.479, 
RRSE=23.375) models for determining, RAE and RRSE 
statics. In general, note from Tables 1 to 3 that ensemble 
learning   always   provides   a   good   improvement  and  
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Table 3. The comparison of performance statics for RT and BRT models. 
 

Model inputs 

RT BRT 

MAE RMSE RAE (%) 
RRSE 

(%) 
MAE RMSE 

RAE 

(%) 

RRSE 

(%) 

WTI t-1 3,295 5,855 17,449 23,486 2,755 4,989 14,588 20,014 

WTI t-1, WTI t-2 3,259 5,924 17,254 23,763 2,659 4,850 14,076 19,457 

WTI t-1, WTI t-2, WTI t-3 3,112 5,827 16,479 23,375 2,826 5,078 14,964 20,368 

 
 
 

Table 4. Numerical descriptors for RT models and actual data. 
 

Model Model inputs min max mean varience MOP MUP 

Actual  12,850 125,390 34,371 1181,370   

        

RT 

WTI t-1 13,358 93,636 32,535 1058,512 6,691 -31,754 

WTI t-1, WTI t-2 14,143 93,636 32,544 1059,127 6,691 -31,754 

WTI t-1, WTI t-2, WTI t-3 14,143 93,636 32,758 1073,063 6,691 -31,754 

        

BRT 

WTI t-1 13,456 99,190 33,017 1090,136 7,517 -26,200 

WTI t-1, WTI t-2 13,619 99,130 33,102 1095,750 6,873 -26,260 

WTI t-1, WTI t-2, WTI t-3 13,046 96,860 33,032 1091,116 7,830 -28,530 

 
 
 
ensemble models (i.e., BANN, BRT) seems to be more 
adequate than the single ANN and RT models for 
forecasting monthly crude oil prices (Table 4). 

The actual and predicted WTI distributions of the input 
combinations 1, 2 and 3 for testing period are depicted 
with boxplots presented in Figures 4, 5 and 6. The box 
height corresponds to the interquartile range, the 
whiskers depict the 5th and 95th percentiles and the 
horizontal line is the median. Dots indicate values outside 
the range and the horizontal line within each boxes 
indicate the median values. The performance of BANN 
model was better than the ANN, RT and BRT models 
when compared to the distribution of the actual WTI data. 
Moreover the distribution of WTI data predicted by the 
BANN model is similar to the distribution of actual data 
and the BANN model did the best job at the capturing the 
actual data for test phases. 
 
 
DISCUSSION AND CONCLUSION 
 
Ensemble learning is the supervised learning from the 
information generated by the base predictors. The main 
goal is to build an ensemble model that provides base 
predictor functionality and to increase the accuracy by 
combining the individual models (Chou et al., 2011). 
Integrating multiple instances of the same model type can 
reduce the variance and enhance prediction accuracy 
(Wang  et   al.,   2009).   In  the  present  study,  we  have 

investigated the potential use of bagging ensemble 
models for monthly crude oil price forecasting. The 
ensemble models (i.e., bagged artificial neural networks 
BANN, bagged regression trees BRT) are obtained by 
coupling bagging and two single unstable machine 
learning model (i.e., ANN, CART). We have also 
employed the base models ANN and CART as 
benchmark models and used tree input combination to 
test proposed predictive models.  In general, the bagging 
method can be very effective procedure when applied to 
unstable learning algorithms, such as classification and 
regression trees and artificial neural networks (Mejias et 
al. 2010). Moreover, bagging ensembles can inherit 
almost all advantages of their base models while 
overcoming their primary problem, which is inaccuracy. 
Breiman (1996) pointed out that the bagged model 
variance is smaller than or equal to the variance of a 
simple model (i.e. CART, ANN), leading to increasing 
prediction accuracy (Louzada et al. 2011).  

The obtained results from the study indicate that (i) 
bagging always provides a considerable enhancement. 
Bagged models (i.e., BANN, BRT) reduce the mean 
absolute errors, root mean squared errors, relative 
absolute errors and root relative squared errors with 
respect to the single ANN and CART models by 23.514-
14.581%, 23.065-16.761%, 2.786-2.403% and 3.918-
2.731%, respectively; (ii) ANN-based predictive models 
(i.e., BANN, ANN) are found better than tree-based 
predictive models (i.e., BRT, RT). (iii)  BANN  model  is  a  
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Figure 3. Residuals for the ANN, BANN, RT and BRT models. 

 
 
 
promising approach for monthly crude oil price forecasting 
and finally (iv) the numerical descriptors (maximum, 
minimum, mean, variance, maximum under-prediction 
and maximum under-prediction) estimated for the 
proposed   predictive   models   indicate   that  the  BANN 

model yields statically similar estimates and distributions 
when compared with the actual WTI data. In this study, 
bagging method is used in building ensemble models. 
The other ensemble models (e.g., boosting, random 
forest)  could   be   used   for   construction   of  ensemble 
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Figure 4. Box plots of actual and predicted WTI distributions for input combination 1. 

 
 
 

 
 

Figure 5. Box plots of actual and predicted WTI distributions for input combination 2. 
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Figure 6. Box plots of actual and predicted WTI distributions for input combination 3. 

 
 
 
models. We propose to investigate the usage of other 
ensemble models for future work. 
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