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This paper presents a new approach for solving the unit commitment problem (UCP) in hydro-thermal 
power system. The main objective of this paper is to find the generation scheduling by committing the 
generating units such that the total operating cost can be minimized by satisfying both the forecasted 
load demand and various operating constraints. It is a Global optimization technique for solving UCP, 
operates on a system, which is designed to encode each unit’s operating schedule with regard to its 
minimum up/down time. In this method, the unit commitment schedule is coded as a string of symbols. 
An initial population of parent solutions is generated at random. Here the parents are obtained from a 
pre-defined set of solutions that is, each and every solution is adjusted to meet the requirements. Then, 
random recommitment is carried out with respect to the unit’s minimum down times. Tabu search (TS) 
is a powerful optimization procedure that has been successfully applied to a number of combinatorial 
optimization problems. It avoids entrapment at local optimum by maintaining a short term memory of 
recently obtained solutions. The memory structure assists in forbidding certain moves that deteriorates 
the quality of the solution by assigning Tabu status to the forbidden solutions. The Tabu status of a 
solution can be overruled if certain conditions are satisfied expressed in the form of aspiration level 
(AL). AL adds flexibility in TS by directing the search towards attractive moves. The best population is 
selected by evolutionary strategy (ES). Numerical results are shown comparing the cost solutions and 
computation time obtained by using the proposed hybrid method with conventional methods like 
Dynamic Programming, and Lagrangian Relaxation etc. 
 
Key words: Evolutionary programming, Tabu search, unit commitment, dynamic programming, lagrangian 
relaxation. 

 
 
INTRODUCTION 
 
The electrical power system has daily and weekly cycles. 
The optimization problem is how to schedule generation 
to minimize the fuel cost or to maximize the profit over a 
study period of typically a day, satisfying various 
constraints. The daily load pattern for a given system 
may exhibit large differences between minimum and 
maximum demand. It is not proper and economical to run 
all the units available all the time.  Since  the  load  varies 
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continuously with time, the optimum condition of units 
may alter during any period. 

Therefore, determining the units of a plant that should 
operate economically for a given load is the problem of 
unit commitment (UC). For total number of units of higher 
order, the problems associated with UC have generally 
been difficult to solve because of uncertainty of particular 
aspects of the problem. For instance the availability of 
fuel in precise, load forecast variable costs affected by 
the loading of generator units and the losses caused by 
reactive flows are some of the unpredictable issues. In 
order to reach a feasible solution for UCP, different 
considerations must be considered. 
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A number of numerical optimization techniques have 
been employed to solve the complicated UCP. The major 
limitations of the numerical techniques are inability to 
handle problem dimensions, large computation time, 
more memory space and complexity in programming. 

The two-stage method (Ferrero et al., 1998) has 
smaller computational requirements than that of the 
Simulated Annealing algorithm. The optimal generation 
from hydro and thermal resources is computed 
simultaneously in the two stage algorithm; there is no 
need for assuming constant operation of some reservoirs 
as in the Simulated Annealing method. No discretization 
of state and control variables is needed in the proposed 
method. The required storage as well as computing time 
in the proposed method are reduced as compared to 
those in the successive-approximations algorithm. The 
results (Martinez and Soares, 2002) revealed that the 
partial open-loop feedback control policy provided 
somewhat higher average and standard deviation for 
hydroelectric generation in all simulations performed. The 
higher standard deviation provided, however, not being 
compensated for by a slightly higher average generation, 
lead to higher final operating costs. The closed-loop 
feedback control policy was more efficient in the 
synthetically simulations. This advantage, however, 
reduced with the historical simulations, when the different 
control policies led to almost equivalent performances. 

LR-DP method (Benhamida, 2009) is efficiently and 
effectively implemented to solve the UC problem. LR total 
production cost over the scheduled time horizon is less 
than conventional methods especially for the larger 
number of generating units. The augmented Lagrangian 
approach (Salem, 2001) presented in this paper 
accommodates further for pumped-storage units and line 
flow limitations and concurrently can produce accurate 
scheduling results. The approach produces feasible 
schedules and requires no iteration with economic 
dispatch algorithms. LR approach (Ngundam et al., 2002) 
to solve the UC Problems was found that it provides 
faster solution but it will fail to obtain solution feasibility 
and solution quality problems and becomes complex if 
the number of units increased. The overall results 
obtained by the implemented Lagrangian relaxation 
approach (Alberto et al., 2003) are of very good quality 
and they are reached within little iteration. The proposed 
method could be of help for the solution of UC of 
hydrothermal power generation systems in the uncertain 
environment of the competitive electricity markets. The 
results revealed that the proposed method (Ruey-Hsun et 
al., 2009) is very effective in reaching an optimal 
generation schedule. 

Test results and numerical experiences show that the 
solution technique (Gary et al., 2001) can give a near-
optimal or optimal solution for the mixed integer linear 
programming (MILP) problem in an acceptable time. The 
solution of the hydrothermal problem not only provides 
MW   schedules   for   hydro   units  and  plants,  but  also 

 
 
 
 
indicates the hydro unit commitment status while 
minimizing the unit startup costs. MILP model allows to 
accurately represent most of the hydroelectric system 
characteristics, and turns out to be computationally 
solvable for a planning horizon of one week, proving the 
high efficiency of modern MILP software tools, both in 
terms of solution accuracy and computing time (Alberto et 
al., 2008). With the proposed (Costas et al., 2009) 
distributed implementation, even a small-sized generation 
company can perform overnight large Monte Carlo 
simulations on the company‟s personal computers 
exploiting their idle times under a simple hydrothermal 
problem communication protocol. The upper and lower 
bound estimates of the optimal value of the objective 
function are available with each iteration; a feasible 
solution to the original problem is available with each 
iteration; prior experience and feasible existing schedules 
can be directly incorporated into the computational 
procedure, introducing additional exclusion rules to 
improve the efficiency of the restricted integer algorithm 
(Baptistella and Gerome, 1980). Maximum intensity 
projection (MIP) methods (Mohan et al., 1992) for solving 
the unit commitment problems fail when the number of 
units increases because they require a large memory and 
suffer from great computational delay. The presented 
decomposition scheme (Wilfredo and Alberto, 2007) is 
simple, pure, and robust, even for dominant hydraulic 
power systems. It is also easy to implement, because it 
uses well-known, optimized, fast techniques, such as MIP 
and ac optimal power flow (OPF) algorithms. The chosen 
decomposition of the problem allows considering the 
network‟s entire modeling, with little impact on computing 
CPU time. Complex hydraulic chains or additional 
constrains can be easily modeled and/or added. In our 
studies (Tiago and Andre, 2009), reductions in the overall 
CPU time to solve the problem depended on the case, 
with a minimum reduction of two times as compared to 
the classical Multi Stage Benders Decomposition 
approach and four times as compared to the single linear 
program approach. This work (Srinivasa et al., 2009) 
builds a fuzzy rule base with the use of the area control 
error and rate of change of the error. The simulation 
results show that the proposed FLA based controller 
yields improved control performance than the dual mode 
controller. 

The heuristic search algorithms are efficiently used to 
commit fuel constrained units, pumped-storage units, and 
repairing violations due to ramp rate and transmission 
constraints. The proposed method (Vo and Weerakorn, 
2008) obtains less production costs and faster 
computational time than Augmented Hopfield Neural 
Network and hybrid Lagrangian relaxation and quadratic 
programming. SAM (Kirkpatrick et al., 1983; Shokri et al., 
1991; Zhuang and Galiana, 1990; Mantawy et al., 1998) 
is a powerful, general-purpose stochastic optimization 
technique, which can theoretically converge 
asymptotically   to    a    global   optimum    solution   with 



 
 
 
 
probability one. 

But it takes too much time to reach the near-global 
minimum. It is an iterative improvement procedure that 
starts with some initial feasible solution and improves it to 
reach the better solution with computation time. It has the 
special characteristic of escaping the local optima by 
employing a flexible memory system. SAM utilizes a short 
term memory of recent solutions to lead the algorithm to 
a different direction away from the local optimum region 
to obtain better solutions that are near to global optimum. 
TSM (Mantawy et al., 1998; Whei-Min et al., 2002) is a 
powerful, general-purpose stochastic optimization 
technique, which can theoretically converge 
asymptotically to a global optimum solution with 
probability one. But it will take much time to reach the 
near-global minimum. 

TSD (Xaiomin and Shahidehpur, 1996) has considered 
the time varying start-up costs as well as the non-linearity 
in the hydrothermal systems. It can be used as post 
processor for existing generation scheduling methods or 
in cases where rescheduling of units is required due to 
change in the system status. And the application of the 
modified Benders decomposition method is to solve with 
constraints that are difficult to formulate. In order to 
obtain the better results, the experience of the operators 
in applying some system specific conditions has been 
included in Tabu Search method. The simulation results 
(Rudolf and Bayrleithner, 1999) reveal that the features of 
easy implementation, convergence in an acceptable time, 
and highly optimal solution in solving the unit commitment 
problem can be achieved. GA (Yong-Gang and Chun-
Ying, 2000) is a general-purpose stochastic and parallel 
search method based on the mechanics of natural 
selection and natural genetics. It is a search method to 
have potential of obtaining near-global minimum. And it 
has the capability to obtain the accurate results within 
short time and the constraints are included easily. The 
proposed GA (Esteban et al., 2003), using new 
specialized operators, have demonstrated excellent 
performance in dealing with this kind of problem, 
obtaining near-optimal solutions in reasonable times and 
without sacrificing the realism of the electric and 
economic models. Developed algorithms provide optimal 
unit commitment and also optimal MW values for energy, 
spinning reserve and non-spin. Presented algorithm and 
analysis could be beneficial to GENCO with big number 
of generators to maximize the profit and bid in 
competitive electricity market (Mariappane and 
Thyagarajah, 2009; Lal and Christober, 2011). 

With this new approach (Werner and Verstege, 1999), 
decomposition into sub problems for the hydro and the 
thermal system is not necessary. Numerical experiments 
with a hydrothermal test system demonstrate the ability of 
the proposed method to solve the complex optimization 
problem with its wealth of constraints. Cau and Kaye 
(2002) performance compares favorably with constructive 
DP which is known to be faster than standard  LP.  It  can  
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be used for a rapid approximate optimal scheduling for 
large scale complex system with multiple cascaded and 
pumped storage. Results (Chakrabarti and 
Chattopadhyay, 2003) show that with quadratic thermal 
cost and without prohibited discharge zones, all EP-
based algorithms converge faster during initial stages 
while Fast Evolutionary Programming and Classical 
Evolutionary Programming slow down in the latter stages 
compared to Improved Fast EP. Improved Fast EP 
performs the best amongst the three in solving this 
problem in terms of execution time, minimum cost, and 
mean cost. 

From test results, Shyh-Jier (2001), and Venkatesan 
and Sanavullah (2012) have demonstrated the feasibility 
of ACM in the hydro-generation scheduling study. This 
method is also suitable to be implemented under a 
parallel computer system. The solution speed can be 
thus further improved. There is no obvious limitation on 
the size of the problem that must be addressed 
(Christober, 2010), for its data structure is such that the 
search space is reduced to a minimum; No relaxation of 
constraints is required; instead, populations of feasible 
solutions are produced at each generation and 
throughout the evolution process; Multiple near optimal 
solutions to the problem involving multiple constraints 
and conflicting objectives can be obtained in a 
reasonable time with the use of heuristics; It works only 
with feasible solutions generated based on heuristics, 
thus avoiding the computational burden entailed by the 
Genetic Algorithm methods which first generate all 
feasible solutions and then purge the infeasible ones 
(Nayak and Christober, 2011; Javadi et al., 2011, a). 

The flexibility in the demand constraint both in terms of 
possibility of buying and selling in the market gives better 
indication of the likely future scenarios so that better 
bidding strategy can be made (Javadi et al., 2011, b; 
Chitra et al., 2009; Ganesan and Subramanian, 2012). 
More improvements could be made to the proposed 
algorithm in order to increase the speed convergence of 
the algorithm (Ahmed et al., 2006) and its execution time 
by improving the gradient method, and by adjusting 
adequately the penalty weight factor. 

Hence, in this paper, an attempt has been made to 
couple EP with TSM [electromagnetic propagation tool 
(EPTSM)] with cooling-banking constraints for meeting 
these requirements of the UCP, which gives the better 
solution than the individual EP and TS methods with 
reasonable time. In case of TSM, the temperature and 
demand are taken as control parameter. Hence the 
quality of solution is improved. Classical optimisation 
methods are a direct means for solving this problem. EP 
seems to be promising and is still evolving. EP has the 
great advantage of good convergent property and, hence, 
the computation time is considerably reduced. EP does 
not suffer from the drawback of handling non-continuous 
or non-differentiable objective functions as in some plants 
like Combined Cycle Co-generation plants. Encoding and 
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decoding schemes essential in the GA approach are not 
needed, considerable computation time is thus saved. 
The EP combines good solution quality for TSM with 
rapid convergence for EP. And the selection process is 
done using ES. By doing so, it can help to find the 
optimum solution rapidly and efficiently. The validity and 
effectiveness of the proposed integrated algorithm has 
been tested with an IEEE test system consisting of 4 
hydro generating units and 10 thermal generating units. 
The results are compared with the other methods. 
 
 

PROBLEM FORMULATION 
 

The main objective of UCP is to determine the on/off 
status of the generating units in a power system by 
meeting the load demand at a minimum operating cost in 
addition to satisfying the constraints (Allen and 
Wollenberg, 1984) of the generating units. The problem 
formulation includes the quadratic cost characteristics, 
startup cost of thermal power system and operating 
constraints of thermal and hydro generating units. The 
power generation cost for thermal power system is given 
in Equation 1a. 
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- The Cost Function parameters of unit i (Rs/h, 
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2
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)( ,, itsits PF
- The generation cost of unit i at time t (Rs/h). 

itsP ,
 - The output power from unit i at time t (MW). 

The overall objective function (Alberto et al, 2008) of UCP 
that is to be minimized is given in Equation 1b. 
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where, 

itU
– Unit i status at hour t 

itV
– Unit i start up/ shut down status at time t 

TF
– Total operating cost over the schedule horizon 

(Rs/h) 

itS
 – Startup cost of unit i at time t (Rs) 

 
 
Constraints 
 

Load power balance constraint 
 

The   real   power   generated   by   thermal   and    hydro 

 
 
 
 
generating units must be sufficient enough to meet the 
load demand and must satisfy the equation 
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Spinning reserve constraint 
 
Spinning reserve is the total amount of generation 
available from all units synchronized on the system minus 
the present load plus the losses being supplied. The 
reserve is usually expressed as a percentage of 
forecasted load demand. Spinning reserve is necessary 
to prevent drop in system frequency and also to meet the 
loss of most heavily loaded unit in the power system. 
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Thermal constraints 
 
A thermal unit undergoes gradual temperature changes 
and this increases the time period required to bring the 
unit online. This time restriction imposes various 
constraints on generating unit. Some of the constraints 
are minimum up/down time constraint and crew 
constraints.  

If the units are already running there will be a minimum 
time before which the units cannot be turned OFF and 
the constraint is given in Equation 4. 
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If the units are already OFF there will be a minimum time 
before which they cannot be turned ON and the 
constraint is given in Equation 5. 
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Must run units 
 
Some units in the power system are given must run 
status in order to provide voltage support for the network. 
 
 
Unit capacity limits 
 
The power generated by the thermal unit must lie within 
the maximum and minimum power capacity of the unit. 
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Hydro constraints 
 
Hydro plant generation limits 
 
The power generated by the hydro units must be within 
the maximum and minimum power capacity of the unit 
(Ferrero, 1998) 
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Hydraulic network constraints 
 

Physical limitations on reservoir storage volumes and 
discharge rates. 
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The initial volume and the final volume that is to be 
retained at the end of scheduling period. 
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The Continuity equation for hydro reservoir network is 
given in Equation 12. 
 

              (12) 
 
 

Hydro plant unit power generation characteristics 
 

The hydro power generated is related to the reservoir 
characteristics as well as water discharge rates. Hydro 
power output is a function of the volume of the reservoir 
and discharge rate. The equation representing the hydro 
power generation characteristics is given in Equation 13. 
 

           (13) 
 
 

ELECTROMAGNETIC PROPAGATION TOOL (EPTSM) 
FOR HYDRO THERMAL UNIT COMMITMENT 
PROBLEM (UCP) 
 

The TSM is integrated with evolutionary programming 
algorithm   to  escape  local  optima.  Since  Tabu  search 
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improves the solution without entrapment in local minima 
the population obtained in EP is refined using TSM. 

 
 
Implementation of electromagnetic propagation tool 
(EPTSM) 

 
In the proposed algorithm, an initial set of parent vectors 
are formed at random. The objective function values of all 
the parents are evaluated and their startup cost is added 
to get the operating cost of each parent vector. Mutation 
is performed to all the parents and off springs is formed. 
The objective function values of off springs are evaluated 
as in the case of parents. Then the parents and off 
springs are combined to get the total population. Each 
individual from the population is refined using Tabu 
search algorithm. Then a tournament competition and 
selection process is performed to refined population from 
Tabu Search to obtain better half population. They are 
given as parents to the next generation. The above 
described process is repeated until maximum number of 
iterations is reached. 

 
 
Improvements performed in the algorithm 

 
1. Each parent is mutated twice to get two off springs. 
Therefore the total population will be the sum of Np 
parents and 2Np off springs that is, totally 3Np 
population. This allows in exploring more areas of the 
possible solution space and increases the probability of 
obtaining global optimum solution. 
2. In the mutation process, if a parent yields good 
offspring then the particular mutation value is given a 
score. If at each time the particular mutation value gives 
good offspring then its score is increased and other 
mutation values scores are reduced. Hence during the 
next iteration the mutation values with more scores are 
applied to get offspring with less objective function values 
and thereby increasing the probability of obtaining global 
optimum solution. 

 
 
Electromagnetic propagation tool (EPTSM) algorithm 

 
The proposed integrated algorithm combines EP and TS 
techniques to solve the UCP problem. The EP technique, 
hold the main responsibility of finding the optimal point 
and TS assists EP to converge towards the optimum 
point quickly. The search is basically done with EP, but 
additionally the TS is used to escape the search path 
from local optimum point. The algorithm for the proposed 
method is as follows: 
 
1. Commit all the M hydro units and considering 
discharge rates (Qh(i,t)) between the limits, calculate the 
volumes (Vh(i,t)) of the reservoirs from 1 to M. 
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2. Calculate the power produced by each hydro unit 
(Ph(i,t)) from the values of discharge rates and volumes. 
 

ihi

hihhi

hihih

CtiQC

tiVCtiQtiVC

tiQCtiVCtiP

,6,5

,4,3

2

,2

2

,1

),(

),()),(*),((

),(),(),(







                        (15) 

 
3. Sum up all the hydro powers for each period and 
subtract the total hydro power from the power demand for 
each period. 
4. Find the remaining load demand to be met with 
thermal power such that 
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5. Obtain the power (Pdt) to be produced by thermal unit, 
 

ht PDPDPD                                                                                          (17) 

 
and for the thermal system Unit Commitment is 
performed as below.  
6. An initial population of “parent” solutions Sk, 
k=1,2,3…,M (where M is the number of parents), is 
generated at random. 
7. The objective function value associated with each 
solution Sk is calculated by economically dispatching the 
hourly load to the operating units and by computing the 
total fuel and start-up/shut-down costs, that is, 

 

)()()()( kkkk STSDCSTSUCSTFCSTC           (18) 

 
8. An offspring Sk

’
 is created from each parent by adding 

a Gaussian random variable N(0, 
2
k) to the elements aijk 

of parent Sk: 
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Here, the value of i is chosen in such a manner that 

product i x pi should guarantee a minimum variance. 
Normally constant scaling factor is used in conventional 
EP. In this non-linear scaling factor is used for better 
convergence. For the first 40% of the total number of 
generations (N1) the decrement in  scaling  factor  „g1‟  is 

 
 
 
 
calculated as 
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For the remaining 60% of the total number of generations 

(N2) the decrement in  is calculated as „g2‟ as 
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9. Each feasible offspring Sk

’
 is evaluated according to 7. 

10. For each feasible candidate, parent or offspring, a 
value Wk is assigned. 
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where r = [2Mu + 1], r not equal to k, [x] denotes the 
greatest integer less than or equal to x, c is the number of 
competitions, and u is a uniform random number ranging 
over [0,1]. Here, c is set at 1/10 of the population. 

 
11. The feasible competitors are ranked in descending 
order of Wk. The first M solutions survive and are 
transcribed along with their elements to form the basis for 
TS Algorithm. 
12. In TS Algorithm the temperature variable (Cp) is 
initially assigned to be relatively higher value. 
13. The number of iteration „n‟ to be performed for 
refining each individual solution is obtained and the 
process is done to every individual independently.  
14. The initial solution is assigned as the current best 
solution „Ui‟, the function to be checked is assumed to be 
minimum, in our case it is the cost „Fi‟. 
15. Random perturbation is done to the current solution 
and the neighbouring solution „Uj‟ is obtained whose 
feasibility is examined by checking to see if there is an 
uptime or downtime constraint.  
16. Check if the cost Fj < Fi, if less replace Uj and Fj as 
current solutions for Ui and Fi, if greater check if exp [(Fi-
Fj)/Ck] > U (0, 1), if satisfied, set Ui =Uj. 
17. The iteration count „n‟ is decremented and another 
neighbouring solution is generated. When the iteration 
count ‘n’ reaches zero, the temperature variable Cp is 
lowered to a new value. 
18. The entire process terminates when sufficient 
iterations have occurred at the specified lowest 
temperature and this process is repeated to all the 
individual solution till all the Np solutions are refined. 
19. The refined Np number of population is passed  on  to 
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Figure 1. EPTSM flowchart for Hydro-Thermal UCP. 
 

 
 

the EP part as the parents for  next  generation. And this 
process is repeated till the convergence in production 
cost is reached along with the optimum schedule having 
satisfied the constraints 
20. For the units, which are in the off states, calculate the 
cost for both cooling and banking. 

21. Compare the cooling and banking costs, if banking 
cost is lesser than cooling, bank the unit. 
22. Print the optimum schedule. 
 
The diagrammatic description of the proposed hybrid 
EPTSM algorithm is shown in Figure 1. 
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Table 1. IEEE thermal test system. 

 

Unit 
Pmax 

(MW) 

Pmin 

(MW) 

A 

($ / H) 

B 

($/ MWH) 

C 

($/ W
2
H) 

Min Up 

(H) 

Min Down 

(H) 

Hot Start 
Cost ($) 

Cold Start 
Cost ($) 

Cold Start 
Hours (H) 

Initial 
Status (H) 

1 455 150 1000 16.19 0.00048 8 8 4500 9000 5 8 

2 455 150 970 17.26 0.00031 8 8 5000 1000 5 8 

3 130 20 700 16.60 0.002 5 5 550 1100 4 -5 

4 130 20 680 16.50 0.00211 5 5 560 1120 4 -5 

5 162 25 450 19.70 0.00398 6 6 900 1800 4 -6 

6 80 20 370 22.26 0.00712 3 3 170 340 2 -3 

7 85 25 480 27.74 0.00079 3 3 260 520 2 -3 

8 55 10 660 25.92 0.00413 1 1 30 60 0 -1 

9 55 10 665 27.27 0.00222 1 1 30 60 0 -1 

10 55 10 670 27.79 0.00173 1 1 30 60 0 -1 
 
 

 
Table 2. Hydrodischarge coefficient. 

 

Plant No. C1 C2 C3 C4 C5 C6 

1 -0.0042 -0.42 0.03 0.9 10 -50 

2 -0.004 -0.3 0.015 1.14 9.5 -70 

3 -0.0016 -0.3 0.014 0.55 5.5 -40 

4 -0.003 -0.31 0.027 1.44 14 -90 
 
 

 

Termination criterion of the algorithm 

 
The algorithm can be terminated at any time if it 
satisfies certain conditions. There may be several 
possible conditions for termination of the 
algorithm. But the best conditions are selected by 
the quality of the solution obtained after 
termination. In this algorithm two possible 
conditions for termination have been applied. The 
algorithm will be terminated if the following 
conditions are satisfied: 

 
1. Given maximum number of iterations have 
been performed (or) 
2. The   best   operating   cost   obtained  repeats 

successively for certain number of iterations. 
 
 

CASE STUDY 
 

An IEEE test system consisting of 4 hydro 
generating units and 10 thermal generating units 
has been considered as a case study (Mohan et 
al., 1992). A time period of 24 h is considered and 
the unit commitment problem is solved for these 
10 units power system. The required inputs for 
solving the UCP are tabulated below. The IEEE 
thermal test system is shown in Table 1, hydro 
discharge coefficients, reservoir volumes and 
discharge limits and inflows to the reservoir are 
shown in Tables 2, 3 and 4. The daily load pattern 

considered is shown in Table 5. 
The cost convergence graph of EPTSM and 

hydro and thermal generations are shown in 
Figures 2 and 3. The operating cost comparison 
of EPTSM with EP, TSM, LR and DP is shown in 
Table 6. By analyzing the graphs between the 
cost and iterations, as iterations increased the 
cost will be reduced with the slight increase of 
computation time. From the results obtained, we 
observed that EPTSM with cooling-banking 
constraints approaches to near optimal solution. 
 
 

Conclusion 
 

This  paper  gives  an  efficient,  fast   and   robust
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Table 3. Reservoir volume and discharge limits (× 10
-4

 M
3
). 

 

Plant No. Vmin Vmax Vini Vend Qmin Qmax Ph min (MW) Ph max (MW) 

1 80 150 100 120 5 15 0 500 

2 60 120 80 70 6 15 0 500 

3 100 240 170 170 10 30 0 500 

4 70 160 120 140 13 25 0 500 
 
 
 

Table 4. Inflows to the reservoir (× 10
-4

 M
3
). 

 

Unit 1 2 3 4 5 6 7 8 

1 12 12 11.8 11.7 11.7 11.6 11.5 11.4 

2 6 6 6.5 6.7 6.8 6.9 7 7.2 

3 3 4 5 6 7 8 8.8 8.9 

4 3 2 2 0 0 0 0 0 
 
 

 
Table 5. Load pattern for 24 h. 

 

Hour Demand (MW) Hour Demand (MW) 

1 1358 13 1567 

2 1357 14 1539 

3 1187 15 1374 

4 1321 16 1356 

5 1500 17 1555 

6 1501 18 1372 

7 1468 19 1380 

8 1298 20 1390 

9 1292 21 1469 

10 1176 22 1391 

11 1521 23 1276 

12 1399 24 1553 
 
 
 

 
 
Figure 2. Cost convergence characteristics for 50 Iterations. 
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Figuer 3. Hydro and thermal generations. 

 
 
 

Table 6. Production for different technique. 

 

Techniques used Iterations Production cost (Rs.) Computation time (s) 

DP - 32774013 83.90 

LR - 30656586 73.65 

TSM 25 24363089 39.07 

EP 25 24240650 26.91 

EPTSM 25 24181789 24.45 

EPTSM (C & B) 25 24164478 24.10 
 
 

 
UCP through EPTSM with cooling-banking constraints. 
EP is characterized by its good convergent property and 
significant speedup over traditional GA‟s. An initial parent 
vector is formed at random. Then mutation is applied to 
obtain offspring. Best solutions are selected from the 
combined population of both parents and off springs for 
next generation. TSM is characterized by its ability to 
escape from the local optima by employing short term 
memory structure. Also it has a strategy called AL which 
directs the search towards attractive moves leading to a 
better solution. The effectiveness of the algorithm is 
proved by considering IEEE thermal and IEEE hydro test 
systems. The good convergent property of EP and TSM 
ability to avoid entrapment in local optima are integrated 
to form new hybrid algorithm for solving UCP which 
showed better results. Further improvements in the 
application of mutation operator to find better off springs 
will help in searching more areas in solution space 
resulting in global optimum solution. On comparing the 
results obtained from the different techniques, EPTSM 
with cooling-banking constraints obviously displays a 
satisfactory performance. Thus, the solution obtained 
from EPTSM has better quality in terms of economy and 
computation time. 

Nomenclature 
 
Ec : Energy of the current configuration 
EConfig: Energy of a given configuration 
Et : Energy of the trail configuration 
Fit (Pit): Production cost of unit i at a time t (Rs/h.) 
FT: Total operating cost over the scheduled horizon 
(Rs/H) 
K : Constant 
N: Number of available generating units 
PConfig : Probability of a given configuration 
PDt : System peak demand at hour t (MW) 
Pit : Output power from unit i at time t (MW) 
Pmaxi : Maximum generation limit of unit i (MW) 
Pmini : Unit i minimum generation limit (MW) 
Rt : Spinning reserve at time t (MW). 
Sit : Start up cost of unit i at hour t (Rs). 
Soi : Unit i cold start – up cost (Rs). 
T : Scheduled time horizon (24 h) 
Tdowni : Unit i minimum down time (H) 
Toffi : Duration for which unit i is continuously OFF (H) 
Toni : Duration for which unit i is continuously ON (H)  
Tshuti : Instant of shut down of a unit i (H)  
Tstarti : Instant of start up of a unit i (H) 

 

 

 

Time (h) 



 
 
 
 
Tupi : Unit i minimum up time (H) 
U (0,1) : Uniform distribution with parameters 0 and 1 
Uit : Unit i status at hour t = 1 (if unit is ON) = 0 (if unit is 
OFF) 
UD(a,b) : Discrete uniform distribution with parameters a 
and b. 
Vit : Unit i start up /shut down status at hour t = 1 if the 
unit is started at hour t and 0 otherwise. 
F: Composite cost function 
Fi : Fuel cost of i

th
 thermal unit in Rs/h 

Ps(i,t) : Generation of i
th
 thermal unit at time t in MW 

Ph(i,t) : Generation of i
th
 hydro unit a time t in MW 

Vh(i,t) : Storage volume of i
th
 reservoir at time t in m

3
 

Qh(i,t) :Water discharge rate of i
th
 reservoir at time t in m

3
  

PD(t) : Power demand at time t in MW 
PL(t) :Total Transmission line losses at time t in MW 
Sh(i,t) : Spillage of i

th
 reservoir at time t in m

3
 

Ih(i,t) : Inflow rate of i
th
 reservoir at time t in m

3
 

Hi(t) : Net head of i
th
 reservoir at time t in m

3 

,, : Thermal generation cost coefficients 
Ci,1 to Ci,6: Hydro power generation coefficients 

i,m : Water transport delay from reservoir  to i 
Ru : Set of upstream units directly above i

th
 hydro unit 

Rh / Rs : Set of Hydro/Thermal plants in the system 
i,m : Reservoir index, index of reservoir upstream of the 
i
th
 reservoir 

t,T : Time index, scheduling period 
V,i

begin
 : Initial storage volume of i

th 
reservoir in m

3
 

V,i
end

 : Final storage volume of i
th
 reservoir in m

3
 

Pi : Output generation for unit i in MW 
PL : Total current system load in MW 
PTL : Total system transmission losses in MW 
OBJ : Objective cost function 
Fi : Cost function for unit i. 
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