Journal of Geology and Mining Research
Subscribe to JGMR
Full Name*
Email Address*

Article Number - 4824E9D40084

Vol.5(9), pp. 223-231 , September 2013
DOI: 10.5897/JGMR2013.0177
ISSN: 2006-9766


Optimizing monitoring network of water table by geostatistical methods

Hosein Abedian
  • Hosein Abedian
  • Faculty of Engineering, Department of Hydrology, Shahid Beheshti University, Iran
  • Google Scholar
Kourosh Mohammadi
  • Kourosh Mohammadi
  • Department of Hydrology, Tarbiat modares University, 14115-111, Chamran Street, Tehran, Kourosh Iran
  • Google Scholar
Ramin Rafiee
  • Ramin Rafiee
  • Faculty of Petroleum and Geophysics, Shahrood University, Shahrood, Iran
  • Google Scholar

 Accepted: 30 August 2013  Published: 30 September 2013

Copyright © 2013 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0

Data collection of alluvium aquifers is done by using quality-quantity networks because of their spread and continuity.In designing such a network, it is necessary to pay attention on distribution of variables all over the aquifer so that variables represent whole of aquifer correctly. This happens when the network is able to predict the affects of climatical, natural etc parameters on the aquifers. Besides it should provide the maximum amount of information of the studied aquifers. At present, these networks are designed based on some empirical parameters. As a result, these cannot correctly represent the aquifer and some scientific methods needs to be benefited from to modify the empirical methods. Therefore using geostatistical methods seems to be necessary. The major difference is that a relation can be detected between quantities of a variation in different samples and distance and direction of the samples, while in the statistical methods, the quantites are haphazardly. It means that in the statistical methods, quantity of the variation in one sample doesn’t provide any information about its quantity in other samles. In this case study, using geostatistical methods, water table network is optimized for the aquifer of Ardestan Plain. Gaussian model - as the best fitted model on Kriging geostatistical method - is used in this case study. Optimization has two main steps: in the first step, using cross validation method, possibility of deleting some wells is studied based on the differences between predicted and measured values of them during a suitable statistical period; if the difference is negligible, these wells can be omitted, based on the iso-standard deviation map, and in the next step based on some suitable points, the best combination of points, by try % error method and a computerized model is determined to be added to the network in such a way that estimations cause minimum standard deviation. At the end of this study, the network was optimized by deleting a piezometer and adding two other ones. 

Key words: Geostatistical method, monitoring network, groundwater.

Araghinejad S, Burn DH (2005). Probabilistic forecasting of hydrological events using geostatistical analysis. Hydrol. Sci. J. 50:837-856.
Bogardi I, Bardossy A, Duckstein L (1985). Multicriterion Network Design Using Geostatistics Water. Resour. Res. 21(2):199-208.
ESRI (2001). Using ArcGIS Geostatistical Analyst, ESRI, California.
Hughes JP, Lettenmaier P (1984). Data requirements for Kriging: Estimation and Network Design, Water. Resour. Res. 17(6):1641-1650.
Hudak PF, Loaiciga HA (1993). An optimization method for monitoring network design in multilayered Groundwater flow system. Water Resour. Res. 29(8):1835-1845.
Kumar VR (2006). Kriging of groundwater leval. J. Spatial hydrol. 6:81-94.
Kitanidis PK (1995). Quasi-linear geostatical theory for inversing. Water Resour. Res. 31(10):1411-1419.
Sophocleous M, Paschetto E, Olea RA (1982). Groundwater Network design for Northwest Kansas, Using the Theory of Regionalized Variables. Groundwater 20(1):48-58


APA (2013). Optimizing monitoring network of water table by geostatistical methods. Journal of Geology and Mining Research, 5(9), 223-231.
Chicago Hosein Abedian, Kourosh Mohammadi and Ramin Rafiee. "Optimizing monitoring network of water table by geostatistical methods." Journal of Geology and Mining Research 5, no. 9 (2013): 223-231.
MLA Hosein Abedian, Kourosh Mohammadi and Ramin Rafiee. "Optimizing monitoring network of water table by geostatistical methods." Journal of Geology and Mining Research 5.9 (2013): 223-231.
DOI 10.5897/JGMR2013.0177

Subscription Form