Journal of Microbiology and Antimicrobials
Subscribe to JMA
Full Name*
Email Address*

Article Number - BD2460762280


Vol.9(1), pp. 1-13 , January 2017
DOI: 10.5897/JMA2015.0354
ISSN: 2141-2308



Review

Potential pharmacological applications of enzymes associated with bacterial metabolism of aromatic compounds



Ranjith N. Kumavath*
  • Ranjith N. Kumavath*
  • Department of Genomic Sciences, School of Biological Sciences, Central University of Kerala, P.O. Central University, Kasaragod- 671314, India.
  • Google Scholar
Debmalya Barh
  • Debmalya Barh
  • Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, PurbaMedinipur, West Bengal 721172, India.
  • Google Scholar
Vasco Azevedo
  • Vasco Azevedo
  • Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. MG, Brazil
  • Google Scholar
Alan Prem Kumar
  • Alan Prem Kumar
  • Cancer Science Institute of Singapore, National University of Singapore, Singapore
  • Google Scholar







 Received: 30 September 2015  Accepted: 03 January 2016  Published: 31 January 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Many purple anoxygenic bacteria contribute significantly to the catabolic and anabolic processes in the oxic/anoxic zones of several ecosystems. However, these bacteria are incapable of degrading the benzenoid ring during the biotransformation of aromatic hydrocarbons. The key enzymes in the aromatic amin acids metabolism of purple bacteria include 3,4-dihydroxyphenylalanine minotransferase (EC 2.6.1.49), 3,4-dihydroxyphenylalanine reductive deaminase (EC 4.3.1.22), 3,4- dihydroxyphenylalanine oxidative deaminase (EC 1.13.12.15), L-tryptophan aminotransferase (EC 2.6.1.27), 3,4-dihydroxyphenylalanine aminotransferase (EC 2.6.1.49), phenylalanine ammonia lyase (EC 4.3.1.24), tyrosine ammonia lyase (EC 4.3.1.23), phenylalanine/tyrosine ammonia lyase (EC 4.3.1.25), phenylacetate-CoA ligase (EC 6.2.1.30); histidine ammonia lyase (EC 4.3.1.3), tryptophanase (EC 4.1.99.1), tryptophan 2,3-dioxygenase (EC 1.13.11.11) and kynurenineformidase (EC 3.5.1.49). These enzymes have biological significance since these are known to have highly antioxidant, anti-cancer, anti HIV, antifungal/microbial, cyclooxygenase inhibitory phytohormonal activities and also display an impressive array of pharmacological applications viz. pigmenta, toxins, enzyme inhibitors, pesticides herbicides, antiparasitics, mycotoxins, antitumor agents, cytotoxic activities and growth promoter of animal and plants. Here, we reviewed anoxygenic bacterial novel enzymes and their biotechnological applications.

Key words:Alkylester, biotransformation, bioprospect, indigo, indolmycin, purple bacteria, violacein.

Ahn MR, Kumazawa S, Hamasaka T, Bang KS, Nakayama T (2004). Antioxidant activity and constituents of propolis collected in various areas of Korea. J. Agric. Food. Chem. 52:7286-792.
Crossref

 

Bartling D, Seedorf M, Schmidt RC, Weiler EW (1994). Molecular characterization of two cloned nitrilases from Arabidopsis thaliana: key enzymes in biosynthesis of the plant hormone indole-3-acetic acid. Proc. Natl. Acad. Aci. USA. 91:6021-6025.
Crossref

 

Bertoldi M, Frigeri P, Paci M, Borri-Votattorni C (1999). Reaction specificity of native and nicked 3,4-dihydroxyphenylalanine decarboxylase. J. Biol. Chem. 274:5514-5521.
Crossref

 

Bourinbaiar AS, Hung SL (1994).The non-steroidal anti-inflammatory drug indomethin as an inhibitor of HIV replication.FEBS Lett. 360:85-88.
Crossref

 

Chen H, Li YL, Tu SS, Lei N, Ling Y, Xiao YH, Jing SH, Li PS, Yu L, Lu SS (2005).Apoptosis of pancreatic cancer BXPC-3 cells induced by indole-3-acetic acid in combination with horseradish peroxidase.World. J. Gastroenterol. 11(29):4519-4523.
Crossref

 

Copeland A, Lucas S, Lapidus A, Barry K, Detter JC, Glavina T, Hammon N, Israni S, Pitluck S, Richardson P, Mackenzie C, Choudadhry M, Larimer F, Hauser LJ, Land M, Donohue TJ, Kaplan S (2005). Complete sequence of chromosome-1 of Rhodobacter sphaeroides2.4.1 submitted (SEP-2005) to the EMBL/GenBank/ DDBJ databases.

 

David PP, Aaron MG, Paul PT (2001). Purification and characterization of an L-amino acid deaminase used to prepare unnatural amino acids. J. Mol. Catal. B Enzym. 11:795-803.
Crossref

 

Duran N, Antonio RV, Haun M, Pilli RA (1994). Biosynthesis of a trypanocide by Chromobacteriumviolaceum.World J. Microbiol.Biotechnol. 10:686-690.
Crossref

 

Duran N, Erazo S, Campos V (1983). Bacterial chemistry-II: antimicrobial photoproduct from pigment of Chromobacteriumviolaceum. An Acad. Bras. Cienc. 55:231-234.

 

Elsa AB, Elias RO, Jose ML, Cristina F, Beatriz G, Jose LG, Eduardo D, Baltasar M (2004). The Homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. J. Bacteriol. 186 (15):5062-5077.
Crossref

 

Fonnum F, Larsen K (1965). Purification and properties of dihydroxyphenylalanine transaminase from guinea pig brain. J. Neurochem. 12:589-598.
Crossref

 

Forrest F, Nancy M, Keith AB (1993). Production of L-Dihydroxyphenylalanine in Escherichia coli with the Tyrosine Phenol-Lyase Gene Cloned from Erwiniaherbicola. Appl. Environ. Microbiol. 59 (9):3070-3075.

 

Herrera CM, Ramos JL (2007). Catabolism of phenylalanine by Pseudomonas putida: the NtrC-family PhhR regulator binds to two sites upstream from the PhhA gene and stimulates transcription with σ70. J. Mol. Biol. 366:1374-1386.
Crossref

 

Hoshino T, Ogasawara N (1990). Biosynthesis of violacein: evidence for the intermediary of 5- hydroxy-L-tryptophan and the structure of a new pigment, oxyviolacein, produced by the metabolism of 5-hydroxytryptophan. Agric. Biol. Chem. 64:2339-2345.
Crossref

 

Juana M, Marianna, Patrauchan A, Stewart G, Davies J, Lindsay Eltis D, William M (1999). Phenylacetae catabolism in Rhodococcus spp. RHA1: a central Pathway for Degradation of Aromatic Compounds. J.Bacteriol. 187:4497-4504.

 

Kar B, Banerjee R, Bhattacharya BC (1999). Microbial production of gallic acid by modified solid- state fermentation. J. Ind. Micro. Biotechnol. 23:173-177.
Crossref

 

Kevin TW, Benjamin NM, Pyung CL, Andew JM, Claudia SD (2006). Discovery of a substrate selectivity switch in tyrosineammonialyase, a member of the aromatic amino acid lyase family. Chem. Biol. 13:1317-1326.
Crossref

 

Kodach LL, Bos CL, Duran N, Peppelenbosch MP, Ferreira CV,Hardwich JC. (2006). Violacein synergistically increases 5-fluorouracil Cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinogenesis 27:508-516.
Crossref

 

Koga J (1995). Structure and function of indole pyruvate decarboxylase, a key enzyme in indole-3- acetic acid biosynthesis.Biochem.Biophys.Acta 1249:1-13.
Crossref

 

Kumavath RN, SasikalaCh, RamanaCh (2007b). Rhodethrin: a novelindoleterpenoid ether produced by Rhodobactersphaeroides has cytotoxic and phytohormal activities. Biotechnol.Lett. 29:1399-1402.
Crossref

 

Kumavath RN, SasikalaCh, RamanaChV (2011). Rubrivivaxin, a New Cytotoxic and Cyclooxygenase- I Inhibitory Metabolite from Rubrivivaxbenzoatilyticus JA2.World J. Microbiol.Biotechnol. 27:11-16.
Crossref

 

Kumavath RN, SasikalaCh, RamanaChV, DedmalyaBarh, Alan premkumar, Vasco Azivedo (2015). Isolation and Characterization ofTryptophan ammonia lyase by Rubrivivaxbenzoatilyticus JA2.Curr.Protein Pept. Sci.16(8):775-781.
Crossref

 

Kuniyoshi S, Xingglian G, Mika H, Hiroto S, Syoko F, Deji Y, Ryuichiro K, Mototake T, Ikuo S (2003). In- dole-3-carbaldehyde: a tyrosine inhibitor from fungus YL 185. J. Wood Sci. 49:349-354.
Crossref

 

Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C (2004). Indole 3-acetic acid biosynthesis is deficient in Gluconacetobacterdiazotrophicus strains with mutations in cytochrome c biogenesis genes. J. Bacteriol. 186:5384-5391.
Crossref

 

Li SC, Li H, Zhang F, Li ZJ, Cui JR (2003). Anticancer activities of substituted cinnamic acid phenethyl esters on human cancer cell lines. J. Chin. Pharm. Sci. 12:184-187.

 

Nieminen SM, Maki Paakkanen J, Hirvonen MR, Roponen M, Von wright A (2002).Genotoxicity of gliotoxin, a secondary metabolite of Aspergillusfumigatus in a battery of short term test system.Mutat. Res. 520:161-170.
Crossref

 

Panke S, Held M, Wubbolts M (2004). Trends and innovations in industrial biocatalysis for the production of fine chemicals.Curr.Opin.Biotechnol. 15:272-279.
Crossref

 

Patten CL, Glick BR (2002). Role of Pseudomonas putida indo- leacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68:3795-3801.
Crossref

 

Phi QT, Park YM, Ryu CM, Park SH, Ghim SY (2008). Functional identification and expression of indole-3-pyruvate de- carboxylase from PaenibacillspolymyxaE681. J. Microbiol. Biotechnol. 18(7):1235-1244.

 

Poppe L, Rétey JF (2005). Friedel-Crafts-type mechanism for the enzymatic elimination of ammonia from histidine and phenylalanine.Angew. Chem. Int. Ed. Engl. 44:3668-3688.
Crossref

 

Ranjith NK, SasikalaCh, RamanaCh (2007). Catabolism of L-phenylalanine and L-tyrosine by Rhodobactersphaeroides OU5 occurs through 3,4-dihydroxyphenylalanine.Res. Microbiol. 158:506-511.
Crossref

 

Ranjith NK, SasikalaCh, RamanaCh (2008). Purification and characterization of 3,4- dihydroxyphenylalanine oxidative deaminase from Rhodobactersphaeroides OU5. Can. J. Microbiol. 54(10):829-834.
Crossref

 

Regina VA, Creczynski-Pasa TB (2004). Genetic analysis of violacein biosynthesis by Chromobacteriumviolaceum.Genet. Mol. Res. 3(1):85-91.

 

Rother D, Poppe L, Morlock G, Viergutz S, Retey J (2002). An active site homology model of phenylalanine ammonia lyase from Petroselinumcrispum. Eur. J. Biochem. 269:3065-3075.
Crossref

 

Samaha HS, Kelloff GJ, Steele V, Rao CV, Reddy BS (1997). Modulation of apoptosis by sulindac, curcumin, phenylethyl 3-methylcaffeate and 6-phenylhexyl isothiocyanate: apoptoptic index as a biomarker in colon cancer chemoprevention and promotion. Cancer Res. 57:1301-1305.

 

Schneider S, Mohamed ME, Fuchs G (1997). Anaerobic metabolism of L-phenylalanine via benzoyl-CoA in the denitrifying bacterium Thaueraaromatica. Arch. Microbiol. 168:310-320.
Crossref

 

Srinivas M, Vasavi D, Girisham S, Reddy SM (2002). Production of indole acetic acid by anoxygenic phototrophic bacteria under different conditions.Indian J. Microbiol. 42:215-128.

 

Sunayana MR, SasikalaCh, RamanaVCh (2005).Production of novel indole ester from 2-amonobenzoate by Rhodobactersphaeroides OU5. J. Ind. Microbiol. Biotechnol. 32:41-45.
Crossref

 

Wolfram W, Oliver F (2002). Can we discover novel pathways using metabolomics analysis?.Curr.Opin.Biotechnol. 13:156-160.
Crossref

 


APA Kumavath, R. N., Barh, D., Azevedo, V., & Kumar, A. P. (2017). Potential pharmacological applications of enzymes associated with bacterial metabolism of aromatic compounds. Journal of Microbiology and Antimicrobials, 9(1), 1-13.
Chicago Ranjith N. Kumavath, Debmalya Barh, Vasco Azevedo and Alan Prem Kumar ,,. "Potential pharmacological applications of enzymes associated with bacterial metabolism of aromatic compounds." Journal of Microbiology and Antimicrobials 9, no. 1 (2017): 1-13.
MLA Ranjith N. Kumavath, et al. "Potential pharmacological applications of enzymes associated with bacterial metabolism of aromatic compounds." Journal of Microbiology and Antimicrobials 9.1 (2017): 1-13.
   
DOI 10.5897/JMA2015.0354
URL http://academicjournals.org/journal/JMA/article-abstract/BD2460762280

Subscription Form