Journal of Medicinal Plants Research
Subscribe to JMPR
Full Name*
Email Address*

Article Number - 8E7286764097


Vol.11(16), pp. 296-306 , April 2017
DOI: 10.5897/JMPR2017.6371
ISSN: 1996-0875



Full Length Research Paper

Secondary metabolites from endophytic fungus from Lippia sidoides Cham.



Talita Pereira de Souza Ferreira*
  • Talita Pereira de Souza Ferreira*
  • Bioprocess Engineering and Biotechnology, Federal University of Tocantins, University Campus of Gurupi, 77410-530 Gurupi, TO, Brazil.
  • Google Scholar
Gil Rodrigues dos Santos
  • Gil Rodrigues dos Santos
  • Agronomic Engineering, Federal University of Tocantins, University Campus of Gurupi, 77410-530 Gurupi, TO, Brazil.
  • Google Scholar
Ilsamar Mendes Soares
  • Ilsamar Mendes Soares
  • Bioprocess Engineering and Biotechnology, Federal University of Tocantins, University Campus of Gurupi, 77410-530 Gurupi, TO, Brazil.
  • Google Scholar
Sergio Donizeti Ascencio
  • Sergio Donizeti Ascencio
  • Medicine, Federal University of Tocantins, University Campus of Palmas, 77001-090 Palmas, TO, Brazil.
  • Google Scholar
Tarso da Costa Alvim
  • Tarso da Costa Alvim
  • Food Engineering, Federal University of Tocantins, University Campus of Palmas, 77001-090 Palmas, TO, Brazil.
  • Google Scholar
Chrystian de Assis Siqueira
  • Chrystian de Assis Siqueira
  • Bioprocess Engineering and Biotechnology, Federal University of Tocantins, University Campus of Gurupi, 77410-530 Gurupi, TO, Brazil.
  • Google Scholar
Raimundo Wagner de Souza Aguiar
  • Raimundo Wagner de Souza Aguiar
  • Bioprocess Engineering and Biotechnology, Federal University of Tocantins, University Campus of Gurupi, 77410-530 Gurupi, TO, Brazil.
  • Google Scholar







 Received: 14 March 2017  Accepted: 18 April 2017  Published: 25 April 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Lippia sidoides Cham. (Verbenaceae) is a species native to the Brazilian northeast, widely used in popular medicine. Its leaves were used for the isolation of endophytic fungi and extraction of metabolites. Among them, three were selected according to fungitoxicity tests against the maize phytopathogenic fungus, Curvularia lunata (Wakker). However, the objective of this study was to identify the role of L. sidoides extracts associated with their endophytic fungi, necessary to reduce excess of fungicides applied on the maize crop. Metabolites were evaluated for antioxidant activity by 2.2-diphenyl-1-picrylhydrazyl (DPPH), phenols, total flavonoids and one of it endophytic fungus 

were evaluated for synergism (Verticilium sp. and plant extracts). The endophytic fungi and plant extracts evaluated for phenolic content ranged from 0.29 ± 0.05 to 96.94 ± 11.86 mgEAG/g, the content of flavonoids from 14.31 ± 1.56 to 192.33 ± 4.58 mgER/g, and antioxidant activity could only be observed for the plant extract with EC50 81 ± 0.3%. The secondary metabolites identified by HPLC in the plant extract were catechin, quercetin, gallic acid and naringin. Naringenin, catechin, epigallocatechin gallate and quercetin were identified in the extract of the fungi viz. Verticillium sp. and Fusarium sp. Synergistic analysis between a 1:1 proportion of plant and fungal extracts has shown more efficient (79.0%) inhibition of C. lunata. Thus, alternative control of phytopathogenic fungi can be accomplished using plant extracts associated with their endophytic fungi, reducing the excess of fungicides applied on the maize crop.

Key words: Curvularia lunata, endophytic fungal, HPLC, extract, Verticillium sp., Fusarium sp., Colletrotrichum sp. 

Akram W, Anjum T, Ahmad A, Moeen R (2014). First Report of Curvularia lunata Causing Leaf Spots on Sorghum bicolor from Pakistan Mol. Genet. Genomic 291(3):1105-1115.

 

Al-Marby A, Ejike CE, Nasim MJ, Awadh-Ali NA, Al-badani Rwaida A, Alghamdi GM, Jacob C (2016). Nematicidal and antimicrobial activities of methanol extracts of 17 plants, of importance in ethnopharmacology, obtained from the Arabian Peninsula. J. Intercult. Ethnopharmacol. 5(2):114-121.
Crossref

 

Almeida MCS, Alves AL, Souza, LGS, Machado LL, Oliveira MMC, Lemos MCF, Telma LG, Braz-Filho R (2010). Flavonoides e outras substâncias de Lippia sidoides e suas atividades antioxidantes. Quim. Nova. 33(9):1877-1881.
Crossref

 

Assunção IPL, Gaus AS, Amorim EPR, Muniz MFS, Endres L (2006). Ocorrência de Curvularia lunata em Jurubeba no estado de Alagoas. Summa Phytopathol. 32(4):386-387.
Crossref

 

Baba SA, Malik SA (2015). Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J. Taibah Univ. Sci. 9(4):449-454.
Crossref

 

Banhos EF, Souza AQL, Andrade JC, Souza ADL, Koolen HHF, Albuquerque PM (2014). Endophytic fungi from Myrcia guianensis at the Brazilian Amazon: distribution and bioactivity. Braz. J. Microbiol. 45(1):153-162.
Crossref

 

Bhardwaj A, Sharma D, Jadon N, Agrawal PK (2015). Antimicrobial and Phytochemical screening of endophytic fungi isolated from spikes of Pinus roxburghii. Arch. Clin. Microbiol. 6(3):1-9.

 

Blackwell M (2011).The fungi: 1, 2, 3 … 5.1 million species? Am. J. Bot. 98(3):426-438.
Crossref

 

Carotenuto G, Carrieri R, Tarantino P, Alfieri M, Leone A, De Tommasi N, Lahoz E (2015). Fungistatic activity of Zanthoxylum rhoifolium Lam. bark extracts against fungal plant pathogens and investigation on mechanism of action in Botrytis cinerea. Nat. Prod. Res. 29:2251-2255.
Crossref

 

Carvalho JM, Paixão LKO, Dolabela MF, Marinho PSB, Marinho AMR (2016). Phytosterols isolated from endophytic fungus Colletotrichum gloeosporioides (Melanconiaceae). Acta Amaz. 46(1):69-72.
Crossref

 

Chapla VM, Zeraik ML, Leptokarydis IH, Silva GH, Bolzani VS, Young MCM, Pfenning LH, Araújo AR (2014). Antifungal Compounds Produced by Colletotrichum gloeosporioides, an endophytic fungus from Michelia champaca. Molecules 19:19243-19252.
Crossref

 

Clemensen AK, Provenza FD, Lee ST, Gardner DR, Rottinghaus GE, Villalba JJ (2017). Plant secondary metabolites in alfalfa, birdsfoot trefoil, reed canarygrass, and tall fescue unaffected by two different nitrogen sources. Crop. Sci. 57:964-970.
Crossref

 

Costa M (2005). Extrato de Bauhinia variegate sobre a atividade transcricional mediada pelo receptor dos proliferadores peroxissomais-gama (PPARgama). Brasília: Universidade de Brasília.

 

Crouch J, O"Connell R, Gan P, Buiate E, Torres MF, Beirn L, Shirasu K, Vaillancourt L (2014). The genomics of Colletotrichum. In: Dean RA, Lichens-Park A, Kole Chittaranjan (eds. Genomics of Plant-Associated Fungi: Monocot Pathogens. Springer, Berlin, Heidelberg 69-102.

 

Devi NN, Singh MS (2015). Endophytic fungi associated with traditional medicinal plants of manipur. Int. J. Pharm. Sci. Rev. Res. 33(25):127-132.

 

Dhankhar S, Kumar S, Dhankhar S, Yadav JP (2012). Antioxidant activity of fungal endophites isolated from Salvadora oleoides decne. Int. J. Pharm. Phfarm. Sci. 4(2):380-385.

 

Dos Santos IP, Da Silva LCN, Da Silva MV, De Araújo JM, Cavalcanti MS, Lima VLM (2015). Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae). Front. Microbiol. 7(6):350.
Crossref

 

Dou W, Zhang J, Sun A, Zhang E, Ding L, Mukherjee S, Wei X, Chou G, Wang ZT, Mani S (2013). Protective effect of naringenin against experimental colitis via suppression of toll-like receptor 4/NF-kappaB signalling. Br. J. Nutr. 110:599-608.
Crossref

 

Dutta D, Puzari KC, Gogoi R, Dutta P (2014). Endophytes: exploitation as a tool in plant protection. Braz. Arch. Biol. Technol. 57(5):621-629.
Crossref

 

Fatima N, Mukhtar U, Ihsan-Ul-Haq AQM, Jadoon M, Ahmed S (2016). Biological evaluation of endophytic fungus Chaetomium sp. NF15 of Justicia adhatoda L.: a potential candidate for drug discovery. Jundishapur J. Microbiol. 9(6):e29978.
Crossref

 

Fouda AH, Hassan SE, Eid AM, Ewais EE (2015). Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann. Agric. Sci. 60(1):95-104.
Crossref

 

Funari CS, Gullo FP, Napolitano A, Carneiro RL, Mendes-Giannini MJS, Fusco-Almeida AM, Piacente S, Pizza C, Silva DHS (2012). Chemical and antifungal investigations of six Lippia species (Verbenaceae) from Brazil. Food Chem. 135(3):2086-2094.
Crossref

 

Gao J, JingTong J, Chuan-Jin L, Ya-Qian Y, Chen LJ (2015). Identification of proteins associated with the production of melanin and with pathogenicity in maize pathogen Curvularia lunata. Australasian Plant Pathol. 44:599.
Crossref

 

Garrido-Arandia M, Silva-Navas J, Ramírez-Castillejo C, Cubells-Baeza N, Gómez-Casado C, Barber D, Pozo JC, Melendi PG, Pacios LF, Días-Perales A (2016). Characterisation of a flavonoid ligand of the fungal protein Alt a 1. Sci. Rep. 6:1-9.
Crossref

 

Hou JM, Ma BC, Zuo YH, Guo LL, Gao SG, Wang YY, Liu T (2013). Rapid and sensitive detection of Curvularia lunata associated with maize leaf spot based on its Clg2p gene using semi-nested PCR. Lett. Appl. Microbiol. 56(4):245-250.
Crossref

 

Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2007). Endophytic fungi from Nerium oleander L (Apocynaceae): main constituents and antioxidant activity. World J. Microb. Biot. 23(9):1253-1263.
Crossref

 

Jayawardena RS, Li XH, Liu M, Zhang W, Yan JY (2016). Mycosphere essay 16: Colletotrichum: biological control, biocatalyst, secondary metabolites and toxins. Mycosphere 7(8):1164-1176.

 

Kohlmeyer J, Kohlmeyer E (1972). Permanent microscopic mounts. Mycologia 64(3):666-669. Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013). Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS ONE. 8(9):e71805.

 

Kundu A, Saha S, Walia S, Dutta TK (2016). Anti-nemic secondary metabolites produced by Fusarium oxysporum f. sp. Ciceris. J. Asia Pac. Entomol. 19(3):631-636.
Crossref

 

Kusari S, Pandey SP, Spiteller M (2013). Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 91:81-87.
Crossref

 

Li YL, Xin XM, Ming X, Chang ZY, Shi RJ, Miao ZM, Ding J, Hao GP (2015). The endophytic fungi of Salvia miltiorrhiza Bge.f. alba are a potential source of natural antioxidants. Bot. Stud. 56(5):1-7.
Crossref

 

Lima GP, Souza TM, Freire GP, Farias DF, Cunha AP, Ricardo NMPS, de Morais SM, Carvalho AF (2013). Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol Res. 112(5):1953-1958.
Crossref

 

Lima RK, Cardoso MG, Moraes JC, Carvalho, SM, Rodrigues VG, Guimarães, LGL (2011). Chemical composition and fumigant effect of essential oil of Lippia sidoides Cham. and monoterpenes against Tenebrio molitor (L.) (Coleoptera: Tenebrionidae). Ciênc. Agrotec. 35(4):664-671.
Crossref

 

Liu T, Hu J, Zuo Y, Jin Y, Hou J (2016). Identification of microRNA-like RNAs from Curvularia lunata associated with maize leaf spot by bioinformation analysis and deep sequencing. Mol Genet. Genomic. 291(2):587-596.
Crossref

 

Lo CL, Weiergang I, Bonham C, Hipskind J, Wood K, Nicholson RL (1996). Phytoalexin accumulation in sorghum: identification of methyl ether of lutheolinidin. Physiol. Mol. Plant Pathol. 49:21-31.
Crossref

 

Macheleidt J, Mattern DJ, Fischer J, Netzker T, Weber J, Schroeckh V, Valiante V, Brakhage AA (2016). Regulation and role of ungal secondary metabolites. Ann. Rev. Genet. 50:16.1-16.22.

 

Mohana KP, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G, Vasudeva R, Santhoshkumar TR, Spiteller M, Uma SRU (2012). Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook.f, produces rohitukine, a chromane alkaloid possessing anticancer activity. Antonie Van Leeuwenhoek. 101(2):323-329.
Crossref

 

Mutawila C, Vinaleb F, Halleena F, Lorito M,Mostert L (2015). Isolation, production and in vitro effects of the major secondary metabolite produced by Trichoderma species used for the control of grapevine trunk diseases. Plant Pathol. 65:104-113.
Crossref

 

Nath A, Chattopadhyay A, Joshi SR (2013). Biological activity of endophytic fungi of Rauwolfia serpentine Benth: an ethnomedicinal plant used in folk medicines in northeast India. Proc. Natl. Acad. India, Sci. Sect. B Biol. Sci. 85(1):233-240.

 

Nath A, Pathak J, Joshi S (2014). Bioactivity assessment of endophytic fungi associated with Centella asiatica and Murraya koengii. J. Appl. Biol. Biotech. 2(5):006-011.

 

Nongalleima K, Dey A, Deb L, Singh CB, Thongam B, Devi HS, Devi SH (2013). Endophytic fungus isolated from Zingiber zerumbet (L.) Sm. inhibits free radicals and cyclooxygenase activity. Int. J. Pharm. Tech. Res. 5(2):301-307. Oliveira GT, Ferreira JMS, Rosa LH, Siqueira EP, Johann S, Lima LARS (2014). In vitro antifungal activities of leaf extracts of Lippia alba (Verbenaceae) against clinically important yeast species. Ver. Soc. Bras. Med. Trop. 47(2):247-250.

 

Plotnikov EV, Glukhova LB, Sokolyanskaya LO, Karnachuk OV, Solioz M (2016). Effect of tree species on enzyme secretion by the shiitake medicinal mushroom, Lentinus edodes (Agaricomycetes). Int. J. Med. Mushrooms 18(7):637-644.
Crossref

 

Premjanu N, Jaynthy C, Diviya S (2016). Antifungal activity of endophytic fungi isolated from lannea coromandelica – an insilico approach. Int. J. Pharm. Pharm. Sci. 8(5):207-210.

 

Pusztahelyi T, Holb IJ, Pócsi I (2015). Secondary metabolites in fungus-plant interactions. Front. Plant Sci. 6:573.
Crossref

 

Qiu M, Xie R, Shi Y, Zhang H, Chen H (2010). Isolation and identification of two flavonoid-producing endophytic fungi from Ginkgo biloba L. Ann. Microbiol. 60(1):143-150.
Crossref

 

Ratnaweera PB, de Silva ED, Williams DE, Andersen RJ (2015). Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complement. Altern. Med.15:220.
Crossref

 

Raza SS, Khan MM, Ahmad A, Ashafaq M, Islam F, Wagner AP, Safhi FMM (2013). Islam neuroprotective effect of naringenin is mediated through suppression of NF-kappaB signaling pathway in experimental stroke. Neuroscience. 230:157-171.
Crossref

 

Sadananda TS, Nirupama R, Chaithra K, Govindappa M, Chandrappa CP, Vinay Raghavendra B (2011). Antimicrobial and antioxidant activities of endophytes from Tabebuia argentea and identification of anticancer agent (lapachol). J. Med. Plants Res. 5(6):3643-3652.

 

Sánchez-Rangel JC, Benavides J, Basilio Heredia J, Cisneros-Zevallos L, Jacobo-Velázquez DA (2013). Anal. Methods. 5:5990-5999.
Crossref

 

Santos CP, Pinheiro JB, Zucchi MI, Bajay MM, Campos JB, Arrigoni-Blank MF, Pinto JAO, Blank AF (2016). Genetic diversity of Lippia sidoides Cham. and L. gracilis Schauer germplasm. Genet. Mol. Res. 15(3):1-22.
Crossref

 

Sharma D, Pramanik A, Agrawal PK (2016). Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D. Don. 3 Biotech. 6(2):210.

 

Sharma J, Gairola S, Sharma YP, Gaur RD (2014). Ethnomedicinal plants used to treat skin diseases by Tharu community of district Udham Singh Nagar, Uttarakhand, India. J. Ethnopharmacol. 158:140-206.
Crossref

 

Siqueira VM, Conti R, Araújo JM, Souza-Motta CM (2011). Endophytic fungi from the medicinal plant Lippia sidoides Cham. and their antimicrobial activity. Symbiosis. 53(2):89-95.
Crossref

 

Soares AMS, Penha TA, Araújo SA, Cruz EMO, Blank AF, Costa-Junior LM (2016). Assessment of different Lippia sidoides genotypes regarding their acaricidal activity against Rhipicephalus (Boophilus) microplus. Rev. Bras. Parasitol. Vet. 25(4):401-406.
Crossref

 

Soares IM, Bastos EGP, Peixoto Sobrinho TJS, Alvim TC, Silveira MA, Aguiar RWS, Ascêncio SD (2014). Conteúdo fenólico e atividade antioxidante de diferentes cultivares de Ipomoea batatas (L.) Lam. obtidas por melhoramento genético para produção industrial de etanol. Rev. Ciênc. Farm. Básica Ap. 35(3):479-488.

 

Srinivasan K, Jagadish LK, Shenbhagaraman R, Muthumary J (2010). Antioxidant activity of endophytic fungus Phyllosticta sp. isolated from Guazuma tomentosa. J. Phytol. Phytochem. 2:37-41.

 

Suradkar KP, Hande DV, Kadu SR (2014). Seasonal diversity of endophytic fungi from ten medicinal plants. Int. J. Curr. Microbiol. Appl. Sci. 3(9):260-265.

 

Tadtong S, Watthanachaiyingcharoen R, Kamkaen N (2014). Antimicrobial constituents and synergism effect of the essential oils from Cymbopogon citratus and Alpinia galanga. Nat. Prod. Commun. 9(2):277-280.

 

Taylor DL, Hollingsworth TN, McFarland JW, Lennon NJ, Nusbaum C, Ruess RW (2014). A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecological Monogr. 84(1):3-20.
Crossref

 

Tianpanich K, Prachya S, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2011). Radical scavenging and antioxidant activities of isocoumarins and a phthalide from the endophytic fungus Colletotrichum sp. J. Nat. Prod. 74(1):79-81.
Crossref

 

Verma S, Singh A, Mishra A (2013). Gallic acid: molecular rival of cancer. Environ. Toxicol. Pharmacol. 35(3):473-85.
Crossref

 

Wang QX, Li S, Zhao F, Dai H, Bao L, Ding R, Gao H, Zhang L, Wen, Liu H (2011). Chemical constituents from endophytic fungus Fusarium oxysporum. Fitoterapia 82(5):777-81. Yadav B, Bhatnagar S, Ahmad MF, Jain P, Pratyusha VA, Kumar P, Komath SS (2014a). First step of glycosylphosphatidylinositol (GPI) biosynthesis cross-talks with ergosterol eiosynthesis and ras signaling in Candida albicans. J. Biol. Chem. 289(6): 3365-3382.

 

Yadav M, Yadav A, Kumar S, Sharma D, Yadav JP (2014b). Evaluation of in vitro antimicrobial potential of endophytic fungi isolated from Eugenia Jambolana Lam. Int. J. Pharm. Pharm. Sci. 6:208-211.

 

You F, Han T, Wu J-Z, Huang B-K, Qin L-P (2009). Antifungal secondary metabolites from endophytic Verticillium sp. Biochem. Syst. Ecol. 37(3):162-165.
Crossref

 

Zaiyou J, Hongsheng W, Ning W, Li M, Guifang X (2015). Isolation and identification of an endophytic fungus producing paclitaxel from Taxus wallichiana var mairei. Nutr. Hosp. 32(6):2932-2937.

 

Zhou S, Fang Z, Lü Y, Chen J, Liu D, Ye X (2009). Phenolics and antioxidant properties of bayberry (Myrica rubra Sieb. Et Zucc.) pomace. Food Chem. 112(2):395.
Crossref

 


APA Ferreira, T. P. de S., dos Santos, G. R., Soares, I. M., Ascêncio, S. D., Alvim, T. da C., Siqueira, C. de A., & Aguiar, R. W. de S. (2017). Secondary metabolites from endophytic fungus from Lippia sidoides Cham.. Journal of Medicinal Plants Research, 11(16), 296-306.
Chicago Talita Pereira de Souza Ferreira, Gil Rodrigues dos Santos, Ilsamar Mendes Soares, Sergio Donizeti Ascêncio, Tarso da Costa Alvim, Chrystian de Assis Siqueira and Raimundo Wagner de Souza Aguiar. "Secondary metabolites from endophytic fungus from Lippia sidoides Cham.." Journal of Medicinal Plants Research 11, no. 16 (2017): 296-306.
MLA Talita Pereira de Souza Ferreira, et al. "Secondary metabolites from endophytic fungus from Lippia sidoides Cham.." Journal of Medicinal Plants Research 11.16 (2017): 296-306.
   
DOI 10.5897/JMPR2017.6371
URL http://academicjournals.org/journal/JMPR/article-abstract/8E7286764097

Subscription Form