# academicJournals Vol. 11(9), pp. 171-187, 3 March, 2017 DOI: 10.5897/JMPR2016.6292 Article Number: 321494463200 ISSN 1996-0875 Copyright © 2017 Author(s) retain the copyright of this article http://www.academicjournals.org/JMPR **Journal of Medicinal Plants Research** Full Length Research Paper # Ethnobotanical study of medicinal plants used by agro pastoralist Somali people for the management of human ailments in Jeldesa Cluster, Dire Dawa Administration, Eastern Ethiopia Shimels Ayalew<sup>1\*</sup>, Atinafu Kebede<sup>1</sup>, Akalu Mesfin<sup>1</sup> and Getachew Mulualem<sup>2</sup> <sup>1</sup>Department of Biology, Dire Dawa University, P. O. Box 1362, Dire Dawa, Ethiopia. <sup>2</sup>Department of Wildlife Studies, Ethiopian Biodiversity Institute, P. O. Box 30726, Mekele, Ethiopia. Received 7 November, 2016; Accepted 12 December, 2016 Ethnobotanical study of medicinal plants in selected kebeles of Jeldesa cluster, Dire Dawa Administration, eastern Ethiopia was carried out with the aim of assessing and documenting the indigenous knowledge of medicinal plants used in the communities and preserves it to be used by the next generations. Ethnobotanical data collection was carried out from September 2015 to March 2016. Three study sites (kebeles) were selected purposefully based on the preliminary survey and recommendations of elders in the study area. Ethno-botanical data were collected using semistructured interviews, field observations and group discussion. About 24 informants (21 male and 3 female) were involved in this study. A total of 52 medicinal plant species belonging to 43 genera and 30 families were documented for the management of 48 human ailments; with details on their local name, family, habit, habitat, and their mode of preparation and mode of administration. Fabaceae had a relatively high number of species 7(13.5%), followed by Lamiaceae 4 (7.7%). Shrubs constituted 23 species (44%) followed by herbs 19 species (37%). Oral route contributed (57.7%) of the total species, followed by dermal (27.1%). Most of these species (83%) were wild and harvested mainly for their leaves (34%). Most herbal remedies are prepared using fresh plant materials (48%) in the form of crushing (31%). Ailment categories with high ICF value were swollen body parts (Gofla), wounds, and poisonous animal bites that had ICF values of 0.68, 0.66 and 0.64, respectively. Fidelity level index of Euphorbia somalinsis, Xanthium spinosum and Tribulus terrestris for kidney problem, Crotalaria laburnifolia for constipation, Eulophia petersii for swollen body part/GOFLA and Barleria orbicularis, Solanum sepiculum and Echidnopsis dammanniana for snake poison showed a fidelity level of 100% this indicated their outstanding preference for treating the corresponding ailments. The results of the present study also showed that deforestation and human encroachment were ranked 1st and 2nd as threats to conservation of medicinal plants. The present paper represents significant ethnobotanical information on medical plants which provides baseline data for future pharmacological and phytochemical studies. **Key words:** Ethnobotanical study, Jeldesa Cluster, Human ailments, Traditional medicine, indigenous knowledge, Eastern Ethiopia. ## INTRODUCTION Ethiopia has a long history of traditional medicine and has developed ways to combat disease through it. It is gifted with a huge potential of medicinal plants and their uses that provide a wide contribution to the treatment of human ailments (Asfaw, 2001; Giday, 2003). About 80% of Ethiopian people rely on traditional medicine to meet their health care needs (Bekele, 2007). The wide spread use of traditional medicine could be attributed to cultural acceptability, perceived efficacy against certain types of diseases, physical accessibility and affordability as compared to modern medicine (Bekele, 2007; Hunde et al., 2006). Nevertheless, little effort has so far been made to properly document the associated knowledge base and conserve medicinal plants in the country (Gidey et al., 2009). Even though encouraging initiatives have emerged in recent years, studies conducted hitherto are far from complete owing to the multiethnic cultural diversity and the diverse flora of Ethiopia (Bekele, 2007; Yineger et al., 2008). Medicinal plants and the associated knowledge are being threatened by ongoing deforestation, environmental degradation and 'modernization' (Balemie et al., 2004; Bekele, 2007). All this necessitates the need to investigate the status of medicinal plant resources and knowledge base associated with it for successful resource conservation and development. Similar to elsewhere in Ethiopia, Somali people living in Dire Dawa Administration have traditional practices which have passed from generation to generation in order to treat both humans and livestock ailments. A large proportion of the people living in the region depend on direct herbal medicine to treat a wide range of human ailments (Abduljawad et al., 2011). Most of the studies on medicinal plants in Ethiopia have so far concentrated in the south, south west, central, north and north-western parts of the country (Belayneh and Bussa, 2014). Therefore, this study area is selected; because there is no ethnobotanical collection. and documentation carried out on identification medicinal plant species of the area. In addition, most of the natural vegetation of the study area is lost due to natural and human impacts (Abduljawad et al., 2011). Therefore, the current study was conducted to assess and document the indigenous knowledge of medicinal plants and identify the major threats of medicinal plants in the study area. The information generated enhances the ethnobotanical knowledge of the region and provides recommendations that would help to combat problems in the conservation and sustainable use of medicinal plants and serve as baseline information for future pharmacological and phytochemical studies. #### **MATERIALS AND METHODS** # Description of study area Jeldesa Cluster is consisted of nine rural kebeles (Jeldesa, Ciremiti, Gerba aneno, Mudi aneno, Ayale gumgum Legedini, Debeley, Melkakero and Kulayu) it is located at about 45 km North East of Dire Dawa city. Jeldesa cluster has a population of 30,564 male comprise 51% (15,588) and female comprise 49% (14,976) of the total population (CSA, 2007). The cluster is totally resided by agro pastoralist communities. Metro logically, the region is characterized by an arid climate with low and erratic rainfall and a mean annual temperature which lies between 29 and 32°C. The rainfall pattern is bimodal characterized by small rains in autumn (February to April), big rains in summer (July to September). The mean annual rainfall is 660 mm. However, recently, rainfall pattern has become much more unpredictable with receiving extremely minimum and maximum rainfall per year. The selected study kebeles were Jeldesa, Gerba aneno and Chire miti. These kebeles are relatively wider and have higher number of traditional healers resided in them. Kebele is the smallest administrative unit in Ethiopia. According to Dire Dawa Health Bureau the healthcare coverage of the cluster is 51.52% and the major disease categories recorded by the Health Bureau (2015/2016) gastrointestinal disorders and upper respiratory tract infection. # Traditional healer selection and collection of ethnobotanical data A total of 24 traditional healers (21 males and 3females) from the age of 28 to 75 years were sampled based on recommendations of local elders and kebele administrators. Ethnobotanical study was conducted between September 2015 to March 2016 in three kebeles of the cluster. Prior to data collection discussion was made with the traditional healers to get their verbal informed consent. Semi-structured interview (was conducted in local language (s), Somali) with the help of interpreter, group discussion (average members of 8 per group), and field observation were employed to collect basic information on the local name (s), diseases treated, parts used, method of preparations and routes of administration. Furthermore, guided field walks with traditional healers were employed to collect specimens of each medicinal plant species. Identification of specimens were made using the published volumes of the Flora of Ethiopia and Eritrea while for unknown plant specimens identification was made by comparing their voucher specimen with authentic specimens deposited in the National Herbarium, Addis Ababa University and by getting assistance from taxonomic personnel. #### Data analyses Ethnobotanical data were analyzed using simple descriptive statistics using Microsoft Excel 2013. The MS Excel Spreadsheet was also utilized for drawing bar graphs. Preference ranking was computed according to Martin (1995). Informant consensus factor (ICF) values were determined following Heinrich et al. (1998). To evaluate the consensus among traditional healers or to evaluate the reliability of the information provided by the \*Corresponding author. Email:shimels2080@gmail.com. Author(s) agree that this article remain permanently open access under the terms of the <u>Creative Commons Attribution</u> <u>License 4.0 International License</u> informants. $$ICF = \frac{Nur - Nt}{(Nur - 1)}$$ Where, Nur: Number of use-reports for a particular use category; Nt: Number of taxa used for a particular use category by all informants. The Pearson Correlation Test was calculated using SPSS 17.0.1 software package and employed to evaluate whether there was significant (p < 0.05) correlation between i) the age of the traditional healers' and the number of medicinal plant species reported, and ii) the educational level of traditional healers' and the number of medicinal plant species reported. The informants who cannot read and write were considered as illiterate while, those respondents attended formal education were considered educated. The Fidelity Level (FL) index was calculated based on the formula recommended by Friedman et al. (1986), which is used to quantify the importance of a given species for a particular purpose in a given cultural group or to determine the most preferred plants for a treatment of a particular disease and calculated as: $$FL = \frac{Np}{N} \times 100$$ Where, Np: Number of use-reports cited for a given species for a particular ailment N: Total number of use-reports cited for any given species # Ranking of threats to medicinal plants Ranking of threats to medicinal plants that were reported by most of the informants in the study area was conducted using six selected key respondents as described by Martin (1995) and Alexiades (1996). The informants were asked to give seven for the most threatening factor and one for the least threatening factor in the study area. As mentioned by most of the informants' six threats were selected and the informants were asked to give seven for the most threatening factor and one for the least threatening factor in the study area. This information is used to determine the highest threats to traditional medicinal plants in the study area and helps to suggest the necessary appropriate conservation measures. #### Ranking of threatened medicinal plants The ranking of medicinal plants based on the degree of threats was conducted using the method applied by Martin (1995) and Alexiades (1996), five medicinal plants that were reported by the informants as threatened in the study area were ranked with six key informants (knowledgeable traditional healers) by giving 5 for the most threatened and 1 for the least threatened plant species. ## RESULT AND DISCUSSION # Characteristics of respondents A total of 24 traditional healers (21 males and 3 females) from the age of 28 to 75 years were sampled. The respondents were with an average age of 48 years. Males were dominant representing (87.5%) of the respondents. Generally, (66.6%) of the respondents were above 50 years (Figure 1). The majority (50%) of them attended non-formal education (quran) and those who attended formal education constituted (4%) while (46%) were illiterate. Generally, the informants were grouped into three age groups, young (20-35), adult (36-50) and elderly (above 50) to see how the knowledge varies with age as described in Belayneh et al. (2012). There significant positive correlation (Pearson correlation coefficient, r =0.27, at $\alpha$ = 0.05, p = 0.04) between the age of informants and the number of species reported by the informants. Differences in medicinal plants knowledge among age groups was also reported in other studies (Gebrezgabiher et al., 2013; Tamiru et al., 2013; Yigezu et al., 2014; Chekole et al., 2015: Tugume et al., 2016). This might be attributed to the current expansion of education and health centers to kebele level which has resulted in the young generation focusing on modern medicines (Belayneh and Bussa, 2014) and advancement in science and technology the social values and changed transformed the younger generation at a faster rate into the new tradition (Awas, 2007; Murad et al., 2013). # Medicinal plants reported A total of 52 plant species distributed among 43 genera and 30 families were documented as traditional medicines against human ailments (Figure 2). Fabaceae had a relatively high number of species 7 (13.5%), followed by Lamiaceae 4 (7.7%), Asclepiadaceae, Capparidaceae, Convolvulaceae and Euphorbiaceae each with 3 (5.8%) species, Acanthaceae, Boraginaceae, Cucurbitaceae, Asteraceae and Solanaceae each with 2 (3.8%) species and the rest 19 families had 1 (1.9%) species each. Family Fabaceae is consistently reported in different ethnomedicinal inventories conducted in Ethiopia (Hunde et al., 2004; Seifu et al., 2006; Gidey et al., 2007; Belayneh et al., 2012; Megersa et al, 2013; Abera, 2014) and other parts of the world (Tugume et al., 2016), which could be attributed to their wider distribution and abundance (Bonet et al., 1999) and rich bioactive ingredient contents (Gazzaneo et al., 2005). Thirty-nine (75%) of the medicinal plants were reported as being used for treating human ailments, 13 (25%) for the treatment of both human and livestock ailments and 1 (1.9%) for livestock aliments only. # Habitat of medicinal plants Forty-one (79%) species of the medicinal plants were obtained from the wild vegetation followed by 7 (13%) of Figure 1. Map of selected kebeles. medicinal species from Home garden (Figure 3). This result is similar with other studies (Yineger and Yewhalaw, 2007; Lulekal et al., 2008; Yineger et al., 2008; Megersa et al., 2013, Getaneh and Girma, 2014 and Alemayehu et al., 2015) conducted in Ethiopia as well as in other countries such as Pakistan (Ugulu et al., 2009), Uganda (Mugisha and Uriga, 2007; Tugume et al., 2016) and Peru (Bussmann and Sharon,2006), where the majority of the medicinal plants were collected from the wild. This implies that the majority of plants of medical importance were not yet cultivated by traditional healers (Yineger and Yehwalaw, 2007). # Habit of the medicinal plant Of the total 52 medicinal plants collected from the study area, 23 species (44%) were shrubs followed by 19 species (37%) herbs and 10 species (19%) trees (Figure 4). The highest proportion of growth habit was covered by shrubs and herbs both constitute 81% of the total traditional medicinal plants. This can be related to the floristic composition of vegetation, which is dominated by woodland, bush land and scrubland vegetation types in the study area. Similar patterns were reported by some ethinobotanical studies (Teklehymanot et al., 2007; Figure 2. Characteristics of respondents. Figure 3. Family distribution of medicinal plants. Mesfin et al., 2009; Belayneh and Bussa, 2014) where shrubs and herbs are the largest plant growth habits. # Plant parts used for medicine According to the ethnobotanical data result, leaves are the most commonly used plant parts accounting for 34% of the total, followed by root (33%), seed (9%), all part and fruit constituted (5%) each. Use of other plant parts is as indicated in Figure 5. Latest findings in agreement with this study conducted in Ethiopia indicated that leaf used more than other parts (Megersa et al., 2013; Getaneh and Girma, 2014; Maryo et al., 2015), as well as in other countries such as Pakistan (Murad et al., 2013) and Uganda (Tugume et al., 2016), reported similar findings. Utilization of leaves for drug preparation may not cause detrimental effect on the plants compared to the root or whole plant collections (Megersa et al., 2013; Regassa, 2013; Abera, 2014; Maryo et al., 2015). # Mode of preparations Local communities employ several methods of **Figure 4.** Percentage of medicinal plants on the basis of their habitats. preparation of plant material for medicinal use including by crushing, squeezing, concoction, smoking, infusion, decoction, pounding, and chewing. Out of the total preparations (31%) are prepared in the form of crushing, followed by pounding (18%), concoction (12%), squeezing constituted (10%), decoction and infusion constituted (8%) each implantation and chewing constituted (4%) each of the total mode of preparations (Figure 6). This agrees with the results of studies carried out by Abdurhman (2010), Regassa (2013) and Megersa et al. (2013) who found that the main mode of preparation is crushing, accounting for 26.2, 29 and 28.2%, respectively. # Route of administration Different routes were used in administration of herbal preparations. The major routes of administration in the study area are oral, dermal, nasal and optical. Oral route contributed (57.7%) of the total species, followed by dermal (27.1%), nasal and oral and dermal (3.5%) each, optical (2.8%) and smoke bath (2.1%), surgically implanted (1.4%). The least used route of herbal administration were auricular and nasal and auricular which were (0.7%) each (Figure 7). According to Abera (2014), Alemayehu et al. (2015) and Birhanu et al. (2015), oral administration was the dominant route of remedy administration, which constituted 63, 54.21 and 57.1% in their respective study areas (Figure 8). In a similar study by Tugume et al. (2016) on medicinal plants used by Mabira communities in Uganda, it was reported that oral route of administration was commonly used route constituting 53% of the route of administrations used by the local people in the study area. In the present study, lack of agreement among the informant on doses of remedies was the major drawback in the application of traditional medicinal plants in the study area. In a similar study, Belayneh and Busa (2014) reported lack of precision and standardization in the prescription of herbal remedies in the study area and also confirmed that overdose of remedies bring adverse effects like, diarrhea, vomiting, abdominal pain, unconsciousness, and fainting of the patient. # Informant consensus factor (ICF) ICF for different ailment categories was calculated to test for homogeneity or consistency of informants' knowledge about a particular remedy for an ailment category. ICF indicated which plants are widely used and thus merit further pharmacological phytochemical studies. In this study ailments with a relatively high ICF value were swollen body parts (Boil, Gofla), wound healing (Korokor, sore, wounds), Poisonous animal bites (snake, scorpion and spider bite), and Organ problems (kidney, liver, heart, eye, nose, ear problems) and that had ICF values of 0.68, 0.66, 0.64, and 0.57, respectively (Table 1). Three ailment categories had ICF of zero (0) since each respondent reported a different species used for the same ailment (Table 2). # Fidelity level (FL) of medicinal plants The fidelity level of medicinal plants on frequently reported diseases was calculated and summarized in Table 3. Results revealed 100% fidelity level for the following plants; Euphorbia somalinsis, Xanthium spinosum and Tribulus terrestris for kidney problem, Crotalaria laburnifolia for constipation, Eulophia petersii for swollen body part/GOFLA and Barleria orbicularis Hochst. Solanum sepiculum and **Echidnopsis** dammanniana for snake poison. A fidelity level of 100% for these species indicated their outstanding preference for treating the corresponding aliments. This pharmacologists will also attract for pharmacological investigation of the traditional plant species. # Threats to medicinal plants in the study area As mentioned by most of the informants six threats were selected in the study area. This information is used to determine the highest threats to medicinal plants in the study area and helps to suggest the necessary appropriate conservation measures. The results of the present study showed that deforestation and human encroachment were ranked 1st and 2nd, respectively and these were followed by drought and charcoal making in the 3rd and 4th places, respectively as the major threats to the medicinal plants (Table 4). Similar to the current study, Lulekal et al. (2008) confirmed that the main threats to the survival of medicinal plants in the Mana Angetu district were agricultural expansion and Figure 5. Habit distribution of the reported medicinal plants. Figure 6. Types of plant parts used in remedial preparation and percentage of preparations per plant part. Figure 7. Percentage of method of preparation of traditional medicinal plant remedies. Figure 8. Percentage of administration route of medicinal plants. medicinal plant survival in the study area. In addition, improper use of resources such as harvesting the root of a medicinal plant could be a significant threat to medicinal plants as; our result showed that roots were the second major plant parts where 33% of the medicinal plant species were harvested to treat ailments. Root and whole plant harvesting are destructive practice which may result in species extinction. Root as the most commonly used plant part in remedy preparation was reported (Giday et al., 2007, 2009; Lulekal et al., 2013; Maryo et al., 2015). # Threatened medicinal plants The results (Table 5) indicated that *Balanites aegyptiaca*, is the most threatened followed by *Cadaba farinosa and Tamarindus indica and the least threatened one is Solanum somalensis*. # Medicinal plant conservation efforts of the local people About 33.62% of the informants reported that they had awareness of the importance of conserving medicinal plant species and were practicing some conservation activities like cultivation in home gardens. The rest of the informants were not practicing any conservation effort. They simply went to the wild to collect medicinal plants as their need arose and did not bother about the long term survival of these plants. It was found that only 13% of the medicinal plants were obtained from home garden about 8% from both wild and home garden this shows that most of the herbalists are not interested to grow medicinal plants in their home garden in order to keep the secrecy of their medicinal value. According to Etana (2010), about 38%, of the medicinal plants collected were reported as found cultivated at home gardens. Some traditional practitioners have started to conserve medicinal plants by cultivating at home garden, such as *Jatropha curcas* L., *Withania somnifera* (L.) *Dunal and Punica granatum* L. The people's culture and spiritual beliefs somehow has helped in the conservation of medicinal plants. For instance, the claim of the traditional healers that medicinal plants are effective only if cut or collected and administered by traditional healers helped in conservation of medicinal plants. Similar cultural and spiritual believes were reported in the study of medicinal plants in Wenago Woreda, SNNPR, Ethiopia (Mesfin et al., 2009). ## Conclusions In the present study, fifty two plant species of medicinal importance were recorded and documented. The majority of the reported medicinal plant species were wild. Many medicinal plant species were also reported to be rare. These demand an urgent attention to conserve such vital resources so as to optimize their use in the primary healthcare system. A rich heritage of indigenous medicinal plant use and knowledge was also recognized. However, awareness creation should be made among the healers so as to avoid erosion of the indigenous knowledge and to ensure its sustainable use and conservation as some healers were transferring it all. Further phytochemical and biological activity studies should also be conducted on the preferred medicinal plant species so as to utilize them in drug development. ## **CONFLICT OF INTERESTS** The authors have not declared any conflict of interests. 179 | Voucher<br>No. | Scientific name | Family | Plants Local name | Habitat | Habit | Part<br>used | Human disease treated | Mode of preparation (MP) | Mode of administration | |----------------|-----------------------------------------------------|------------------|-------------------|---------|-------|--------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------| | DU01 | Seddera hirsuta Dammer ex<br>Hall. F | Convolvulaceae | Ada'adeyis | W | Sh | L&R | Swelling and infection on the head (Korokor) | Fresh leaf crushed and mixed with oil and applied on the skin. | Dermal | | DU02 | Crotalaria laburnifolia L. | Fabaceae | Adero | W | Sh | L | Nose bleeding | Fresh leaves crushed and squeezed and the juice is added in to the nose drop by drop. | Nasal | | DU03 | Salvadora persica L. | Salvadoraceae | Adey | W | Sh | R | Skin itching | Root boiled in water and washing the body with it. | Dermal | | | | | | | | L | After birth retention | Hanging on the ceiling of the house to expel the after birth quickly. | Hanging on roof | | DU04 | Blepharis edulis (Forssk.) Pers. | Acanthaceae | Ara'ar | W | Н | L | Tiredness during labor | Hanging on the ceiling of the house to avoid exhaustion during labor. | Hanging on roof | | | | | | | | R | Scorpion poison | The root is crushed and divided in to two halves and one half mixed with water and consumed the other half is applied on the body part | Oral and Dermal | | DU05 | Gomphocarpus purpurascens A<br>Rich | Asclepiadaceae | Ariyuyo | W | Sh | F | Pneumonia | Crushed and mixed with tenadam, qurqura and oil then applied on the general body | Dermal | | | | | | | T | F | | Surgically implanted in the cow dewlap for 3 days. | | | | | | Assel | W | | St | | Dried stem pounded mixed with water and drunk | Implanted surgically | | DU06 | DU06 Acacia tortilis (Forssk.) Hayne Fabaceae Assel | e Fabaceae | | | | | Gastritis | The bark is soaked in water over night and consumed. It is consumed when the person is thirsty for one week | | | | | | | | R | Hepatitis | Crushed and mixed with water and consumed like tea (decoction). | Oral | | | DU07 | Plectranthus cylinderaceous | Lamiaceae | Berbarsha | W | Sh | В | | Surgically implanted in the cow dewlap for 3 days. | Implanted surgically | | DU08 | Grewia spp | Tiliaceae | Berkule | W | T | St | Swelling and infection on the head (Korokor) | Stem pounded and mixed with goat milk and applied on the wound | Dermal | | DU09 | Solanum jubae Bitter | Solanaceae | Demer-rugad | W | T | R | Abdominal pain | Consumed like tea by being boiled in water. | Oral | | DU 10 | Euclea devinoram | Ebenaceae | Dhadhaho | W | Н | L | Mitch | Squeezed | Nasal | | | | | | | | L | diarrhea, | Boiled in the form of tea and consumed. | Oral | | DU 11 | Acalypha fruticosa | Euphorbiaceae | Dhiri | W | Sh | В | lower back pain | Boiled and consumed | Oral | | | | | | | | L | Ear disease | Fresh leaves crushed and squeezed using cloth and applied on the ear drop by drop | Auricular | | DU12 | Cucumis sp. | Cucurbitaceae | Dubdele | W | Sh | St | Diarrhea, vomiting and fever. | Crushed and mixed with goat milk, sugar is added and consumed | Oral | | | | | | | | | Swollen body part/GOFLA | Crushed and mixed with water and consumed | | | DU13 | Leptadenia sp. | Asclepiadaceae | Dunkal | W | Н | R | Lower back pain | Fresh root crushed and boiled and consumed like tea. | _<br>_ Oral | | | | , isolopiadacodo | 24 | | | | Gonorrhea | Fresh root crushed and boiled and consumed like tea. | _ | | | | | | | | | Tonsilitis | Chewing fresh root and the juice is consumed. | | | DU14 | Indigofera coerulea Roxb. | Fabaceae | Gebeldiyo | W | Sh | R | Nosebleed | Fresh leaves crushed and squeezed and the juice is added in to the nose drop by drop. | Nasal | Table 1 cont'd | | | | | | | L | Paralysis | Leaf pounded and applied on the patient's body. | | |-------|------------------------------------------------|------------------|---------------------|----|----|-----|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------| | | | | | | | R | Alati | The bark of fresh root is crushed and mixed with coffee pulp and boiled and consumed after addition of sugar or goat milk. | | | | | | | | | К | Fever | The bark of fresh root is crushed and mixed with coffee ashara and boiled and consumed after addition of sugar or goat milk. | Oral | | | | | | | | R | Epilepsy | Fresh root roasted and fumigated or crushed and mixed with water and consumed | | | | | | | | | L | Skin itching | Fresh leaf crushed warmed for sometimes and mixed with oil and applied on the skin. | - Oral | | DU15 | Ledebouria spp. | Hyacinthaceae | Geld ayis | W | Sh | R | R Scorpion poison Fresh root crushed without adding water and the juice is applied on the bite site. | | Olai | | | | | | | | R | _ | Chewing fresh root and swallowing the juice | Oral | | | De de de la década de Unidad de la | | | | | L&R | | Fresh leaves crushed and mixed with small amount of water and applied on the body part. | Darmal | | DU16 | Barleria orbicularis Hochst. ex<br>T Anders. | Acanthaceae | Get bay | W | Sh | R | Snake poison | Fresh root crushed without adding water and the juice is applied on the bite site. | Dermal | | | | | | | | Bu | | Crushed and mixed with water and consumed and also applied on the site of bite. Just once. | Oral and dermal | | DU17 | Seddra sp. | Convolvulaceae | Get serey | HG | Sh | R | Diarrhea | Fresh root crushed mixed with milk and consumed, with small sized glass | Oral | | DU18 | Capparis tomentosa Lam | Capparidaceae | Gumero | W | Т | R | | crushed and mixed with water and taken oral to facilitate nipple pores | Oral | | DU19 | Tribulus terrestris | Zygophyllaceae | Gundo | W | Н | Wh | Kidney problem | Fresh whole plant crushed and mixed with water and sugar added and drinks. | Oral | | | | | | | | R | _ | Crushed root mixed with water and taken oral | _ | | | | | | | | L | <ul><li>Bloating</li></ul> | Fresh leaves crushed and mixed with water. | - Oral | | DU20 | Varhaandura sinaitinura Danth | Caranhularia | Adama | W | Sh | R | Diodang | Chewing and swallowing the juice or crushed and mixed with water and drink. | Olui | | DU20 | Verbasculum sinaiticum Benth | Scrophulariaceae | Adayoo | VV | Sn | R | Sudden illness | Chewing and swallowing the juice or crushed and mixed with water and drink. | Oral | | | | | | | | St | Abdominal pain | Fresh stem crushed and mixed with water and consumed | Oral | | DU 21 | Leucas stachydifomis<br>(Hochst.ex Benth)Briq. | Lamiaceae | Hanun<br>neberhamed | HG | Н | Wh | Disease that cut the nose | Fresh or dried whole plant roasted and pounded and mixed with oil or butter and applied on the nose | dermal | | DU22 | Xanthium spinosum L. | Asteraceae | Harbena | W | Н | R | Kidney problem | After being squeezed it is mixed with water and drink | Oral | | | | | | | | | Constipation | The juice is squeezed from the leaf and drink | Oral | | DU23 | Aloe pirottae | Aloaceae | Doer | W | Sh | L | Wound healing | Fresh leaves squeezed and the sap is applied on the wound. | Dermal | | | | | | | | | Diabetes | Fresh leaves squeezed and the sap is squeezed from the leaf and drunk | Oral | Table 1 cont'd | | | | | | | Sa | Bloating | Fresh leaves squeezed and the sap is squeezed from the leaf and drunk | Oral | | |------|-----------------------------------|-------------|--------|----|-----|----|-----------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------|--| | | | | | | | St | Constipation | Fresh leaves squeezed and the sap is squeezed from the leaf and drunk | Oral | | | | | | | | | Sa | Gastritis | Sap concocted with <i>Zingeber officinale</i> powder and honey or sugar added and taken oral. | Oral | | | | | | | | | St | Eye disease | Fresh leaves squeezed and drop in the eye. | Optical | | | | | | | | | Sa | Constipation | Extract the sap and mixed with the flour of <i>Trigonella foenum-graecum</i> prepared inf the form of tablet. | Oral | | | DU24 | Leucas neuflizeana COIII'bon | Lamiaceae | Hebrud | W | Н | L | Vomiting | Dry or fresh leaf crushed and mixed with water and boiled and taken oral | Oral | | | | | | | | | R | Swollen body part (Gofla) | Crushed and mixed with goat meat soup and drink | Oral | | | | | | | | | L | Infertility in women | Fresh leaves crushed and squeezed with water and orally taken. | Oral | | | DU25 | Withania somnifera (L) Dunal | Solanaceae | Midox | В | Sh | R | Heart problem | Chewing the root and swallowed with water. | Oral | | | D023 | Withania Sommora (L) Dunai | Colandodac | WIIGOX | Б | SII | L | Skin itching | Crushed and mixed with water and boiled the patient wash its body with it. | Dermal | | | | | | | | | R | Evil eye | Crushed and squeezed then the juice is added drop by drop | Nasal and<br>Auricular | | | DU26 | J26 <i>Eulophia petersii</i> Orch | Orchidaceae | Hola | W | Н | L | Swollen knee/GOFLA | Pounded and mixed with water then applied on the wound | Dermal | | | | , , | | | | | Bu | | Crushed and applied on the swollen body part. | | | | | | | | | | Se | Kidney problem | Seed pounded and mixed with water and the mixture is left to stand for some times and then the supernatant is consumed. | | | | DU27 | Foeniculum vulgare | Apiaceae | Kemona | HG | Н | | Gonorrhea | Pounded and mixed with warm water and taken oral. | Oral | | | | | , | | | | R | Kidney problem, head ache | The epidermis of the root is dried and crushed and mixed with water | _ | | | | | | | | | Se | Bloating | Crushed and mixed with water | Oral | | | | | | | | | L | Swollen body<br>part/GOFLA | Crushed and mixed with sheep tail fat and taken oral | 0.1 | | | | | | | | | 01 | Swollen body part<br>/GOFLA | Stem crushed and mixed with sheep tail fat. | - Oral | | | DU28 | Maerua oblongifolia | Fabaceae | Je,e | W | Sh | St | Fever | Stem crushed and mixed with sheep fat and applied on the body and also small amount of it is consumed. | Dermal | | | | <b>3</b> | | ,- | | | | Swollen body part<br>/GOFLA | Crushed and mixed with water and drink | | | | | | | | | | R | Tonsillitis | Chewing the root and swallowing the juice | Oral | | | | | | | | | | Swollen body part<br>/GOFLA | Fresh root crushed and boiled and drink like tea. | | | | DU29 | Crotalaria labumifolia | Fabaceae | Jelelo | W | Sh | R | Constipation | Fresh root crushed and boiled and consumed like tea. | Oral | | Table 1 cont'd | | | | | | | L | Snake poison | Fresh leaves crushed and mixed with water and consumed | Oral | |------|-------------------------|----------------|-----------------|---|----|-----|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------| | DU30 | Solanum sepiculum | Solanaceae | Kirir | W | Sh | R&L | Snake poison | Fresh leaves crushed and mixed with water and consumed and the remaining is used for creaming the body part. | Dermal | | | | | | | | | Wound healing | Fresh crushed and applied on the wound | Dermal | | DU31 | Parthinum hystrophorus | Asteraceae | Kuban | W | Н | L | Nose bleeding | Fresh leaves crushed and squeezed with cloth and the juice is applied in to the nose. | Nasal | | DU32 | Balanites aegyptiaca | Balanitaceae | Kulen | W | T | L | Influenza and coughing | Chewing for flue and smoking and inhaling | Nasal | | | | | | | | Se | Intestinal parasites | Pounded and mixed with food and eaten in empty stomach. | - | | | | | | | | | Urinating problem | Fresh leaf crushed and mixed with water and sugar is added. | Oral | | DU33 | Plumbago zeylanica L. | Plumbaginaceae | Mexres | W | Sh | L | Impotence and gonorrhea | Fresh leaf crushed and mixed with water. | | | | | | | | | R | Gofla (for bone cancer) | The root is boiled and consumed in small amount plus it is also crushed and applied on the surface of the disease part. | Oral and Dermal | | | | | | | | | Swollen body part<br>/GOFLA | Dried root is crushed and mixed with coffee straw and boiled and consumed. | Oral | | DU34 | Indigofera sp. | Fabaceae | Mey dah<br>dere | W | Sh | L | Swollen body part //GOFLA | Fresh leaves crushed alone and applied on the body part. | Dermal | | | | | | | | R | Intestinal parasites | Dry or fresh root crushed and mixed with water and taken oral. | | | | | | | | | | Skin itching | It is also used to clean teeth. | | | DU35 | Halothamnus somalensis | Chenopodiaceae | Mirow | W | Sh | | Intestinal parasites | Dry or fresh root crushed and mixed with water and taken oral. | Oral | | | | | | | | | Constipation | Fresh or dried root and leaf are crushed and mixed together and boiled with water and taken like tea. | | | | | | | | | L | Spider poison | Dry leaf pounded and mixed with goat milk and taken | Oral | | | | | | | | | Mouth sore | Whole plant pounded and mixed with goat milk and consumed | Oral | | DU36 | Euphorbia sp. | Euphorbiaceae | Getaro | W | Н | Wh | Spider poison | Whole part crushed and squeezed and boiled in water and consumed one or two mouthful it. And the remaining is applied on the wound. | Oral and Dermal | | | | | | | | | Spider poison | Fresh Whole plant crushed and mixed with sheep tail fat and applied on the wound for 3 days | Dermal | | DU37 | Echidnopsis dammanniana | Asclepiadaceae | Mesqa | W | Н | L | Snake poison | The site of the bite will be tied cut with blade and fresh leaf pounded and tied on the cut body part and also the pounded leaf is mixed with water and consumed | Dermal and oral | | | | | | | | | Repel snake | Burning the leaf on fire | Smoking | | | | | | | | | | | | Table 1 cont'd | | | | | | | R | Snake poison | Dried root of Echidnopsis dammanniana and<br>Solanum sepiculum and pounded and mixed with<br>water and consumed. | Oral | |------|------------------------------|---------------|---------------|----|----|---------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------| | | | | | | | | MICH | Fresh lives crushed and squeezed the juice is added in coffee or tea and consumed. | Oral | | | | | | | | | Boil | Fresh leaves crushed and tied with cloth on the boil. | Dermal | | DU38 | Heliotropium steudneri Vatke | Boraginaceae | Dieso/mederis | W | T | L | Eye disease | Fresh leaves crushed and squeezed using cloth and applied on the eye drop by drop. | Optical | | | | | | | | | MICH | Fresh Leaf squeezed and the juice is added in coffee and consumed. | Oral and Dermal | | DU39 | Mentha spicata L. | Lamiaceae | Nana | HG | Н | L | Lung and liver disease | Consumed like tea by boiled in water, or dried leaves pounded and mixed with honey and consumed. | Oral | | DUM | Occupation of the transport | 0 | Oalambaaaa | | _ | L&R | Skin itching | Fresh leaves and root concocted together and mixed with sheep tail fat and painted on the skin. | Dermal | | DU40 | Capparis cartilaginea Decne. | Capparidaceae | Qelemberur | В | Т | L | Tonsilits | Dried leaf crushed and mixed with water and taken oral for seven days. | Oral | | | | | Ruman | | | F | Gastritis | Fruit coat is crushed and mixed with ½ glass water and 3 spoon sugar and taken oral. | _ | | | | | | HG | Sh | R | Ascaris | Dried root s crushed and boiled and consumed empty stomach. | - | | | Punica granatum L. | | | | | L | Diarrhea | Fresh leaves crushed and mixed with water and sugar is added and consumed. | | | DU41 | | Punicaceae | | | | | Gastric and bad mouth smell | Fresh leaves crushed and mixed with water and sugar is added and consumed. | Oral | | | | | | | | Se | Vomiting, Ascaris and abdominal pain. | Dried seeds crushed and mixed with water and taken oral | _ | | | | | | | | | Evil eye | Dried seeds crushed and mixed with water and taken oral | | | DU42 | Tamarindus indica L. | Fabaceae | Hamer | W | Т | F | Eye disease | The fruit is soaked in water and added on the eye drop by drop. | Optical | | | | | | | | | Nausea | The fruit is soaked in water and taken oral | 0.1 | | | | | | | | F | Constipation | The fruit is soaked in water and taken oral | Oral | | | | | | | | | Swollen knee | Fresh root crushed and applied on the knee | Dermal | | | | | | | | R | Swollen body part<br>/GOFLA | Crushed and mixed with water and throat washed and spit out | Oral | | DU43 | Cadaba farinosa | Capparidaceae | Melud | W | Т | | | Crushed and mixed with water and applied on the breast. | Dermal | | | | | | | | L Swollen body part | | Fresh leaf crushed and applied on the swollen body part. | Dermal | | | | | | | | | Swollen body part //GOFLA | Root crushed and boiled with water and consumed. | Oral | | | | | | | | Se | - IGUFLA | Seed crushed and mixed with goat milk and applied on the tumor. | Dermal | Table 1 cont'd | | | | | | | | Joint pain | Root crushed and mixed with goat milk and applied on the part. | Dermal | |------|--------------------------|-----------------|--------------|---|----|-----|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------| | | | | | | | R | Curallan hadu nart | Dry or fresh root crushed and applied topically | Dermal | | | | | | | | | Swollen body part<br>/GOFLA | Dried root is crushed and mixed with pericarp of coffee berry and boiled and consumed. | Oral | | DU44 | Euphorbia somalinsis | Euphorbiaceae | Ubateyis | W | Н | St | Kidney problem | Fresh stem crushed and applied on the bite site | Dermal | | DU45 | Mirabilis jalapa | Nyctaginaceae | Udasalim | W | Н | R | Fever and general body weakness | Root crushed and mixed with oil and applied on the whole body. | Dermal | | DU46 | Ehretia cymosa Thonn | Boraginaceae | Ulaga | W | Т | I | MICH | Leaves of both <i>Ehretia cymosa Thonn</i> and <i>Ocimum lamiifolium Hochst. ex</i> plants crushed together then squeezed and the juice applied on the skin. | Oral and Dermal | | DU47 | Sida ovata | Malvaceae | Umer kope | В | Н | L | Boil | Fresh leaves pounded tied on the swelling. | dermal | | DU48 | Cucumis spp | Cucurbitaceae | Unun | W | Н | Se | Snake poison | Dried seeds pounded and mixed with water and consumed. | Oral | | | | | | | | | Hemorrhage | Seeds pounded and applied on the wart (Kintarot) | Dermal | | DU49 | Aerva javanica | Amaranthaceae | Wanad | W | Sh | R | Gonorrhea | Crushed and mixed with sheep fat and consumed with spoon morning and evening for three consecutive. | Oral | | DU50 | Silene microsolen | Caryophyllaceae | Wegert | W | Н | R&L | Evil eye | Smoking a mixture of Silene microsolen and Silybum marianum | Smoke bath | | DU51 | Seddera bagshawei Rendle | Convolvulaceae | Tufa | W | Н | L | Swelling and infection on the head | Fresh leaf crushed and mixed with oil and applied on the skin. | Dermal | | DU52 | Jatropha curcas L. | Euphorbiaceae | Abetel muluk | В | Sh | pod | Abdominal pain and parasites | Pounded and prepared in the form of tablets | Oral | Habit: Sh-shrub, T-tree, Cl-climber, H-herb; Part Used: Wh- Whole, L-leaf, B-bark, Bu-Bulb, St-stem, G-gum, Sa-sap, R-root, Fl-flower, F-fruit, Se-Seed, and P-Pulp; Habitat: W-wild, HG-home garden, and Both-B. Table 2. Informant consensus factor of medicinal plants by aliment categories. | S/No | Aliment category | $N_{taxa}$ | $N_{ur}$ | ICF | |------|-----------------------------------------------------------------------------------------------------|------------|----------|------| | 1 | Swollen body parts (Boil, Gofla) | 8 | 22 | 0.68 | | 2 | Wound healing (Korokor, sore and wounds) | 4 | 9 | 0.66 | | 3 | Poisonous animal bites (snake, scorpion and spider bite) | 7 | 18 | 0.64 | | 4 | Sexual and reproductive health problems (impotence, infertility, STDs) | 5 | 11 | 0.60 | | 5 | Organ problems (kidney, liver, heart, eye, nose, ear problems) | 9 | 20 | 0.57 | | 6 | Spiritual disorder(evil eye, epilepsy) | 5 | 10 | 0.55 | | 7 | General body conditions (Fibril illness (MITCH), general body weakness) | 4 | 7 | 0.50 | | 8 | Gastro intestinal disorders (gastritis, stomach ache, abdominal pain, bloating, diarrhea, vomiting) | 17 | 22 | 0.23 | | 9 | Blood system disorders(diabetes, hypertension) | 1 | 1 | 0 | | 10 | Respiratory tract infections (cough, pneumonia) | 3 | 3 | 0 | | 11 | Skin infections (skin itching, skin rash) | 4 | 4 | 0 | A taxa may fall in more than one ailment. **Table 3.** Fidelity value of medicinal plants for the most frequently reported diseases. | Disease treated | Medicinal plants | Np | N | FL% | |-------------------------|-------------------------|----|----|-------| | | Foeniculum vulgare | 6 | 9 | 66.6 | | Kida ay malala ma | Euphorbia somalinsis | 3 | 3 | 100 | | Kidney problems | Xanthium spinosum L. | 4 | 4 | 100 | | | Tribulus terrestris | 5 | 5 | 100 | | | Aloe pirottae | 3 | 8 | 37.5 | | Constipation | Crotalaria laburnifolia | 2 | 2 | 100 | | | Tamarindus indica | 3 | 5 | 60 | | | Leptadenia sp. | 1 | 4 | 25 | | | Eulophia petersii | 2 | 2 | 100 | | Swollen body part/Gofla | Maerua oblongifolia | 4 | 6 | 66.6 | | | Plumbago zeylanica L. | 2 | 7 | 28.57 | | | Cadaba sp. | 9 | 13 | 69.2 | | | Barleria orbicularis | 4 | 4 | 100 | | | Solanum sepiculum | 3 | 3 | 100 | | Snake poison | Echidnopsis dammanniana | 4 | 4 | 100 | | | Cucumis spp | 1 | 2 | 50 | | Spider poison | Euphorbia sp. | 6 | 7 | 85.7 | Table 4. Ranking of threats to medicinal plants. | Factors | Respondents (R1-R6) | | | | | | | | | | | | |--------------------|---------------------|----|----|----|----|----|-------|------|--|--|--|--| | Factors | R1 | R2 | R3 | R4 | R5 | R6 | Total | Rank | | | | | | Deforestation | 5 | 6 | 6 | 6 | 6 | 5 | 34 | 1st | | | | | | Charcoal making | 2 | 4 | 3 | 3 | 2 | 4 | 18 | 4th | | | | | | Drought | 4 | 3 | 4 | 5 | 4 | 3 | 23 | 3rd | | | | | | Invasive species | 1 | 2 | 1 | 1 | 3 | 1 | 9 | 6th | | | | | | Overgrazing | 3 | 1 | 2 | 2 | 1 | 2 | 11 | 5th | | | | | | Human encroachment | 6 | 5 | 5 | 4 | 5 | 5 | 30 | 2nd | | | | | Table 5. Ranking of threatened medicinal plants in the study area. | Diantanasias | Respondents | | | | | | | | | | | | |----------------------|-------------|----|----|----|----|----|-------|------|--|--|--|--| | Plant species | R1 | R2 | R3 | R4 | R5 | R6 | Total | Rank | | | | | | Tamarindus indica | 3 | 3 | 2 | 4 | 3 | 1 | 16 | 3rd | | | | | | Cadaba farinosa | 4 | 5 | 4 | 2 | 4 | 2 | 21 | 2nd | | | | | | Balanites aegyptiaca | 5 | 4 | 5 | 5 | 5 | 5 | 29 | 1st | | | | | | Solanum somalensis | 1 | 2 | 1 | 3 | 2 | 4 | 13 | 5th | | | | | | Acacia brevespica | 2 | 1 | 3 | 1 | 1 | 3 | 11 | 4th | | | | | # **ACKNOWLEDGEMENTS** We would like to acknowledge Dire Dawa University for financial support. We would also like to thank the local urban community in general and informants in particular for their supports and valuable information in this study. Authors are grateful to the National Herbarium (ETH) of Addis Ababa University for identification of the plant species. We would like to extend our gratitude to Mr Tesfaye Wasihun for his help in making map of the study area. #### **REFERENCES** - Abduljawad M, Alem K, Abdu M, Paulos A, Keflegne A, Shemles A, Yonas B, Mamush Z, Andualem T, Yohans S, Getahun B, Mohammed J (2011). Dire Dawa Administration Program of Adaptation to Climate Change. DDAEPA. Dire Dawa, Ethiopia. Available at: https://www.yumpu.com/en/document/view/12249543/dire-dawa-administration-program-of-adaptation-to-climate-change - Abdurhman N (2010). Ethnobotanical Study of Medicinal Plants Used by Local People in Ofla Wereda, Southern Zone of Tigray Region, Ethiopia. M.Sc. Thesis. Addis Ababa University, Addis Ababa. - Abera B (2014). Medicinal plants used in traditional medicine by Oromo people, Ghimbi District, Southwest Ethiopia. J. Ethnobot. Ethnomed. 10:40. - Alemayehu G, Asfaw Z, Kelbessa E (2015). Ethnobotanical study of medicinal plants used by local communities of Minjar-Shenkora District, North Shewa Zone of Amhara Region, Ethiopia. J. Med. Plants Stud. 3(6):1-11. - Alexiades MN (1996). Collecting ethnobotanical data: an introduction to basic concepts and techniques. Adv. Econ. Bot. 10:53-96. - Asfaw Z (2001) Conservation and Sustainable Use of Medicinal Plants in Ethiopia. In Proceedings of the National Workshop on Biodiversity Conservation and Sustainable Use of Medicinal Plants in Ethiopia. Edited by Medhin Z, Abebe D. Addis Ababa: Institute of Biodiversity Conservation (IBC). - Awas T (2007). Plant Diversity in Western Ethiopia: Ecology, Ethnobotany and Conservation. PhD Dissertation, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway. - Balemie K, Ensermu K, Zemede A (2004). Indigenous medicinal utilization, management and threats in Fentale Area, Eastern Shewa, Ethiopia. Ethiop. J. Biol. Sci. 3(1):1-7. - Belayneh A, Asfaw Z, Demissew S, Bussa N (2012). Medicinal plants potential and use by pastoral and agro-pastoral communities in Erer Valley of Babile Wereda, Eastern Ethiopia. J. Ethnobiol. Ethnomed. 8:42. - Belayneh A, Bussa NF (2014). Ethnomedicinal plants used to treat human ailments in the prehistoric place of Harla and Dengego valleys, eastern Ethiopia. J. Ethnobiol. Ethnomed. 10:18. - Birhanu T, Abera D, Ejeta E (2015). Ethnobotanical study of Medicinal Plants in Selected Horro Gudurru Woredas, Western Ethiopia. J. Biol. Agric. Healthcare 5:1. - Bonet A, Parada M, Selga A, Valle's J (1999). Studies on pharmaceutical ethnobotany in the regions of L'AltEmporda' and Les Guilleries (Catalonia, Iberian Peninsula). J. Ethnopharmacol. 68(1):145-168. - Bussmann RW, Sharon D (2006). Traditional medicinal plant use in Northern Peru: tracking two thousand years of healing culture. J. Ethnobiol. Ethnomed. 2:47. - Central Statistical Agency (CSA) (2007). The 2007 Population and Housing Census of Ethiopia Results for Dire Dawa Administration: Federal Democratic Republic of Ethiopia, Addis Ababa.. - Chekole G, Asfaw Z, Kelbessa E (2015). Ethnobotanical study of medicinal plants in the environs of Tara-gedam and Amba District northwest Ethiopia. J. Ethnobiol. Ethnomed. 11(1):4. - Etana B (2010). Ethnobotanical Study of Traditional Medicinal Plants of Goma Wereda, Jima Zone of Oromia Region, Ethiopia.M.Sc. thesis: Addis Ababa University 2010. - Friedman J, Zohara Y, Amotz D, Palewitch D (1986). A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev Desert, Israel. J. Ethnopharmacol. 16:275-278. - Gazzaneo S, Lucena P, Albuquerque P (2005). Knowledge and use of medicinal plants by local specialists in a region of Atlantic Forest in the state of Pernambuco (Northeastern Brazil). J. Ethnobiol. Ethnomed. 1:9. - Gebrezgabiher G, Kalayou S, Sahle S (2013). An ethnobotanical study of medicinal plants in Woredas of Tigray region, Northern Ethiopia. Int. J. Biodivers. Conser. 5(2):89-97. - Getaneh S, Girma Z (2014). An ethinobotanical study of medicinal plants in Debre Libanos Wereda, Central Ethiopia. Afr. J. Plant Sci. 8(7):366-379. - Giday M, Ameni G (2003). An Ehnobothanical Survey of Plants of Veternary Importance in Two Woredas of Sothern Tigray, Northern Ethiopia. Ethiop. J. Sci. 26(2):123-136. - Giday M, Asfaw Z, Woldu Z (2009). Medicinal plants of the Meinit ethnic group of Ethiopia: An ethnobotanical study. J. Ethnopharmacol. 124:513-521. - Giday M, Teklehaymanot T, Animut A, Mekonnen Y (2007). Medicinal plants of the Shinasha, Agew-Awi and Amhara peoples in northwest Ethiopia. J. Ethnopharmacol, 110:516-525. - Heinrich M, Ankli A, Frei B, Weimann C, Sticher O (1998). Medicinal plants in Mexico: Healer's Consensus and Cultural Importance. Soc. Sci. Med. 47:1863-1875. - Hunde D, Asfaw Z, Kelbessa E (2004). Use and management of ethnoveterinary medicinal plants by indigenous people in 'Boosat' Welenchiti area. Ethiop. J. Biol. Sci. 3(2):113-132. - Hunde D, Zemede A, Ensermu K (2006). Use of traditional medicinal plants by people of 'Boosat' sub district, Central Eastern Ethiopia. Ethiop. J. Health Sci. 16(2):141-155. - Lulekal E, Kelbessa E, Bekele T, Yineger H (2008). An ethnobotanical study of medicinal plants in Mana Angetu District, southwestern Ethiopia. J. Ethnobiol. Ethnomed. 4:10. - Martin J (1995). Ethnobotany: A Methods Manual. Chapman and Hall, London. - Maryo M, Nemomissa N, Bekele T (2015). An ethnobotanical study of medicinal plants of the Kembatta ethnic group in Ensetbased agricultural landscape of Kembatta Tembaro (KT) Zone, Southern Ethiopia. Asia J. Plant Sci. Res. 5(7):42-61. - Megersa M, Asfaw Z, Kelbessa E, Beyene A, Woldeab B (2013). An ethnobotanical study of medicinal plants in WayuTuka District, East Welega Zone of Oromia Regional State, West Ethiopia. J. Ethnobiol. Ethnomed. 9:68. - Mesfin A, Giday M, Animut A, Teklehaymanot T (2012). Ethnobotanical study of antimalarial plants in Shinile District, Somali Region, Ethiopia, and in vivo evaluation of selected ones against Plasmodium berghei. J. Ethnopharmacol. 139:221-227. - Mesfin F, Demissew S, Teklehaymanot T (2009). An Ethnobotanical study of medicinal plants in WenagoWoreda, SNNPR, Ethiopia. J. Ethnobiol. Ethnomed. 5:28. - Mugisha M, Origa H (2007). Medicinal plants used to induce labour during childbirth in western Uganda. J. Ethnopharmacol. 109:1-9. - Murad W, Azizullah A, Adnan M, Tariq A, Khan U, Waheed S, Ahmad A (2013). Ethnobotanical assessment of plant resources of Banda Daud Shah, District Karak, Pakistan. J. Ethnobiol. Ethnomed. 9:77. - Regassa R (2013). Assessment of indigenous knowledge of medicinal plant practice and mode of service delivery in Hawassa city, southern Ethiopia. J. Med. Plants Res. 7(9):517-535. - Tamiru F, Terfa W, Kebede E, Dabessa G, Kumar RR, Sorsa M (2013). Ethno knowledge of plants used in Dabo Hana District, West Ethiopia. J. Med. Plants Res. 7(40):2960-2971. - Tugume P, Kakudidi E, Buyinza M, Namaalwa J, Kamatenesi M, Mucunguzi P, Kalema J (2016). Ethnobotanical survey of medicinal plant species used by communities around Mabira Central Forest Reserve, Uganda. J. Ethnobiol. Ethnomed. 12:5. - Ugulu I, Baslar S, Yorek N, Dogan Y (2009). The investigation and quantitative ethnobotanical evaluation of medicinal plants used around Izmir province, Turkey. J. Med. Plants Res. 3(5):345-367. - Yigezu Y, Haile D, Yenet W (2014). Ethnoveterinary medicines in four districts of Jimma zone, Ethiopia: cross sectional survey for plant species and mode of use. BMC Vet. Res. 10:76. - Yineger H, Kelbessa E, Bekele T, Lulekal E (2007). Ethnoveterinary medicinal plants at Bale Mountains National Park, Ethiopia. J. Ethnopharmacol. 112(3):55-70. - Yineger H, Kelbessa E, Bekele T, Lulekal E (2008). Plants used in traditional management of Human ailments at Bale Mountain National Park, Southeastern Ethiopia. J. Med. Plants Res. 2(6):132-153. Yineger H, Yewhalaw D (2007). Traditional medicinal plant knowledge and use by local healers in Sekoru District, Jimma Zone, Southwestern Ethiopia. J. Ethnobiol. Ethnomed. 3(24):3-24.