Journal of Physiology and Pathophysiology
Subscribe to JPAP
Full Name*
Email Address*

Article Number - 392C546569


Vol.3(3), pp. 25-28 , May 2012

ISSN: 2141-260X


 Total Views: 0
 Downloaded: 0

Review

Apoptosis: Current therapeutic approach in retinitis pigmentosa


Marianne L. Shahsuvaryan




Email: [email protected]






 Accepted: 13 October 2011  Published: 30 September 2012

Copyright © 2012 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


 

Apoptosis is a genetically programmed mechanism of cell death in which the cell activates a specific set of instructions that lead to the deconstruction of the cell from within. Retinitis pigmentosa (RP) represents a group of hereditary retinal degenerations principally characterized by progressive rod-dominant photoreceptor degeneration in the initial stage and eventual cone photoreceptor degeneration in later stages. RP has been known to be initiated by photoreceptor apoptosis as a final common pathway at the cellular level, irrespective of gene mutations, and apoptosis can thus be considered as a therapeutic target. The goal of this review is to discuss the rationale behind the recent suggestions that calcium channel blockers may be useful in the treatment of retinitis pigmentosa. The National Center for Biotechnology Information (NCBI) at the US National Library of Medicine (NLM) was searched using the terms “Calcium channel blockers in retinitis pigmentosa”. It is time to conduct a randomized controlled trial to provide direct evidence of the effectiveness of specific type calcium channel blockers in lowering progression of RP. New intervention as calcium channel blockers usage to prevent retinitis pigmentosa progression remains an important strategy to limit the morbidity of this significant health problem.

 

Key words: Apoptosis, retinitis pigmentosa, photoreceptors degeneration, calcium channel blockers, therapeutic effect.

Araie M and Yamaya C (2011). Use of calcium channel blockers for glaucoma. Prog. Ret. Eye Res., 30: 54-71.
http://dx.doi.org/10.1016/j.preteyeres.2010.09.002
PMid:20933604
 
Barabas P, Peck CC, Krizaj D (2010). Do calcium channel blockers rescue dying photoreceptors in the Pde6brd1 mouse? Adv. Exp. Med. Biol., 664: 491-499.
http://dx.doi.org/10.1007/978-1-4419-1399-9_56
PMid:20238051 PMCid:PMC2921874
 
Bok D, Yasumura D, Matthes MT (2002). Effects of adeno-associated virus-vectored ciliary neurotrophic factor on retinal structure and function in mice with a P216L rds/peripherin mutation. Exp. Eye Res., 74(6): 719-735.
http://dx.doi.org/10.1006/exer.2002.1176
PMid:12126945
 
Bush RA, Kononen L, Machida S, Sieving PA (2000). The effect of calcium channel blocker diltiazem on photoreceptor degeneration in the rhodopsin Pro23His rat. Invest. Ophthalmol. Vis. Sci., 41(9): 2697-2701.
PMid:10937585
 
Carmody RA, Cotter TG (2000). Oxidative stress induces caspase-independent retinal apoptosis in vitro. Cell Death and Differ., 7(3): 282-291.
http://dx.doi.org/10.1038/sj.cdd.4400646
PMid:10745273
 
Chang GO, Hao Y, Wong F (1993). Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron, 11(4): 595-605.
http://dx.doi.org/10.1016/0896-6273(93)90072-Y
 
Cia D, Bordais A, Varela C, Forster V, Sahel JA, Rendon A, Picaud S (2005).Voltage-gated channels and calcium homeostasis in mammalian rod photoreceptors. J. Neurophysiol., 93(3): 1468-1475.
http://dx.doi.org/10.1152/jn.00874.2004
PMid:15483058
 
Cottet S, Schorderet DF(2009). Mechanisms of Apoptosis in retinitis pigmentosa. Curr. Mol. Med., 9(3): 375-383.
http://dx.doi.org/10.2174/156652409787847155
PMid:19355918
 
Delyfer MN, Leveillard T, Mohand-Said S, Hicks D, Picaud S, Sahel A (2004). Inherited retinal degenerations: therapeutic prospects. Biol. Cell, 96(4): 261-269.
http://dx.doi.org/10.1016/j.biolcel.2004.01.006
http://dx.doi.org/10.1111/j.1768-322X.2004.tb01414.x
PMid:15145530
 
Doonan F, Cotter TG (2004). Apoptosis: a potential therapeutic target for retinal degenerations. Curr. Neurovasc. Res., 1(1): 41-53.
http://dx.doi.org/10.2174/1567202043480215
PMid:16181065
 
Doonan F, Donovan M, Cotter TG (2005). Activation of multiple pathways during photoreceptor apoptosis in the rd mouse. Invest. Ophthalmol. Vis. Sci., 46(10): 3530-3538.
http://dx.doi.org/10.1167/iovs.05-0248
PMid:16186330
 
Fox DA, Poblenz AT, He L (1999). Calcium overload triggers rod photoreceptor apoptotic cell death in chemical-induced and inherited retinal degenerations. Ann. N. Y. Acad. Sci., 893: 282-285.
http://dx.doi.org/10.1111/j.1749-6632.1999.tb07837.x
PMid:10672249
 
Frasson M, Sahel JA, Fabre M, Simonutti M, Dreyfus H, Picaud S (1999). Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse. Nat. Med., 5(10): 1183-1187.
http://dx.doi.org/10.1038/13508
PMid:10502823
 
Hart J, Wilkinson MF, Kelly MEM, Barnes S (2003). Inhibitory action of diltiazem on voltage-gated calcium channels in cone photoreceptors. Exp. Eye Res., 76(5): 597-604.
http://dx.doi.org/10.1016/S0014-4835(03)00027-7
 
Komeima K, Rogers BS, Lu L and Campochiaro PA (2006). Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc. Nat. Acad. Sci. United States Am., 103(30): 11300-11305.
http://dx.doi.org/10.1073/pnas.0604056103
PMid:16849425 PMCid:PMC1544081
 
Koseki N, Araie M, Tomidokoro A (2008). A placebo-controlled 3-year study of a calcium blocker on visual field and ocular circulation in glaucoma with low-normal pressure. Ophthalmol., 115(11): 2049-2057.
http://dx.doi.org/10.1016/j.ophtha.2008.05.015
PMid:18672290
 
Liesegang TJ, Deutsch TA, Grand MG (2002). Basic and Clinical science Course. Am. Acad. Ophthalmol., Section 12, p.190.
 
Luksch A, Rainer G, Koyuncu D, Ehrlich P, Maca T, Gschwandtner ME, Vass C, Schmetterer L (2005). Effect of nimodipine on ocular blood flow and color contrast sensitivity in patients with normal tension glaucoma. Br. J. Ophthalmol., 89: 21-25.
http://dx.doi.org/10.1136/bjo.2003.037671
PMid:15615740 PMCid:PMC1772476
 
Nakazawa M (2011a). Effects of calcium ion, calpains, and calcium channel blockersw on retinitis pygmentosa. J. Ophthalmol. 43: 121-127.
 
Nakazawa M (2011b). Effects of calcium ion, calpains, and calcium channel blockers on retinitis pigmentosa. J Ophthalmol. 43: 121-127.
 
Nicotera P, Orrenius S (1998). The role of calcium in apoptosis. Cell Calcium, 23(2-3): 173-180.
http://dx.doi.org/10.1016/S0143-4160(98)90116-6
 
Ohguro H (2008). New drug therapy for retinal degeneration . Nippon Ganka Gakkai zasshi. 112(1): 7-21.
PMid:18240599
 
Paquet-Durand F, Johnson L, Ekstrom P (2007). Calpain activity in retinal degeneration. J. Neurosci. Res., 85(4): 693-702.
http://dx.doi.org/10.1002/jnr.21151
PMid:17171699
 
Pasantes-Morales H, Quiroz H and Quesada O (2002). Treatment with taurine, diltiazem, and vitamin E retards the progressive visual field reduction in retinitis pigmentosa: a 3-year follow-up study. Metabolic Brain Disease. 17(3): 183-197.
http://dx.doi.org/10.1023/A:1019926122125
PMid:12322788
 
Pawlyk BS, Li T, Scimeca MS, Sandberg MA, Berson EL (2002). Absence of photoreceptor rescue with KD-cis-diltiazem in the rd mouse. Invest. Ophthalmol. Vis. Sci., 43(6): 1912-1915.
PMid:12036998
 
Pearce-Kelling SE, Aleman TS, Nickle A (2001). Calcium channel blocker D-cis-diltiazem does not slow retinal degeneration in the PDE6B mutant rcd1 canine model of pigmentosa. Mol. Vis., 7: 42 -47.
PMid:11239245
 
Read DS, McCall MA, and Gregg RG (2002). Absence of voltage-dependent calcium channels delays photoreceptor degeneration in rd mice. Exp. Eye Res., 75(4): 415-420.
http://dx.doi.org/10.1006/exer.2002.2034
http://dx.doi.org/10.1016/S0014-4835(02)92034-8
 
Sanges D, Comitato A, Tammaro R, Marigo V (2006). Apoptosis in retinal degeneration involves cross-talk between apoptosis-inducing factor (AIF) and caspase-12 and is blocked by calpain inhibitors. Proc. Nat. Acad. Sci. United States Am., 103(46): 17366-17371.
http://dx.doi.org/10.1073/pnas.0606276103
PMid:17088543 PMCid:PMC1859935
 
Sato M, Ohguro H, Ohguro I, Mamiya K, Takano Y, Yamazaki H, Metoki T, Miyagawa Y, Ishikawa F, Nakazawa M (2003). Study of pharmacological effects of nilvadipine on RCS rat retinal degeneration by microarray analysis. Biochem. Biophys. Res. Commun., 306(4): 826-831.
http://dx.doi.org/10.1016/S0006-291X(03)01092-1
 
Schlichtenbrede FC, MacNeil A, Bainbridge JWB (2003). Intraocular gene delivery of ciliary neurotrophic factor results in significant loss of retinal function in normal mice and in the Prph2 model of retinal degeneration. Gene Ther., 10(6):523-527.
http://dx.doi.org/10.1038/sj.gt.3301929
PMid:12621456
 
Shen J, Yang X, Dong A, Petters RM, Peng YW, Wong F, Campochiaro PA (2005). Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa. J. Cell. Physiol., 203(3):457-464.
http://dx.doi.org/10.1002/jcp.20346
PMid:15744744
 
Sieving PA, Caruso RC, Tao W (2006). Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc. Nat. Acad. Sci. United States Am., 103(10): 3896-3901.
http://dx.doi.org/10.1073/pnas.0600236103
PMid:16505355 PMCid:PMC1383495
 
Steele Jr. EC, Chen X, Iuvone PM, MacLeish PR (2005). Imaging of Ca2+ dynamics within the presynaptic terminals of salamander rod photoreceptors. J. Neurophysiol., 94(6): 4544-4553.
http://dx.doi.org/10.1152/jn.01193.2004
PMid:16107525
 
Sugawara H, Tobise K, and Kikuchi K (1996). Antioxidant effects of calcium antagonists on rat myocardial membrane lipid peroxidation. Hypert. Res., 19(4): 223-228.
http://dx.doi.org/10.1291/hypres.19.223
PMid:8986452
 
Szikra T, Krizaj D (2009). "Calcium signals in inner-segments of photoreceptors", in The Visual Transduction Cascade: Basic and Clinical Principles, J Tombran-Tink and C.Barnstable, Eds., Jumana Press, Totowa, NJ, USA, 197-223.
 
Takano Y, Ohguro H, Dezawa M, Ishikawa H, Yamazaki H, Ohguro I, Mamiya K, Metoki T, Ishikawa F, Nakazawa M (2004). Study of drug effects of calcium channel blockers on retinal degeneration of rd mouse. Biochem. Biophys. Res. Commun., 313(4): 1015-1022.
http://dx.doi.org/10.1016/j.bbrc.2003.12.034
PMid:14706644
 
Takeuchi K, Nakazawa M, Mizukoshi S (2008). Systemic administration of nilvadipine delays photoreceptor degeneration of heterozygous retinal degeneration slow (rds) mouse. Exp. Eye Res., 86(1): 60-69.
http://dx.doi.org/10.1016/j.exer.2007.09.008
PMid:17976582
 
Tao W, Wen R, Goddard MB, Sherman SD, O'Rourke PJ, Stabila PF, Bell WJ, Dean BJ, Kauper KA, Budz VA, Tsiaras WG, Acland GM, Pearce-Kelling S, Laties AM, Aguirre GD (2002). Encapsulated cell-based delivery of CNTF reduces photoreceptor degeneration in animal models of retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci., 43(10): 3292-3298.
PMid:12356837
 
Tokuma Y, Fujiwara T, Noguchi H (1987). Absorption, distribution and excretion of nilvadipine, a new dihydropyridine calcium antagonist, in rats and dogs. Xenobiotica. 17(11): 1341-1349.
http://dx.doi.org/10.3109/00498258709047164
PMid:3433803
 
Tuson M, Garanto A, Gonzalez-Duarte R, Marfany G (2009). Overexpression of CERKL, a gene responsible for retinitis pigmentosa in humans, protects cells from apoptosis induces by oxidative stress. Mol. Vis., 15: 168-180.
PMid:19158957 PMCid:PMC2628313
 
Usui S, Komeima K, Lee SY, Jo YJ, Ueno S, Rogers BS, Wu Z, Shen J, Lu L, Overson BC, Rabinovitch PS, Campochiaro PA (2009). Increased expression of catalase and superoxide dismutase 2 reduces cone cell death in retinitis pigmentosa. Mol. Ther., 17(5): 778-786.
http://dx.doi.org/10.1038/mt.2009.47
PMid:19293779 PMCid:PMC2803613
 
Vallazza-Deschamps G, Cia D, Gong J, Jellali A, Duboc A, Forster V, Sahel JA, Tessier LH, Picaud S (2005). Excessive activation of cyclic nucleotide-gated channels contributes to neuronal degeneration of photoreceptors. Euro. J. Neurosci., 22(5): 1013-1022.
http://dx.doi.org/10.1111/j.1460-9568.2005.04306.x
PMid:16176343
 
Wen R, Song Y, Kjellstrom S (2006). Regulation of rod phototransduction machinery by ciliary neurotrophic factor. J. Neurosci., 26(52): 13523-13530.
http://dx.doi.org/10.1523/JNEUROSCI.4021-06.2006
PMid:17192435
 
Yamazaki H, Ohguro H, Maeda T, Maruyama I, Takano Y, Metoki T, Nakazawa M, Sawada H, Dezawa M (2002). Preservation of retinal morphology and functions in Royal College Surgeons rat by nilvadipine, a Ca2+ Antagonist. Invest. Ophthalmol. Vis. Sci., 43(4): 919-926.
PMid:11923229
 
Yu DY, Cringle S, Valter K, Walsh N, Lee D, Stone J (2004). Photoreceptor death, trophic factor expression, retinal oxygen status, and photoreceptor function in the P23H rat. Invest. Ophthalmol. Vis. Sci., 45(6): 2013-2019.
http://dx.doi.org/10.1167/iovs.03-0845
PMid:15161870

 


APA (2012). Apoptosis: Current therapeutic approach in retinitis pigmentosa. Journal of Physiology and Pathophysiology, 3(3), 25-28.
Chicago Marianne L. Shahsuvaryan. "Apoptosis: Current therapeutic approach in retinitis pigmentosa." Journal of Physiology and Pathophysiology 3, no. 3 (2012): 25-28.
MLA Marianne L. Shahsuvaryan. "Apoptosis: Current therapeutic approach in retinitis pigmentosa." Journal of Physiology and Pathophysiology 3.3 (2012): 25-28.
   
DOI https://doi.org/
URL http://academicjournals.org/journal/JPAP/article-abstract/392C546569

Subscription Form