Journal of Pharmacognosy and Phytotherapy
Subscribe to JPP
Full Name*
Email Address*

Article Number - B97BB0C62184


Vol.9(1), pp. 11-18 , January 2017
DOI: 10.5897/JPP2013.0430
ISSN: 2141-2502



Full Length Research Paper

Brown seaweeds administration generate psychotherapeutic response associated with brain norepinephrine modulation in rats



Adnan Khan
  • Adnan Khan
  • Centre of Excellence in Marine Biology, University of Karachi, Karachi-75270, Pakistan.
  • Google Scholar
Nizam Uddin
  • Nizam Uddin
  • Centre of Excellence in Marine Biology, University of Karachi, Karachi-75270, Pakistan.
  • Google Scholar
Saima Khaliq
  • Saima Khaliq
  • Department of Biochemistry, Federal Urdu University, Karachi, Pakistan.
  • Google Scholar
Shazia Nawaz
  • Shazia Nawaz
  • Department of Biochemistry, Federal Urdu University, Karachi, Pakistan.
  • Google Scholar
Munawwer Rasheed
  • Munawwer Rasheed
  • Centre of Excellence in Marine Biology, University of Karachi, Karachi-75270, Pakistan.
  • Google Scholar
Ahsana Dar
  • Ahsana Dar
  • International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.
  • Google Scholar
Muhammad Hanif
  • Muhammad Hanif
  • Karachi Institute of Radiotherapy and Nuclear Medicine (KIRAN), KDA Scheme 33, Karachi, Pakistan.
  • Google Scholar
Pirzada Jamal Ahmed Siddiqui
  • Pirzada Jamal Ahmed Siddiqui
  • Centre of Excellence in Marine Biology, University of Karachi, Karachi-75270, Pakistan.
  • Google Scholar







 Received: 22 September 2016  Accepted: 17 November 2016  Published: 31 January 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Research in the area of herbal psychopharmacology has increased considerably over the past few decades in search of panacea for neuroprotection. Seaweeds are one of the herbal sources consumed in many Asian countries as medicine due to their remarkable bioprospecting properties and evident health benefits. Keeping in view the bioactive potential of seaweeds, the present study was designed to evaluate the psychotherapeutic potential of Sargassum swartzii and Stoechospermum marginatum, in association with the role of brain norepinephrine (NE) using a rat model. Adult male albino Wistar rats were divided into three groups (n=6) as control rats (CR), S. swartzii extract treated (SSET) and S. marginatum extract treated (SMET). Seaweeds were extracted using methanol and administered orally to rats for four weeks at a dose of 60 mg/kg. Behavioral changes for stimulant activities were assessed by activity cage and open field tests, while anxiety was observed in light-dark exploration test. Followed by scoring behavioral activities, rats were decapitated and brain samples taken out from the cranial cavity were immediately stored at -70°C until estimation of brain NE levels by high performance liquid chromatography-electrochemical detection (HPLC-ECD). Results exhibited an increase in ambulatory and anxiolytic activities by SSET and SMET rats with subsequent increase in brain NE as compared to CR. The increase in NE in SSET and SMET rats could be attributed to the lipolytic activity of seaweeds. However, the exact mechanism underlying the increase in NE needs further investigations. In conclusion, seaweed extracts showed significant psychostimulant and anxiolytic activity by ameliorating brain NE levels and could be studied further for isolation of active ingredients responsible for eliciting such a response.

Key words: Brown seaweeds, norepinephrine, psychostimulant activity, anxiety.

Abbas G, Naqvi S, Erum S, Ahmed S, Rahman A, Dar A (2013). Potential Antidepressant Activity of Areca catechu Nut via Elevation of Serotonin and Noradrenaline in the Hippocampus of rats. Phytother. Res.27(1):39-45.
Crossref

 

Abercrombie ED, Jacobs BL (1987). Single-unit response of noradre-nergic neurons in the locus coeruleus of freely moving cats. I.Acutely presented stressful and nonstressful stimuli. J. Neurosci. 7(9):2837-2843.

 
 

Aston-Jones G, Rajkowski J, Kubiak P, Alexinsky T (1994). Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J. Neurosci.14(7):4467-4480.

 
 

Bayne K (1996). Revised guide for the care and use of laboratory animals available American Physiological Society. Physiologist 39:208-211.

 
 

Bing O, Möller C, Engel JA, Söderpalm B, Heilig M (1993). Anxiolytic-like action of centrally administered galanin. Neurosci. Lett. 164(1-2):17-20.
Crossref

 
 

Bonisch H, Bruss M (2006). The norepinephrine transporter in physiology and disease. Handb. Exp. Pharmacol. 175:485-524.
Crossref

 
 

Brodnik Z, Bongiovanni R, Double M, Jaskiw GE (2012). Increased tyrosine availability increases brain regional DOPA levels in vivo. Neurochem. Int. 61:1001-1006.
Crossref

 
 

Bushra R, Rahila N, Iqbal A, Somia G (2012). Neuropharmacological screening of Iyengaria stellata revealed its memory boosting, anxiolytic and antidepressant effects. Int. Res. J. Pharm. 3(10)89-94.

 
 

Cameron OG, Abelson JL, Young EA (2004). Anxious and depressive disorders and their comorbidity: effect on central nervous system noradrenergic function. Biol. Psychiatry 56(11):875-883.
Crossref

 
 

Chen MD, Lin WH, Song YM, Lin PY, Ho LT (1994). Effect of caffeine on the levels of brain serotonin and catecholamine in the genetically obese mice. Zhonghua Yi Xue Za Zhi. 53(5):257-261.

 
 

Crawley JN, Goodwin FK (1980). Preliminary report of a simple animal behavior for the anxiolytic effects of benzodiazepines. Pharmacol. Biochem. Behav.13(2):167-170.
Crossref

 
 

Dar A, Baig HS, Saifullah SM, Ahmad VU, Yasmeen S, Nizamuddin M (2007). Effect of seasonal variation on the anti-inflammatory activity of Sargassum wightii growing on the N. Arabian Sea coast of Pakistan. J. Exp. Mar. Biol. Ecol. 351(1-2):1-9.
Crossref

 
 

Devesa J, Diaz MJ, Tresguerres JA, Arce V, Lima L (1991).Evidence that alpha 2-adrenergic pathways play a major role in growth hormone (GH) neuroregulation: alpha 2-adrenergic agonism counteracts the in-hibitory effect of muscarinic cholinergic receptor blockade on the GH response to GH-releasing hormone, while alpha 2-adrenergic blockade diminishes the potentiating effect of increased cholinergic tone on such stimulation in normal men. J. Clin. Endocrinol. Metab. 73(2):251-256.
Crossref

 
 

Dhargalkar VK, Pereira N (2005). Seaweed: Promising plant of the millennium. Sci. Cult. 71:60-66.

 
 

Elkins G, Rajab MH, Marcus J (2005). Complementary and alternative medicine use by psychiatric inpatients. Psychol. Rep. 96(1):163-166.
Crossref

 
 

Fernstrom JD (1990). Aromatic amino acids and monoamine synthesis in the central nervous system: influence of the diet. J. Nurt. Biochem. 1:508-517.
Crossref

 
 

Goddard AW, Ball SG, Martinez J, Robinson MJ, Yang CR, Russell JM, Shkhar A (2010). Current perspectives of the roles of the central norepinephrine system in anxiety and depression. Depress. Anxiet. 27(4):339-350.
Crossref

 
 

Hameed S, Ahmed M, Shameel M (2000). Distribution of commonly occurring seaweeds with their tidal heights on the rocky bench of Pacha near Karachi, Pakistan. Pak. J. Mar. Biol. 6:101-112.

 
 

Heinrich M, Barnes J, Gibbons S, Williamson E (2004). Fundamentals of Pharmacognosy and Phytotherapy. Churchill Livingstone, London.

 
 

Hong DD, Hien HM, Son PN (2007). Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J. Appl. Phycol. 19(6):817-826.
Crossref

 
 

Huotari M, Gogos JA, Karayiorgou M, Koponen O, Forsberg M, Raasmaja A, HyttinenJ, Mannisto PT (2002). Brain catecholamine metabolism in catechol-O-methyltransferase (COMT)-deficient mice. Eur. J. Neurosci. 15(2):246-256.
Crossref

 
 

Imaizumi M, Miyazaki S, Onodera K (1994). Effects of xanthine derivatives in a light/dark test in mice and contribution of adenosine receptors. Methods Find. Exp. Clin. Pharmacol. 16(9):639-644.

 
 

Jiao G, Yu G, Zhang J, Ewart H (2011). Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Marine Drugs 9(2):196-223.
Crossref

 
 

Jordan SA, Cunningham DG, Marles RJ (2010). Assessment of herbal medicinal products: challenges, and opportunities to increase the knowledge base for safety assessment. Toxicol. Appl. Pharmacol. 243(2):198-216.
Crossref

 
 

Kennett GA, Dickinson SL, Curzon G (1985). Central serotonergic responses and behavioral adaptation to repeated immobilization: the effect of the corticosterone synthesis inhibitor metyrapone. Eur. J. Pharmacol. 119(3):143-52.
Crossref

 
 

Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatr. 62(6):617-627.
Crossref

 
 

Kessler RC, Soukup J, Davis RB, Foster DF, Wilkey SA, Van Rompay MI, Eisenberg DM (2001). The use of complementary and alternative therapies to treat anxiety and depression in the United States. Am. J. Psychiatry 158(2):289-294.
Crossref

 
 

Kim S, Wijesekara I (2010). Development and biological activities of marine-derived bioactive peptides: A review. J. Funct. Foods 2(1):1-9.
Crossref

 
 

Li Z (2009). Advances in marine microbial symbionts in the China sea and related pharmaceutical metabolites. Marine Drugs 7(2):113-129.
Crossref

 
 

Liu L, Heinrich M, Myers S, Dworjanyn SA (2012). Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: a phytochemical and pharmacological review. J. Ethnopharmacol. 142(3):591-619.
Crossref

 
 

Mathew SJ, Manji HK, Charney DS (2008). Novel drugs and therapeutic targets for severe mood disorders. Neuropsychology 33(9):2080-2092.

 
 

Mills PJ, Ziegler MG, Patterson T, Dimsdale JE, Hauger R, Irwin M, Grant I (1997). Plasma catecholamine and lymphocyte beta 2-adrenergic receptor alterations in elderly Alzheimer caregivers under stress. Psychosom. Med. 59(3):251-256
Crossref

 
 

Mitchell HA, Ahern TH, Liles LC, Javors MA. Weinshenker D (2006). The effects of norepinephrine transporter inactivation on locomotor activity in mice. Biol. Psychiatry 60(10):1046-52.
Crossref

 
 

Moon S. Kim J (1999). Iodine content of human milk and dietary iodine intake of korean lactating mothers. Int. J. Food Sci. Nutr. 50(3):165-171.
Crossref

 
 

Morilak DA, Barrera G, Echevarria DJ, Garcia AS, Hernandez A, Ma S, Petre CO (2005). Role of brain norepinephrine in the behavioral response to stress. Progr. Neuropsycopharmacol. Biol. Psychiatry 29(8):1214-1224.
Crossref

 
 

Najam R, Ahmed SP, Azhar I (2010). Pharmacological activities of Hypnea musciformis. Afr. J. Biomed. Res. 13:69-74

 
 

Nishi K, Kondo T, Narabayashi H (1991). Destruction of norepinephrine terminals in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice reduces locomotor activity induced by L-DOPA. Neuro. Lett. 123(2):244-247.
Crossref

 
 

Ordway GA, Schwartz MA, Frazer A (2007). Brain Norepinephrine: Neurobiolgy and therapeutics. Cambridge University Press; Cambridge; Newyork.
Crossref

 
 

Pangestuti R, Kim S (2011). Neuroprotective Effects of Marine Algae. Mar. Drugs 9(5):803-818.
Crossref

 
 

Park M, Jung U, Roh C (2011). Fucoidan from marine brown algae inhibits lipid accumulation. Mar. Drugs 9(8):1359-1367.
Crossref

 
 

Paula JC, Vallim MA, Teixeira VL (2011). What are and where are the bioactive terpenoids metabolites from Dictyotaceae (Phaeophyceae). Rev. Bra. Farmacogn.21(2):216-228.
Crossref

 
 

Pelosi GG, Resstel LL, Soares VP, Zangrossi H, Guimarães FS, Corrêa FM (2009). Anxiolytic-like effect of noradrenaline microinjection into the dorsal periaqueductal gray of rats. Behav. Pharmacol. 20(3):252-259.
Crossref

 
 

Pengelly A (1997). The Constituents of Medicinal Plants. Fast Books, Glebe, NSW.

 
 

Płaźnik A, Danysz W, Kostowski W (1985). A stimulatory effect of intraaccumbens injections of noradrenaline on the behavior of rats in the forced swim test. Psychopharmacology (Berl). 87(1):119-23.
Crossref

 
 

Pujol CA, Ray S, Ray B, Damonte EB (2012). Antiviral activity against dengue virus of diverse classes of algal sulfated polysaccharides. Int. J. Biol. Macromol. 51(4):412-416.
Crossref

 
 

Ressler KJ, Nemeroff CB (1999). Role of norepinephrine in the pathophysiology and treatment of mood disorders. Biological psychiatry. 46(9):1219-33.
Crossref

 
 

Rodrigues SM, LeDoux JE, Sapolsky RM (2009). The influence of stress hormones on fear circuitry. Annu. Rev. Neurosci. 32:289-313.
Crossref

 
 

Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001). Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse. 39(1):32-41.
Crossref

 
 

Sabina H, Tasneem S, Samreen, Kauser Y, Choudhary MI, Aliya R (2005). Antileishmanial activity in the crude extract of various seaweed from the coast of Karachi, Pakistan. Pak. J. Bot. 37(1):163-168.

 
 

Schulz B, Fendt M, Schnitzler HU (2002). Clonidine injections into the lateral nucleus of the amygdala block acquisition and expression of fear-potentiated startle. Eur. J. Neurosci. 15(1):151-157.
Crossref

 
 

Shaikh W, Shameel M, Hayee-Memon A, Usmanghani K, Bano S, Ahmad VU (1990). Isolation and characterization of chemical constituents of Stoechospermum marginatum (Dictyotales, Phaeophyta) and their antimicrobial activity. Pak. J. Pharm. Sci. 3(2):1-9.

 
 

Smythies J (2005). Section III. The norepinephrine system. Int. Rev. Neurobiol. 64:173-211.
Crossref

 
 

Spinella M (2001). The Psychopharmacology of Herbal Medicine: Plant Drugs That Alter Mind, Brain and Behavior (Paperback). MIT Press, Cambridge.

 
 

Sved AF, Cano G, Card JP (2001). Neuroanatomical specificity of the circuits controlling sympathetic outflow to different targets. Clin. Exp. Pharmacol. Physiol. 28(1-2):115-119.
Crossref

 
 

Tanaka M, Yoshida M, Emoto H, Hideo Ishii (2000).Noradrenaline systems in the hypothalamus, amygdala and locus coeruleus are involved in the provocation of anxiety: basic studies. Eur. J. Pharmacol. 405(1-3):397-406.
Crossref

 
 

Williamson EM (2001). Synergy and other interactions in phytomedicines. Phytomedicine 8(5):401-409.
Crossref

 

 


APA Khan, A., Uddin, N., Khaliq, S., Nawaz, S., Rasheed, M., Dar, A., Hanif, M., & Siddiqui, P. J. A. (2017). Brown seaweeds administration generate psychotherapeutic response associated with brain norepinephrine modulation in rats. Journal of Pharmacognosy and Phytotherapy, 9(1), 11-18.
Chicago Adnan Khan, Nizam Uddin, Saima Khaliq, Shazia Nawaz, Munawwer Rasheed, Ahsana Dar, Muhammad Hanif and Pirzada Jamal Ahmed Siddiqui. "Brown seaweeds administration generate psychotherapeutic response associated with brain norepinephrine modulation in rats." Journal of Pharmacognosy and Phytotherapy 9, no. 1 (2017): 11-18.
MLA Adnan Khan, et al. "Brown seaweeds administration generate psychotherapeutic response associated with brain norepinephrine modulation in rats." Journal of Pharmacognosy and Phytotherapy 9.1 (2017): 11-18.
   
DOI 10.5897/JPP2013.0430
URL http://academicjournals.org/journal/JPP/article-abstract/B97BB0C62184

Subscription Form