Journal of Petroleum Technology and Alternative Fuels
Subscribe to JPTAF
Full Name*
Email Address*

Article Number - 9824F0256972


Vol.7(1), pp. 1-12 , January 2016
DOI: 10.5897/JPTAF2015.0122
ISSN: 2360-8560



Full Length Research Paper

Temperature programme reduction (TPR) studies of cobalt phases in γ-alumina supported cobalt catalysts



Olusola O. James
  • Olusola O. James
  • Chemistry Unit, College of Pure and Applied Sciences, Kwara State University, Malete, P.M.B. 1530, Ilorin, Nigeria.
  • Google Scholar
Sudip Maity
  • Sudip Maity
  • Liquid Fuels Section, Central Institute of Mining and Fuels Research (Digwadih Campus), PO FRI 828108, Dhanbad, India.
  • Google Scholar







 Received: 10 November 2015  Accepted: 10 December 2015  Published: 31 January 2016

Copyright © 2016 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Temperature programmed reduction (TPR) is one of the techniques for obtaining information about phases or bulk species in heterogeneous catalysts. Information from TPR analysis can give insights about phase-support interaction and extent of reduction of the phases at different temperatures. TPR technique is a common tool in the characterisation of cobalt based Fischer-Tropsch (FT) catalysts. However, interpretation of TPR profiles of γ-alumina supported cobalt FT catalysts had been characterised with different views on the nature of phases and reduction processes involved. In this report, we use reduction behaviour of unsupported Co3O4 to gain insight for more explicit analysis of TPR profiles of γ-alumina supported Co3O4 catalysts. The transition Co3O4 → CoO → Co in γ-alumina supported catalysts prepared with wet impregnation with aqueous cobalt nitrate and calcined at temperatures ≤ 350°C gave reduction peaks at 300 to 350°C. Reduction peaks at 500 to 600°C were due to Co-Al mixed oxide phases; most likely Co2AlO4 and probably routes formation of the mixed oxide were also discussed. Consideration of tendency of dissolution of γ-alumina during the impregnation of metal salt is instructive toward achieving higher reducibility of Co3O4 in the design of cobalt based Fischer-Tropsch catalysts.

 

Key words: Temperature programmed reduction (TPR) profile, calcinations, Co3O4, γ-Al2O3, Fischer-Tropsch catalyst.

Ay AN, Zümreoglu-Karan B, Mafra L (2009). A Simple Mechanochemical Route to Layered Double Hydroxides: Synthesis of Hydrotalcite-Like Mg-Al-NO3-LDH by Manual Grinding in a Mortar. Zeitschrift für anorganische und allgemeine Chemie 635(9-10):1470-1475.
Crossref

 

Belambe AR, Oukaci R, Goodwin JG (1997). Effect of Pretreatment on the Activity of a Ru-Promoted Co/Al2O3 Fischer-Trpsch Catalyst. J. Catal. 166:8-15.
Crossref

 
 

Borg Ø, Blekkan EA, Eri S, Akporiaye D, Vigerust B, Rytter E, Holmen A (2007). Effect of calcination atmosphere and temperature on γ-Al2O3 supported cobalt Fischer-Tropsch catalysts. Topics Catal. 45(August):39-43.
Crossref

 
 

Carriera X, Marceaua E, Lamberta J-F, Chea M (2007). Transformations of γ-alumina in aqueous suspensions. J. Colloid Interface Sci. 308(2):429-437.
Crossref

 
 

Chen Y, Wu D, Yeh C (2003). Oxidation of carbon monoxide over nanoparticles of cobalt oxides. Rev. Adv. Mater. Sci. pp. 41-46.

 
 

Chu W, Chernavskii PA, Gengembre L, Pankina GA, Fongarland P, Khodakov AY (2007). Cobalt species in promoted cobalt alumina-supported Fischer–Tropsch catalysts. J. Catal. 252(2):215-230.
Crossref

 
 

Dry ME (2002). The Fischer-Tropsch process: 1950-2000. Catal. Today 71(3-4):227-241.
Crossref

 
 

Ehrhardt C, Gjikaj M, Brockner W (2005). Thermal decomposition of cobalt nitrato compounds: Preparation of anhydrous cobalt(II)nitrate and its characterisation by Infrared and Raman spectra. Thermochim. Acta 432(1):36-40.
Crossref

 
 

Girardon JS, Quinet E, Griboval-Constant A, Chernavskii PA, Gengembre L, Khodakov AY (2007). Cobalt dispersion, reducibility, and surface sites in promoted silica-supported Fischer-Tropsch catalysts. J. Catal. 248(2):143-157.
Crossref

 
 

Iglesia E (1997). Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl. Catal. A Gen. 161:59-78.
Crossref

 
 

Jacobs G, Patterson PM, Zhang Y, Das T, Li J, Davis BH (2002). Fischer–Tropsch synthesis: deactivation of noble metal-promoted Co/Al2O3 catalysts. Appl Catal. A Gen. 233:215-226.
Crossref

 
 

Jacobs G, Ji Y, Davis B, Cronauer DC, Kropf AJ, Marshall CL (2007). Fischer–Tropsch synthesis: Temperature programmed EXAFS/XANES investigation of the influence of support type, cobalt loading, and noble metal promoter addition to the reduction behaviour of cobalt oxide particles. Appl. Catal. A. Gen. 333(2):177-191.
Crossref

 
 

Ji L, Lin J, Zeng HC (2000). Metal-support interactions in Co/Al2O3 catalysts: A comparative study on reactivity of support. J. Phys. Chem. B. 104:1783-1790.
Crossref

 
 

Kagan DN, Lapidus AL, Shpil'rain EE (2008). Process for the production of synthetic liquid fuel based on the conversion of solid fossil fuels and natural gas. Khimiya Tverdogo Topliva (Moscow, Russian Federation), 42(Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.). pp. 6-8.

 
 

Khassin AA, Yurieva TM, Kustova GN, Itenberg ShI, Demeshkina MP, Krieger TA, Plyasova LM, Chermashentseva GK, Parmon VN (2001). Cobalt-aluminum co-precipitated catalysts and their performance in the Fischer-Tropsch synthesis. J. Mol. Catal. A: Chem. 168(1-2):193-207.
Crossref

 
 

Khodakov AY (2009). Enhancing cobalt dispersion in supported Fischer-Tropsch catalysts via controlled decomposition of cobalt precursors. Brazilian J. Phys. 39(1):171-175.
Crossref

 
 

Pe JR, Mul G, Kapteijn F, Moulijn JA (2001). In situ investigation of the thermal decomposition of Co ± Al hydrotalcite in different atmospheres. J. Mater. Chem. 11:821-830.
Crossref

 
 

Perego C (2007). Development of a Fischer-Tropsch catalyst: From laboratory to commercial scale demonstration. Rendiconti Lincei 18(4):305-317.
Crossref

 
 

Potoczna-Petru D, Kȩpiński L (2001). Reduction study of Co3O4 model catalyst by electron microscopy. Catal. Lett. 73(1):41-46.
Crossref

 
 

Schulz H (1999). Short history and present trends of Fischer–Tropsch synthesis. Appl. Catal. A: Gen. 186(1-2):3-12.
Crossref

 
 

Schulz H (2003). Spatial constraints and frustrated reactions in Fischher-Tropsch synthesis. Catal. Today 84(1-2):67-70.
Crossref

 
 

Sirijaruphan A, Horváth A, Goodwin Jr. JG, Oukaci R (2003). Cobalt aluminate formation in alumina-supported cobalt catalysts: Effects of cobalt reduction state and water vapor. Catal. Lett. 91(1):89-94.
Crossref

 
 

Tang C-W, Wang C-B, Chien S-H (2008). Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim. Acta 473(1-2):68-73.
Crossref

 
 

Trueba M, Trasatti SP (2005). γ-Alumina as a Support for Catalysts: A Review of Fundamental Aspects. Eur. J. Inorg. Chem. 17:3393-3403.
Crossref

 
 

Walsh A, Wei SH, Yan Y, Al-Jassim MM, Turner JA, Woodhouse M, Parkinson BA (2007). Structural, magnetic, and electronic properties of the Co-Fe-Al oxide spinel system: Density-functional theory calculations. Phys. Rev. B. 76(16):165119.
Crossref

 
 

Wang CB, Lin HK, Tang CW (2004). Thermal characterization and microstructure change of cobalt oxides. Catal. Lett. 94(1-2):69-74.
Crossref

 
 

Yuvaraj S, Fan-Yuan L, Tsong-Huei C, Chuin-Tih Y (2003). Thermal decomposition of metal nitrates in air and hydrogen environments. J. Phys. Chem. B. 107(4):1044-1047.
Crossref

 
 

Zhang J, Chen J, Li YW, Sun Y (2002). Recent Technological Developments in Cobalt Catalysts for Fischer-Tropsch Synthesis. J. Nat. Gas Chem. 11(3-4):99-108.

 

 


APA Olusola, O. J., & Sudip, M. (2016). Temperature programme reduction (TPR) studies of cobalt phases in γ-alumina supported cobalt catalysts. Journal of Petroleum Technology and Alternative Fuels, 7(1), 1-12.
Chicago Olusola O. James and Sudip Maity. "Temperature programme reduction (TPR) studies of cobalt phases in γ-alumina supported cobalt catalysts." Journal of Petroleum Technology and Alternative Fuels 7, no. 1 (2016): 1-12.
MLA Olusola O. James and Sudip Maity. "Temperature programme reduction (TPR) studies of cobalt phases in γ-alumina supported cobalt catalysts." Journal of Petroleum Technology and Alternative Fuels 7.1 (2016): 1-12.
   
DOI 10.5897/JPTAF2015.0122
URL http://academicjournals.org/journal/JPTAF/article-abstract/9824F0256972

Subscription Form