Journal of Soil Science and Environmental Management
Subscribe to JSSEM
Full Name*
Email Address*

Article Number - CFF9F9466901


Vol.8(10), pp. 164-189 , November 2017
https://doi.org/10.5897/JSSEM2017.0647
ISSN: 2141-2391


 Total Views: 0
 Downloaded: 0

Full Length Research Paper

Impact of previous legumes on millet mycorrhization and yields in sandy soil of West African Sahel



Gaston Sangare
  • Gaston Sangare
  • International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Niamey, BP12404, Niamey, Niger.
  • Google Scholar
Dahiratou Ibrahim Doka
  • Dahiratou Ibrahim Doka
  • Ecole Normale Supérieure, University Adbou Moumouni, Niamey, Niger.
  • Google Scholar
Moussa Barage
  • Moussa Barage
  • Ecole Normale Supérieure, University Adbou Moumouni, Niamey, Niger.
  • Google Scholar
Dougbedji Fatondji
  • Dougbedji Fatondji
  • International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Niamey, BP12404, Niamey, Niger.
  • Google Scholar







 Received: 04 November 2016  Accepted: 05 April 2017  Published: 30 November 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


A preliminary study was conducted during the raining seasons 2012 through 2015 to assess the status of arbuscular mycorrhiza fungi associated with 4 legumes and millet on the sandy soil of Sadoré, Niger. A factorial completely randomized block design was used for the layout. Crop roots parameters of mycorrhization and soil fungi spore density and biodiversity were investigated as responses to varied planting densities, rates of rock phosphate, and of urea application on millet monoculture. Spores of Glomus were present in 100% of plots with respectively 96%, 47%, 77%, and 13% as relative frequency during rainy seasons 2012, 2013, 2014, and 2015; but spores of Gigaspora were present in 70% of plots and with 3.63%, 4%, 1.38%, and 1% as relative frequency the same years. Spore density/100g of root zone soil varied with crop species and rate of applied crop residue. The maximum intensity of mycorrhization was 78% while the arbuscular had a rate of 48% as maximum. The parameters of mycorrhization were influenced by the crop species but not by the rates of applied rock phosphate and the rate of returned crop residues as well. Millet yield in monoculture was affected by residual effects of previous basis legume crop.
 
Key words: Preceding crops, millet mycorrhiza, residue, sandy soil, Niger.

Abbot LM (1982). Comparative anatomy of vesicular-arbuscular mycorrhizas formed on subterranean clover. Austral. J. Bot. 30:485- 1982.
Crossref

 

Adamou A, Bationo A, Tabo R, Koala S (2007). Improving soil fertility through the use of organic and inorganic plant nutrients and crop rotation in Niger. In A. Bationo (eds.) Advances in Integrated Soil Fertility Management in Sub-Saharan Africa: Challenges and Opportunities pp. 589-598.
Crossref

 
 

Ambouta K, Ibrahim D, Bara S (2009). Statut mycorhizien de dix espèces ligneuses prélevées sur des dunes menaçant d'ensablement des cuvettes dans le département de Gouré (Niger). Revue 8p.

 
 

Bado BV, Sedogo MP, Cescas MP, Lompo F, Bationo A (1997). Effet à long terme des fumures sur le sol et les rendements du mais au Burkina Faso. Cash. Agric. 6(6):571-575.

 
 

Bado BV, Bationo A, Cescas M (2012). Rôle des légumineuses sur la fertilité des sols. Opportunités pour une gestion intégrée de la fertilité des sols. Sudwesteutsher Vertag für Hochshulschriften Gmbh & Co. KG.

 
 

Bagayoko M, George E, Römheld V, Buerkert A (2000b). Effects of mycorrhizae and phosphorus on growth and nutrient uptake of millet, cowpea and sorghum on a West African soil. J. Agric. Sci. Cambridge 135:399-407.
Crossref

 
 

Bationo A, Nandwa SM, Kimetu JM, Kinyangi JM, Bado BV, Lompo F, Kimani S, Kihanda F, Koala S (2004). Sustainable intensification of crop–livestock systems through manure management in eastern and western Africa in TO Williams, SA Tarwali, P. Hiernaux and S. Fernandez Rivera ( eds) Sustainable crop–livestock production in West Africa pp. 173-198.

 
 

Bationo A, NTare BR (2000) Rotation and nitrogen fertilizer effects on pearl millet, cowpea and groundnut yield and soil chemical properties in a sandy soil in the semi- arid tropics, West Africa. J. Agric. Sci. 134:277-284.
Crossref

 
 

Bationo A, Hartemink A, Lungu O, Naimi M, Okoth PL, Smaling E, Thiombiano L (2006). African soils: Their productivity and profitability of fertilizer use. Proceedings of the African fertilizer Summit. 9-13th June 2006, Abuja, Nigeria; International Center for Soil Fertility and Agricultural Development (IFDC).Muscle Shoals, AL, USA. (2006). 

View

 
 

Choudhary BK, Sarkar U, Sharma BK (2014). Vascular Arbuscular Mycorrhizal (VAM) spore Diversity and Density Across the soil of Degraded Forest and Rubber Plantation in Tripura, India. Am. Eur. J. Agric. Environ. Sci. 14(10):1080-1088.

 
 

Daft MJ, Nicolson TH (1972). Effect of Endogone mycorrhiza on plant growth. IV. Quantitative relationship between the growth of the host and the development of the endophyte in tomato and maize. New Phytol. 71:287.
Crossref

 
 

Dalpé Y, Diop T, Plenchette C, Gueye M (2000). Biodiversity of glomales with soil depth under Faidherbia albida in Senegal. Mycorrhiza, 129p.

 
 

Daniels BA, Trappe JM (1986). Factors affecting spore germination of the vesicular-arbuscular mycorrhizal fungus, Glomus epigeus. Mycologia 72p.

 
 

Dahiratou I (1994). Contribution à l'étude de l'endomycorrhization vesiculo-arbusculaire (MVA) de quelques spermatophytes sahéliennes, Thèse du doctorat soutenue à l'université de Mont Hainaut 98p.

 
 

Deepika S, Kothamasi D (2015). Soil moisture a regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorous uptake. Mycorrhiza 25:67-75.
Crossref

 
 

Garbaye J (2013). La symbiose mycorhizienne. Une association entre les plantes et les champignons (Synthèses) Page 25-219. Editions Quae. RD 10 78026 Versailles cedex.

 
 

Guissou TG (2001). La symbiose mycorhizienne à arbuscules chez les espèces ligneuses : diversité des glomales, dépendance mycorhizienne, utilisation des phosphates naturels et tolérance à un stress hydrique, Thèse du doctorat soutenue à l'université de Ouagadougou, Spingel 334p.

 
 

Fortin JA, Taktek S (2016). Les mycorhizes, un atout pour l'agriculture moderne. Agro nouvelles, Blogue de l'ordre des Agronomes du Quebec. 

View

 
 

Füzy A, Bothe H, Molnár E, Biró B (2013). Mycorrhizal symbiosis effects on growth of chalk false-brome (Brachypodium pinnatum) are dependent on the environmental light regime. J. Plant Physiol. 171(5):1-6.
Crossref

 
 

Hepper CM (1984). Isolation and culture of vesiclar–arbuscularmycorrhizal (VAM) fungi. In: VA Mycorrhiza. Powell C. et Bagyaraj DJ. 112p.

 
 

Hetrick BDA, Wilson GWT, Cox TS (1992). Mycorrhizal dependency of modern wheat varieties, landraces and ancestors. Can. J. Bot. 70:2032-2040.
Crossref

 
 

Ibrahim A, Pasternak D, Fatondji D (2014). Impact of depth of placement of mineral fertilizer micro-dosing on growth, yield and partial nutrient balance in pearl millet cropping. J. Agric. Sci. pp. 1-10.

 
 

ICRISAT (Institut International de Recherche sur les Cultures des Zones Tropicales Semi-arides) (1990). Rapport annuel. Programme Ouest Africain BP : 12404 Niamey Niger.

 
 

Issoufou OD (2014). Impact de l'utilisation du compost sur la mycorrhization du mil et du niébé cultivés en milieu paysan dans les régions de Tillabéry et de Niamey, mémoire de fin d'étude, 68p. Université Abdou Moumouni, Niamey Niger.

 
 

Johnson NC, Tilman D, Wedin D (1992). Plant and Soil Controls on Mycorrhizal Fungal communities. Ecology 73(6):2034-2042.
Crossref

 
 

Keith R (2006). Ontario Ministère de l'Agriculture, de l'Alimentation et des Affaires rurales. Echantillonnage et analyse de sol dans le cadre de gestions des éléments nutritifs Fiche technique.

 
 

Kabir Z, Koide RT (2000). The effects of dandelion or a cover crop on mycorrhizal inoculum potential, soil aggregation and yield of maize. Agric. Ecosyst. Environ. 78:167-174.
Crossref

 
 

Karanja NK, Kimenju JM, Esilaba AO, Jefwa J, Ayuke F (2011). Legume Based Cropping and Soil Biodiversity Dynamics; In A. Bationo et al. (eds.), Fighting Poverty, in Sub-Saharan Africa: The Multiple Roles of Legumes in Integrated Soil. Fertil. Manage. 4:67-79
Crossref

 
 

Knopf E, Blaschke H, Munch JC, Rambold G, Murage A, Kirika P, Okaka S (2016). Impacts of Soil on Arbuscular Mycorrhizal Fungi: Growth Responses of Moringa spp., Plants Sampled from Lake Victoria.

 
 

Koske RE, Gigaspora G (1981). Observations on spore germination of a VA-mycorrhizal fungus. Mycologia 73:288.
Crossref

 
 

Lagrange A (2009). Etude écologique et microbiologique des espèces du genre Costaluaria (Cyperaceae), pionnières des sols ultramatriques en Nouvelle-Calédonie : perspectives d'application à la restauration écologique. Université de la Nouvelle-Calédonie, Ecole Doctorale: Milieux Marins Ultra-Marins 243p.

 
 

Li Y, Ran W, Zhang R, Sun S, Xu, G (2009). Facilitated legume nodulation, phosphate uptake and nitrogen transfer by arbuscular inoculation in an upland rice and mung bean intercropping system. Plant Soil 315(1-2):285-296.
Crossref

 
 

Mateete B, Nterenya S, Paul LW (2010). Restoring Soil Fertility in Sb-Saharan Africa. Adv. Agron. 4(108):183-236.

 
 

Maiti D (2011) Improving Activity of Native Arbuscular Mycorrhizal Fungi (AMF) for Mycorrhizal Benefits in Agriculture: Status and Prospect. J. Biofertil. Biopest. 2:113.
Crossref

 
 

Oehl F, Sieverdinn E, Ineichen K, Mader P, Boller T, Wiemken A (2003). Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl. Environ. Microbiol. 69:2816-2824.
Crossref

 
 

Passot S, Gnacko F, Moukouanga D, Lucas M, Guyomarc'h S, Moreno Ortega B, Atkinson JA, Belko MN, Bennett MJ, Gantet P, Wells DM, Guédon Y, Vigouroux Y, Verdeil JL, Muller B, Laplaze L (2016). Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots. Front. Plant Sci. 7:829.
Crossref

 
 

Plenchette CH, Bois JF, Duponnois R, Cadet P (2000). La mycorrhization (Glomus aggregatum) du mil (pennicetum glaucum). Etude et Gestion des Sols, numéro spécial pp. 379-384.

 
 

Philips JM, Hayman DS (1970). Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55:158-161.
Crossref

 
 

Power JF, Koerner P, Doran JW, Wilhelm W (1998). "Residual Effects of Crop Residues on Grain Production and Selected Soil Properties". Publications from USDA-ARS / UNL Faculty. Paper 89. 
Crossref

 
 

Raya AEB, Mosbah M, Philippe DL, Mohamed M (2014). Caractérisation de la diversité génétique des champignons mycorhiziens à arbuscules associés aux racines de deux fabacées dans quatre sites de l'aride tunisien Biodiversité et Valorisation des Bio ressources en Zones Arides (BVBZA), Faculté des Sciences de Gabès, Tunisie. LSTM: Laboratoire des symbioses tropicales et méditerranéennes, Montpellier France. IOSR J. Agric. Vet. Sci. 7(9):45-55.

 
 

Ross JP, Ruttencutter R (1997). Population dynamics of two vesicular-arbuscular Endomycorrhizal Fungi and the role of hyperparasitic fungi. Phytopathology 67:490.

 
 

Salou M, Gandah M, Bassirou A, Ramadjita T (2011). Coraf Action n°59 / 2ème trimestre: Les phosphates, une richesse pour l'agriculture Ouest africaine » qui présente les résultats obtenus par ce projet dans chacun des pays.

 
 

Sanon AA (2005). Rôle des champignons mycorhiziens à arbuscules dans les mécanismes régissant la co-existence entre espèces végétales. Mémoire en vue d'obtenir le D.E.A. National de science du sol. Institut National Agronomique Paris-Grignon Ecole Nationale Supérieure Agronomique de Montpellier Institut National Polytechnique de Lorraine.

 
 

Schenck NC, Kinloch RA (1980). Incidence of mycorhizal fungi on six field crops in monoculture on a newly cleared woodland site. Mycologia 72:445.
Crossref

 
 

Schenck NC, Smith GS (1982). Reponses of six species of vesicular-arbuscular mycorhizal fungi and their effects on soybean at four soil temperatures. New Phytol. 92:193-201.
Crossref

 
 

Sivakumar MVK (1989). Agroclimatic aspects of rainfed agriculture in the Sudano-Sahelian zone. In Soil, crop, and water management systems for rainfed agriculture in the Sudano-Sahelian zone: Proceedings of International workshop, 7-11 Jan 1987 ICRSAT Sahelian Center, Niamey, Niger, Patencheru, AP 502324, India: ICRISAT.

 
 

Subbarao GV, Renard C, Bationo A, van Duivenbooden N, Bielders C (1999). Alternative technologies for the Sahelian crop production systems in West Africa. Manag. Arid Ecosyst. 6:121-132.

 
 

TARN (2005). Arvalis, Institut du végétal et la Chambre d'Agriculture. Valeurs indicatives pour l'interprétation des analyses de terre.

 
 

Tabo R, Bationo A, Gerard B, Ndjeunga J, Marchal D, Amadou B, Annou MG, Sogodogo D, Taonda JBS, Hassane O (2007). Improving cereal productivity and farmers' income using a strategic application of fertilizers in West Africa. In Advances in integrated soil fertility management in sub-Saharan Africa: Challenges and Opportunities. Springer pp. 201-208.
Crossref

 
 

Troeh ZI, Loynachan TE (2003). Endomycorrhizal fungal survival in continuous corn, soybean, and fallow. Agron. J. 95:224-230.
Crossref

 
 

Trouvelot A, Kough JL, Gianinazzi V (1986). Mesure de taux de mycorrhization VA d'un système radiculaire. Recherche de méthodes d'estimation ayant une signification fonctionnelle. In physiological and genetic aspects of mycorhizical, V. Gianinazzi-Pearson et S. Gianinazzi). (édit), INRA, Paris. pp. 217-221.

 
 

Trappe JM, Hardy GE St., Molina R, Castellano M (1984). Reaction of mycorhizal fungi and mycorrhiza formation to pesticides. Annu. Rev. Phytopatol.22(1):331-359.
Crossref

 
 

Vidushi S, Yassir I (2013). Study Finds That More Nutritious Pearl Millet Can Meet Full Iron Needs of Children. Press Release HarvestPlus

 
 

Vincent C (2008). Agrisylviculture et communautés mycorhiziennes du sol : revue de la littérature et questions de recherche 40p.

 
 

Voets L, De La Providencia IE, Declerck S (2006). Glomeraceae and Gigasporaceae differ in their ability to form hyphal networks. J. New Pathol. 172:185-188.
Crossref

 
 

Walker C (1982). Systematics and taxonomy of arbuscular endomycorhizal fungi (Glomales) a possible way forward. Elsevier/INRA. Agronomie 12:887-897.
Crossref

 
 

Warner A, Mosse B (1982). Factors affecting the spread of vesicular mycorrhizal fungi in soil. New Phytologist 90:529-536.
Crossref

 
 

Xiao TJ, Yan QS, Ran W, Xu GH, Shen QR (2010). Effect of inoculation with arbuscular Mycorrhizal Fungus on nitrogen and phosphorus utilization in upland rice-mungbean intercropping system. Agric. Sci. Chin. 9(4):528-535.
Crossref

 

 


APA Sangare, G., Doka, D. I., Baragé, M., & Fatondji, D. (2017). Impact of previous legumes on millet mycorrhization and yields in sandy soil of West African Sahel. Journal of Soil Science and Environmental Management, 8(10), 164-189.
Chicago Gaston Sangare, Dahiratou Ibrahim Doka, Moussa Barag&e and Dougbedji Fatondji. "Impact of previous legumes on millet mycorrhization and yields in sandy soil of West African Sahel." Journal of Soil Science and Environmental Management 8, no. 10 (2017): 164-189.
MLA Gaston Sangare, et al. "Impact of previous legumes on millet mycorrhization and yields in sandy soil of West African Sahel." Journal of Soil Science and Environmental Management 8.10 (2017): 164-189.
   
DOI https://doi.org/10.5897/JSSEM2017.0647
URL http://academicjournals.org/journal/JSSEM/article-abstract/CFF9F9466901

Subscription Form