Research in Pharmaceutical Biotechnology
Subscribe to RPB
Full Name*
Email Address*

Article Number - D292C7167116


Vol.7(1), pp. 1-12 , December 2017
https://doi.org/10.5897/RPB2016.0104
ISSN: 2141-2324


 Total Views: 0
 Downloaded: 0

Full Length Research Paper

Antimicrobial activity and phytochemical fingerprints of five crude extracts obtained from indigenous medicinal plants of Uganda



Esther Katuura
  • Esther Katuura
  • Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda.
  • Google Scholar
Godfrey Sande Bossa
  • Godfrey Sande Bossa
  • Department of Pharmacology and Therapeutics, School of Health Sciences, Makerere University, P. O. Box 7062, Kampala Uganda.
  • Google Scholar
Paul Waako
  • Paul Waako
  • Department of Pharmacology and Therapeutics, School of Health Sciences, Makerere University, P. O. Box 7062, Kampala Uganda.
  • Google Scholar
Jasper Ogwal Okeng
  • Jasper Ogwal Okeng
  • Department of Pharmacology and Therapeutics, School of Health Sciences, Makerere University, P. O. Box 7062, Kampala Uganda.
  • Google Scholar







 Received: 27 November 2017  Accepted: 30 November 2017  Published: 31 December 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Five crude extracts from four Ugandan plants were screened in vitro for their antimicrobial activity and phytochemical composition. They included the chloroform extracts of Bothliocline longipes, Maesa lanceolata, Trimeria bakeri, Rhus natalensis and the petroleum ether extract of T. bakeri. The plant crude extracts were tested against Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 49619) and Entamoeba sp. Antimicrobial activities of the plants were determined by using the agar well diffusion and agar well dilution methods. The plant extracts showed activity against all the tested organisms with the zones of inhibition ranging from 4 to 19 mm. All the extracts inhibited the growth of S. aureus while the strongest activity was found for T. bakeri against S. aureus and Entamoeba sp. at 19 mm. Other plant extracts that induced strong antimicrobial activity were the chloroform extract of R. natalensis with an inhibition diameter of 13 mm against both S. aureas and P. aeruginosa and 9 mm diameter inhibition against E. coli. Only T. bakeri showed growth inhibition of S. aureus (4 mm). The minimum inhibitory concentration (MIC) was observed against S. aureus at 0.25 g/ml by the T. bakeri and B. longipes plant extracts. Sterol and triterpenes, fatty acids, flavanoids, coumarins and alkaloids were determined in T. bakeri, B. longipes, R. natalensis and M. lanceolata. The presence of these compounds indicates that the plants may contain an active compound or one that can be used as a template for the development of a new antimalarial or antibiotic medicine.
 
Key words: Antimicrobial, medicinal plants, fingerprinting, phytochemistry.

Abedini A, Roumy V, Mahieux S, Gohari A, Farimani M M, Rivière C, Samaillie J, Sahpaz S, Bailleul F, Neut C, Hennebelle T (2014). Antimicrobial activity of selected Iranian medicinal plants against a broad spectrum of pathogenic and drug multi-resistant micro-organisms. Lett. Appl. Microbiol. 59(4):412-21.
Crossref

 

Abraham I, Joshi R, Pardasani P, Pardasani RT (2011). Recent advances in 1, 4-benzoquinone chemistry. J. Braz. Chem. Soc. 22(3):385-421.
Crossref

 
 

Ajaiyeoba EO, Ashi JS, Okpako LC, Houghton PJ, Wright CW (2008). Antiplasmodial compounds from Cassia siamea stem bark extract. Phytother. Res. 22(2):254-255.
Crossref

 
 

Alam MAM, Sarder MA, Awal M, Sikder MH, Daulla A (2006). Antibacterial Activity of the crude ethanolic extract of Xylocarpus granatum stem barks. Bangladesh J. Vet. Med. 4(1):69-72.

 
 

Anneke E, Lenny H, Slingenbergh J. (2013). Pathogen–host–environment interplay and disease emergence. Emerg. Microbes. Infect. 2:5.
Crossref

 
 

Bibitha B, Jisha VK, Salitha CV, Mohan S, Valsa AK (2002).Antibacterial activity of different plant extracts. Short communication. Indian J. Microbiol. 42:361-363.

 
 

Borchardt JR, Wyse DL, Sheaffer CC, Kauppi KL, Fulcher RG, Ehlke NJ, Bey RF (2008). Antioxidant and antimicrobial activity of seed from plants of the Mississippi River Basin. J. Med. Plants Res. 2(4):081-093.

 
 

Chea A, Hout S, Long C, Marcourt L, Faure R, Azas N, Elias R (2006). Antimalarial Activity of sesquiterpene lactones from Vernonia cinerea. Chem. Pharm. Bull. 54(10):1437-1439.
Crossref

 
 

Christie WW, Dobson G (1999). Thin Layer Chromatography-revisited. Lipid technology 11:64-66.

 
 

De Souza GC, Haas APS, Von Poser GL, Schapoval E ES, Elisabetsky E (2004). Ethnopharmacological studies of antimicrobial remedies in the south of Brazil. J. Ethnopharmacol. 90(1):135-143.
Crossref

 
 

Cowan MM (1999). Plant products as anti-microbial agents. Clin. Microbial. Rev. 12(4):564-82.

 
 

Crump JA, Morrissey AB, Nicholson WL, Massung RF, Stoddard RA, Galloway RL, Ooi EE, Maro VP, Saganda W, Kinabo GD, Muiruri C, Bartlett JA (2013). Etiology of Severe Non-malaria Febrile Illness in Northern Tanzania: A Prospective Cohort Study. PloS J. Negl. Trop. Dis. 7(7):e2324.
Crossref

 
 

Ciulei I (1982) Methodology for Analysis of Vegetable Drugs. Practical Manual on the Industrial Utilisation of Medicinal and Aromatic Plants. Bucharest, Romania. pp. 1-62.

 
 

Dolabela MF, Oliveira SG, Nascimento JM, Peres JM, Wagner H, Póvoa MM, de Oliveira AB (2008). In vitro antiplasmodial activity of extract and constituents from Esenbeckia febrifuga, a plant traditionally used to treat malaria in the Brazilian Amazon. Phytomedicine 15(5):367-372.
Crossref

 
 

Evans WC (2002). Trease & Evans Pharmacognosy, 15th Edition, WB Saunders Company, London. pp. 11-14.

 
 

Farnsworth NR (1994). Ethnopharmacology and drug development. Ethnobot. Search New Drugs 185:42-51.

 
 

US Food and Drug Administration. (2016). Battle of the bugs: fighting antibiotic resistance. US Food and Drug Administration.

 
 

Gehring R, Riviere JE (2013). Limitations of MIC as the sole criterion in antimicrobial drug dosage regimen design: The need for full characterization of antimicrobial pharmacodynamic profile especially for drug-resistant organisms. Vet. J. Med. 198:15-18.
Crossref

 
 

Nascimento GG, Locatelli J, Freitas PC, Silva GL (2000). Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz. J. Microbiol. 31(4):247-256.
Crossref

 
 

Grayer RJ, Harborne JB (1994). A survey of antifungal compounds from higher plants, 1982–1993. Phytochemistry 37(1):19-42.
Crossref

 
 

Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, Andersson DI (2011). Selection of Resistant Bacteria at Very Low Antibiotic Concentrations. PLoS Pathog. 7(7):e1002158.
Crossref

 
 

Gutmann L, Billot-Klein D, Williamson R, Goldstein FW, Mounier J, Acar JF, Collatz E (1988). Mutation of Salmonella paratyphi A conferring cross-resistance to several groups of antibiotics by decreased permeability and loss of invasiveness. Antimicrob. Agents Chemother. 32(2):195-201.
Crossref

 
 

Harborne JB (1991). Phytochemical methods. A guide to Modern Techniques, 2nd edition, London, p 1-255.

 
 

Harborne JB (1984). Phytochemical methods. London chapman and Hall Ltd. pp. 49-188.
Crossref

 
 

Hien TT, White NJ (1993) Qinghaosu. Lancet 341:603-608.
Crossref

 
 

Jaime N, Oscar MM, Correa YM (2012). Antibacterial and antifungal activities of crude plant extracts from Colombian biodiversity. Rev. biol. Trop. 60(4):1535-1542.

 
 

Kamatenesi-Mugisha M, Oryem-Origa H (2006). Medicinal plants used for some menstrual gynecological ailments in Western Uganda. Norwegian J. Bot. (Lidia) 6:149-172.

 
 

Kariuki S, Dougan G (2014). Antibacterial resistance in Sub‐Saharan Africa: an underestimated emergency. Ann. N. Y. Acad. Sci. 1323(1):43-55.
Crossref

 
 

Katuura E, Waako P, Ogwal‐Okeng J, Bukenya‐Ziraba R (2007) Traditional treatment of malaria in Western Uganda. Afr. J. Ecol. 45(s1):48-51.
Crossref

 
 

Khan R, Islam B, Akram M, Shakil S, Ahmad AA, Ali SM, Khan AU (2009). Antimicrobial activity of five herbal extracts against multi drug resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules 14(2):586-597.
Crossref

 
 

Klayman DL (1985). Qinghaosu (artemisinin); an antimalarial drug from China. Science 288:1049-1055.
Crossref

 
 

Kunle OF, Egharevba HO, Ahmadu PO (2012). Standardization of herbal medicines - A review. Int. J. Biodivers. Conserv. 4(3):101-112.
Crossref

 
 

Likhitwitayawuid K, Kaewamatawong R, Ruangrungsi N. Krungkrai J (1997). Antimalarial naphthoquinones from Nepenthes thorelli. Planta Med. 64(03):237-241.
Crossref

 
 

Martinez MJ, Betancourt J, Alonso-Gonzalez N, Jauregui A (1996). Screening of some Cuban medicinal plants for antimicrobial activity. J. Ethnopharmacol. 52(3):171-174.
Crossref

 
 

Martinez MJ, Vasquez SM, Espinosa-Perez C, Dias M, Herrera-Sanchez M (1994) Antimicrobial properties of argentatine A isolated from Parthenium argentatum. Fitoterapia 65:371-372.

 
 

Murata T, Miyase T, Muregi FW, Ishibashi YN, Umehara K, Warashina T, Kanou S, Terada M, Ishih A (2008). Antiplasmodial Triterpenoids from Ekeberbia capensis. J. Nat. Prod. 71:167-174.
Crossref

 
 

Murugan T, Albino WJ, Murugan M (2013). Antimicrobial Activity and Phytochemical Constituents of Leaf Extracts of Cassia auriculata. Indian J Pharm Sci. 75(1):122-125.
Crossref

 
 

Ngouamegne ET, Fongang RS, Ngouela S, Boyom FF, Rohmer M, Tsamo E, Gut J, Rorenthal PJ (2008). Endodesmialdiol, a friedelane tritepenoid, and other antiplasmodial compounds from Endodesmia calophylloids. Chem. Pharm. Bull. 56:374-377.
Crossref

 
 

Nguedia AJC, Shey ND (2014). African medicinal plant derived products as therapeutic arsenals against multidrug resistant micro-organisms. J. Pharmacogn. Phytother. 6(5):59-69.

 
 

Nosten F, White NJ (2007). Artemisinin-Based Combination Treatment of Falciparum Malaria. In Defining and Defeating the Intolerable Burden of Malaria III: Progress and Perspectives: Am. J. Trop. Med. Hyg. 77(6):vi-xi.

 
 

National Prescribing Service Limited (NPS MedicineWise) (2014). Medicine subcategory Antibiotics 

View

 
 

Puupponen-Pimiä R, Nohynek L, Meier C, Kähkönen M, Heinonen M, Hopia A, Oksman-Caldentey KM (2001).Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 90(4):494-507.
Crossref

 
 

Ramanandraibe V, Grellier P, Martin MT, Deville A, Joyeau DR, Mouray E, Rasoanaivo P, Mambu L (2008). Antiplasmodial Phenolic Compounds from Piptadenia pervillei. Planta Med. 74(04):417-421.
Crossref

 
 

Rucker G, Schenkel EP, Mannis D, Mayer R (1996). Sesquiterpene peroxide from Senecio sellio and Eupartorium rufescene. Planta Med. 62(06):565-566.
Crossref

 
 

Salau AO, Odeleye OM (2007). Antimicrobial activity of Mucina pruriens on selected Bacteria. Afri. J. Biotechnol. 6(18):2091-2092.
Crossref

 
 

Sankar P (2016). Veterinary Drug Development from Indian Herbal Origin: Challenges and Opportunities. J. Anal. Pharm. Res. 3(2):00052.

 
 

Simonsen HT, Nords-Kjold JB, Smitt UW, Nyman U, Pushpangadan P. Prabhaker J, Varughese G (2001). In vitro Screening of Indian Medicinal Plants for antiplasmodial activity. J. Ethnopharmacol. 74(2):195-204.
Crossref

 
 

Stangeland T, Alele P E, Katuura E, Lye KA (2011). Plants used to treat malaria in Nyakayojo sub-county, Western Uganda. J. Ethnopharmacol. 137(1):154-166.
Crossref

 
 

Tabuti JR (2008) Herbal Medicines used in the treatment of malaria in Budiope County, Uganda. J. Ethnopharmacol. 116(1):33-42.
Crossref

 
 

Tona L, Kambu K, Ngimbi N, Cimanga K, Vlietinck AJ (1998). Antiamoebic and phytochemical screening of some Congolese medicinal plants. J. Ethnopharmacol. 61(1):57-65.
Crossref

 
 

Trease GE, Evan WC (2002). Pharmacognosy. 14th edn. Bailliere Tindall, London, pp. 76-180.

 
 

Verpoorte R (1989). Some phytochemical aspects of medicinal plant research. J. Ethnopharmacol. 25(1):43-59.
Crossref

 
 

World Health Organization (WHO) (2014). WHO first global report on antibiotic resistance reveals serious, worldwide threat to public health. Available at: 

View

 
 

World Health Organization (WHO) (2015). Antimicrobial resistance Available at: 

View

 

 


APA Katuura, E., Bossa, G. S., Waako, P., & Okeng, J. O. (2017). Antimicrobial activity and phytochemical fingerprints of five crude extracts obtained from indigenous medicinal plants of Uganda. Research in Pharmaceutical Biotechnology, 7(1), 1-12.
Chicago Esther Katuura, Godfrey Sande Bossa, Paul Waako and Jasper Ogwal Okeng. "Antimicrobial activity and phytochemical fingerprints of five crude extracts obtained from indigenous medicinal plants of Uganda." Research in Pharmaceutical Biotechnology 7, no. 1 (2017): 1-12.
MLA Esther Katuura, et al. "Antimicrobial activity and phytochemical fingerprints of five crude extracts obtained from indigenous medicinal plants of Uganda." Research in Pharmaceutical Biotechnology 7.1 (2017): 1-12.
   
DOI https://doi.org/10.5897/RPB2016.0104
URL http://academicjournals.org/journal/RPB/article-abstract/D292C7167116

Subscription Form