Scientific Research and Essays
Subscribe to SRE
Full Name*
Email Address*

Article Number - 5A94F1F61524


Vol.11(21), pp. 230-238 , November 2016
DOI: 10.5897/SRE2016.6456
ISSN: 1992-2248



Full Length Research Paper

Thermal treatment in air of direct current (DC) magnetron sputtered TiN coatings



Naim Syla*
  • Naim Syla*
  • Department of Physics, FMNS, University of Prishtina, Mother Theresa Str.5, KS-10000 Prishtina, Kosovo.
  • Google Scholar
Heinrich Oettel
  • Heinrich Oettel
  • Institute of Materials Science, TU Bergakademie Freiberg, Gustav-Zeuner Str.5, D-09559 Freiberg, Germany.
  • Google Scholar
Teuta Dilo
  • Teuta Dilo
  • Department of Physics, FNS, University of Tirana, Boulevard Zogu I, Tirana, Albania.
  • Google Scholar
Fisnik Aliaj
  • Fisnik Aliaj
  • Department of Physics, FMNS, University of Prishtina, Mother Theresa Str.5, KS-10000 Prishtina, Kosovo.
  • Google Scholar







 Received: 16 September 2016  Accepted: 05 October 2016  Published: 15 November 2016

Copyright © 2016 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


TiN coatings were deposited onto mirror polished stainless steel substrates by reactive DC magnetron sputtering using a pure Ti target and Ar+N2 atmosphere. The deposited TiN coatings were thermally treated in ambient air at temperatures ranging from 500 to 700°C for times between 1 and 16 h. The as-deposited and thermally treated coatings were characterized using glow discharge optical emission spectroscopy, x-ray diffraction and scanning electron microscopy. Titanium oxide layers were identified at the surface of thermally treated TiN coatings, which grow according to oxygen diffusion controlled parabolic time law. Phase composition of the oxide layers is found to depend strongly on temperature and exposure time. At low temperatures and shorter exposure times the oxide layers were found to be a mixture of anatase and rutile polymorphs of TiO2, while at high temperatures and longer exposure times the oxide layers consisted only of the rutile polymorph of TiO2. The results show that the microstructure of the oxide layers is porous and non-uniform across the oxide layer thickness. The porous microstructure is explained by the accumulation of nitrogen by short-range diffusion and transition into a gaseous state.

Key words: TiN, coating, magnetron sputtering, rutile, thermal treatment, X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GD-OES).

Chen HY, Lu FH (2005). Oxidation behaviour of titanium nitride films. J. Vac. Sci. Technol. A23(4):1006-1009.
Crossref

 

Chen L, Paulitsch J, Du Y, Mayrhofer PH (2012). Thermal stability and oxidation resistance of Ti-Al-N coatings. Surf. Coat. Technol. 206(11-12):2954-2960.
Crossref

 

Chim YC, Ding XZ, Zeng XT, Zhang S (2009). Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films 517(17):4845-4849.
Crossref

 

Cunha L, Andritschky M, Pischow K, Wang Z, Zarychta A, Miranda S, Cunha AM (2002). Performance of chromium nitride and titanium nitride coatings during plastic injection moulding, Surf. Coat. Technol. 153(2-3):160-165.
Crossref

 

Fateh N, Fontalvo GA, Gassner G, Mitterer C (2007). Influence of high-temperature oxide formation on the tribological behavior of TiN and VN coatings. Wear 262(9-10):1152-1158.
Crossref

 

Feng Ch, Li M, Xin L, Zhu Sh, Wang F (2006). Mechanical properties and oxidation behavior af a graded (Ti,Al)N coating deposited by arc-ion plating. Oxid. Met. 65(5-6):307-327.
Crossref

 

Franck M, Blanpain B, Oberländer BC, Celis JP, Roos JR (1993). Surface modification of TiN hard coatings with concentrated solar energy. Sol. Energy Mater Sol. Cells 31(3):401-414.
Crossref

 

Galindo RE, Fornies E, Albella JM (2006). Compositional depth profiling analysis of thin and ultrathin multilayer coatings by radio-frequency glow discharge optical emission spectroscopy. Surf. Coat. Technol. 200(22-23):6185-6189.
Crossref

 

Glaser A, Surnev S, Netzer FP, Fateh N, Fontalvo GA, Mitterer C (2007). Oxidation of vanadium nitride and titanium nitride coatings. Surf. Sci. 601(4):1153-1159.
Crossref

 

Gong C, Zhang J, Yan C, Cheng X, Zhang J, Yu L, Jin Z, Zhang Z (2012). Synthesis and microwave properties of nanosized titanium nitride. J. Mater. Chem. 22(8):3370-3376.
Crossref

 

Hanaor DAH, Sorrell CC (2011). Review of the anatase to rutile phase transformation. J. Mater. Sci. 46(4):855-874.
Crossref

 

Hones P, Zakri C, Schmid PE, Lévy F, Shojaei OR (2000). Oxidation resistance of protective coatings studied by spectroscopic ellipsometry. Appl. Phys. Lett. 76(22):3194-3196.
Crossref

 

Huang JH, Yu KJ, Sit P, Yu GP (2006). Heat treatment of nanocrystalline TiN films deposited by unbalanced magnetron sputtering. Surf. Coat. Technol. 200(14-15):4291-4299.
Crossref

 

Ichimura H, Kawana A (1993). High-temperature oxidation of ion-plated TiN and TiAlN films. J. Mater. Res. 8(5):1093-1100.
Crossref

 

Knight JC (1990). The effect of annealing on the hardness, interfacial adhesion and wear behaviour of plasma-vapour-deposited TiN coatings on steel. Wear 138(1-2):239-257.
Crossref

 

Milošev I, Strehblow H-H, Navinšek B (1995). XPS study of high-temperature oxidation of CrN and TiN hard coatings. Surf. Coat. Technol. 74-75(2):897-902.
Crossref

 

Mo JL, Zhu MH (2009). Tribological oxidation behaviour of PVD hard coatings. Tribol. Int. 42(11-12):1758-1764.
Crossref

 

Nicolet MA (1978). Diffusion barriers in thin films. Thin Solid Films 52(3):415-443.
Crossref

 

Niyomsoan S, Grant W, Olson DL, Mishra B (2002). Variation of color in titanium and zirconium nitride decorative thin films. Thin Solid Films 415(1-2):187-194.
Crossref

 

Nose M, Zhou M, Honbo E, Yokota M, Saji S (2001). Colorimetric properties of ZrN and TiN coatings prepared by DC reactive sputtering. Surf. Coat. Technol. 142-144:211-217.
Crossref

 

Omrani M, Habibi M, Amrollahi R (2012). Coating of titanium nitride on stainless steel targets by a 4 kJ plasma focus device. J. Fusion Ener. 31(4):401-404.
Crossref

 

Otani Y, Hofmann S (1996). High temperature oxidation behaviour of (Ti1-xCrx)N coatings, Thin Solid Films 287(1-2):188-192.
Crossref

 

PDF-2 (1997). International Centre for Diffraction Data (ICDD). c-TiN 00-038-1420, r-TiO2 00-021-1276, a-TiO2 00-021-1272, SS 00-033-0397.

 

Sabitzer C, Steinkellner C, Koller CM, Polick P, Rauchbauer R, Mayrhofer PH (2015). Diffusion behaviour of C, Cr and Fe in arc evaporated TiN- and CrN- based coatings and their influence on thermal stability and harndess. Surf. Coat. Technol. 275:185-192.
Crossref

 

Shin YH, Shimogaki Y (2004). Diffusion barrier property of TiN and TiN/Al/TiN films deposited with FMCVD for Cu interconnection in ULSI. Sci. Technol. Adv. Mater. 5(4):399-405.
Crossref

 

Sigurd D, Suni I, Wielunski L, Nicolet MA, Seefeld H (1981). Thermal oxidation of sputtered TiN diffusion barriers. Sol. Cells 5(1):81-86.
Crossref

 

Sundgren JE (1985). Structure and properties of TiN coatings (Review Paper). Thin Solid Films 128(1-2):21-44.
Crossref

 

Tompkins HG (1991). Oxidation of titanium nitride in room air and in dry O2. J. Appl. Phys. 70(1):3876-3880.
Crossref

 

Valkonen E, Ribbing CG, Sundgren JE (1986). Optical constants of thin TiN films: thickness and preparation effects. Appl. Optics 25(20):3624-3630.
Crossref

 

Vaz F, Machado P, Rebouta L, Cerqueira P, Goudeua Ph, Rivière JP, Alves E, Pischow K, de Rijk J (2003). Mechanical characterization of reactively magnetron-sputtered TiN films. Surf. Coat. Technol. 174:375-382.
Crossref

 

Wittmer M, Noser N, Melchior H (1981). Oxidation kinetics of TiN thin films. J. Appl. Phys. 52(11):6659-6664.
Crossref

 

Yang LC, Hsu CS, Chen GS, Fu CC, Zuo JM, Lee BQ (2005). Strengthening TiN diffusion barriers for Cu metallization by lightly doping Al. Appl. Phys. Lett. 87(12):1911-1913
Crossref

 

Zhang Sh, Zhu W (1993). TiN coating of tools steels: a review, J. Mater. Process. Technol. 39(1-2):165-177.
Crossref

 


APA Aliaj, F., Syla, N., Oettel, H., & Dilo, T. (2016). Thermal treatment in air of direct current (DC) magnetron sputtered TiN coatings. Scientific Research and Essays, 11(21), 230-238.
Chicago Fisnik Aliaj, Naim Syla, Heinrich Oettel and Teuta Dilo . "Thermal treatment in air of direct current (DC) magnetron sputtered TiN coatings." Scientific Research and Essays 11, no. 21 (2016): 230-238.
MLA Fisnik Aliaj, et al. "Thermal treatment in air of direct current (DC) magnetron sputtered TiN coatings." Scientific Research and Essays 11.21 (2016): 230-238.
   
DOI 10.5897/SRE2016.6456
URL http://academicjournals.org/journal/SRE/article-abstract/5A94F1F61524

Subscription Form