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Since software development environments, methods and tools are changing rapidly, the importance of 
accurate estimations in software projects is increasing significantly. Inaccurate estimations can lead to 
unpleasant results in the software projects so that many projects are failed at the early stages of the 
project. During the recent years, numerous estimation methods have been proposed that most of which 
are based on statistical techniques. Among all existing methods, simplicity of analogy based method 
makes it so common in this field. Analogy methods usually present accurate estimations but if the level 
of non normality in the software project datasets is high or type of most project features is categorical, 
these methods are confronted with inaccurate estimation problem. In this paper, genetic algorithm has 
been used under a new framework to improve the performance of analogy methods. A large dataset has 
been employed to evaluate the performance of the proposed method and the results have been 
compared with the other estimation methods. The results showed that the proposed method 
outperformed the other methods considerably. 
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INTRODUCTION 
 
Since the role of software in today‟s business market is 
undeniable, accurate estimation of software effort is very 
important. Planning, developing, constructing and all 
aspects of the software projects are affected by accurate 
estimations. During the recent decades, many methods 
for software effort estimation have been presented. 
Selecting a method as the best seems impossible 
because the performance of each method depends on 
the various factors such as available information, used 
technique, project features and so on, but the main aim of 
all  methods  is  presenting  the  results  which  are  more  
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accurate. Since at the early stages of the project, all the 
earned information is incomplete, the predictions may be 
inaccurate and this problem is seen in software projects 
rather than the other project types. The first idea for 
software effort estimation returns to 1950 by presenting 
the manual rule of thumb (Jones, 2007). By increasing 
the number of software projects and need of user society 
to earn high quality software, some models based on the 
linear equations were presented as the software effort 
techniques in 1965 (Boehm and Valerdi, 2008). As the 
pioneers of software estimation methods we can consider 
the name of Larry Putnam, Barry Bohem and Joe Aron 
(Jones 2007). Afterward in 1973, the IBM researchers 
presented the first automated tool, interactive productivity 
and quality (IPQ) (Jones, 2007). Barry  Boehm  proposed 



 

 

 

 

 
 
 
 
a new method based on computing some of the software 
project factors by means of several mathematical 
equations called COCOMO (Boehm, 1981). In addition, 
Boehm explained several algorithms in his book 
“Software Engineering Economics” (Boehm, 1981) that 
still are used by researchers. Other models such as 
Putnam Lifecycle Management (SLIM) (Putnam, 1987) 
and software evaluation and estimation of resources – 
software estimating model (SEER - SEM) continued the 
principals of COCOMO (Boehm and Valerdi, 2008). 
Introducing the function point (FP) as a metric for 
software size estimation by Albrecht and Gaffney (1983) 
was the other important event in that decade. Analogy 
based method was proposed in 1997 (Shepperd and 
Schofield, 1997) and its usage was increased 
significantly because it follows the human manners to 
solve the problems. Although this method usually present 
acceptable results but there are some constraints. For 
example, the software project indicators may 
demonstrate unnecessary or unreal specifications of the 
projects and particularly in some projects the amount of 
effort is surprising. In addition, achieving to detailed 
information in many projects is impossible and we have 
to predict the amount of effort with limited features. 

Several studies have tried to improve the performance 
of analogy methods and overcome the mentioned 
limitations by using mathematical and statistical methods 
(Keung and Kitchenham, 2007; Jingzhou and Guenther, 
2008; Keung, 2008; Jianfeng et al., 2009; Tosun et al., 
2009). Since software projects are usually complicated 
and relations between features are hard to understand, 
soft computing techniques are widely used to improve the 
performance of analogy methods (Chiu, 2007; Li et al., 
2009; Pahariya et al., 2009; Oliveira et al., 2010). In 
current study we are going to use genetic algorithm and 
hybrid optimization functions to improve the performance 
of analogy method. This paper is organized as follows: 
Subsequently, it includes principals of analogy methods, 
after which it describes the genetic algorithm, there after 
the performance metrics are presented; then, the 
proposed method is presented and numerical results are 
described; finally, conclusion and future works are 
presented. 

 
 
ANALOGY BASED ESTIMATION (ABE) 
 
ABE method was produced by Shepperd in 1997 as a 
substitute for algorithmic methods (Shepperd and 
Schofield, 1997). Structure of this method is based on 
comparison of new software project with some same 
historical projects to do the estimation. Usually, ABE 
includes four parts: 
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i) Historical dataset. 
ii) Similarity function. 
iii) Solution function. 
iv) The associated retrieval rules. 
 
Each part can be described as follows: 
 
i) Gathering the previous projects data and producing the 
historical dataset. 
ii) Choosing new proper features of the project such as 
(FP) and line of code (LOC). 
iii) Retrieving the previous projects and calculating the 
similarities between the target project and the previous 
projects. Usually the weighted Euclidean distance and 
the weighted Manhattan distance are used at this stage. 
iv) Estimating the effort of the target project. 
 
 
Similarity function 
 
ABE uses a similarity function which compares the 
features of two projects. There are two popular similarity 
functions, Euclidean similarity (ES) and Manhattan 
similarity (MS) (Shepperd and Schofield, 1997). Equation 
1 shows the Euclidean similarity function: 
 

         (1) 
 
Where, p and p' are the projects, wi is the weight 
assigned to each feature and varies between 0 and 1. Fi 
and fi' display the ith feature of each project and n 
demonstrates the number of features. δ is used for 
obtaining the none zero results. 

The MS formula is very similar to the ES but it 
computes the absolute difference between the features. 
Equation 2 shows the Manhattan similarity function. 
 

     (2) 
   
 
Solution functions 
 
After choosing the K most similar projects, it is possible to 
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estimate the effort and cost of the new project according 
to the selected features. The common solution functions 
are: the closest analogy as most similar project 
(Walkerden and Jeffery, 1999), the average of most 
similar projects (Shepperd and Schofield, 1997), the 
median of most similar projects (Angelis and Stamelos, 
2000) and the inverse distance weighted mean (Kadoda 
et al., 2000). The mean describes the average of the 
effort of K most similar projects, where K > 1. The median 
describes the median of the effort of K most similar 
projects, where K > 2. The inverse distance weighted 
mean adjusts the portion of each project in estimation by 
using Equation 3. 
 

            (3) 
 
Where p shows the new project, pk illustrates the kth 
most similar project, Cpk is the effort value of the kth most 
similar project pk, Sim (p, pk) is the similarity between 
projects pk and p and K is the total number of most similar 
projects. 
 
 
GENETIC ALGORITHM 
 
Genetic algorithm is a search based algorithm which 
follows the concept of natural evolution. Optimization 
problems are the main domain of genetic algorithm 
usage. An initial solution is determined as a genome or a 
chromosome. A population including several solutions 
(chromosomes) is constructed and it is treated as the first 
generation. Each solution (chromosome) is given a 
fitness value based on its merit and next generation is 
produced by using some operators called selection, 
mutation and crossover. Some irrelevant and unsuitable 
solutions are omitted during the generation production. 
The main operators of genetic algorithm are described as 
follows: 

 
 
Selection operator 
 
This operator selects the best solutions to go to the next 
generation. The amount of fitness value is the most 
important factor considered by selection operator. 

 
 
Crossover operator 
 
Crossover makes the genetic algorithm different as 

 
 
 
 
compared to the other optimization methods. The idea 
behind this operator is that by combining two parents 
(chromosomes) we can obtain two new children which 
are better than their parents. Some random interchanges 
are performed on two parents and two new children are 
produced. Several types of crossover are used in genetic 
algorithm based on user definitions. 
 
 
Mutation operator 
 
This operator is used to hold the diversity of the 
population and is comparable with biological mutation. In 
addition, by using mutation, the problem of local minimum 
will be solved because chromosomes will be sufficiently 
different in each population. Mutation operator changes 
some bits in a solution and produces new solution which 
may be better than the first one. The overall genetic 
algorithm based on previous concepts can be simply 
described as follows: 
 
i) Randomly generate a population. 
ii) Compute the fitness of each individual in population. 
iii) Repeat. 
 
1) Select parents from population. 
2) Performing the „crossover‟ on parents to generate next 
population. 
3) Performing the „mutation‟ on parents to generate next 
population. 
4) Compute the fitness of each individual in new 
population. 
 
iv) Until the best individuals are collected. 
 
 
PERFORMANCE METRICS 
 
Performance of estimation methods is evaluated by 
several metrics including RE (relative error), MRE 
(magnitude of relative error) and MMRE (mean 
magnitude of relative error) which are computed as 
follows (Shepperd and Schofield, 1997): 
  
RE = (estimated – actual)/(actual)            (4) 
 
MRE = |Estimated – Actual |/(Actual)            (5) 
 
MMRE = ∑MRE/N              (6) 
 
The other parameter used in evaluation of performance is 
PRED (percentage of the prediction) which is determined 
as: 



 

 

 

 

 
 
 
 
PRED(X) = A/N              (7) 
 
Where, A is the number of projects with MRE less than or 
equal to X and N is the number of considered projects. 
Usually, the acceptable level of X in software cost 
estimation methods is 0.25 and the various methods are 
compared based on this level. Decreasing of MMRE and 
increasing of PRED is the main aim of all estimation 
techniques regarding the software cost. 
 
 
THE PROPOSED METHOD 

 
Here, we are going to propose a new method for increasing the 
accuracy of software cost estimations by combining analogy 
method and genetic algorithm. As software projects are naturally 
complicated and ambiguous, the analogy method cannot present 
precise estimations to stand alone. High level of non normality and 
high number of outliers in software project datasets lead to 
inaccurate estimations. Outlier refers to a project in which there is 
no significant relation between the amount of effort and features 
which describe the project. Existing high number of outliers in a 
dataset leads to increase in the degree of non normality. In 

addition, high number of categorical features decreases the 
accuracy of analogy methods. Therefore, in this study the genetic 
algorithm has been used as a complement method for improving 
the performance of analogy method. More details about proposed 
method are presented subsequently. 
 
 
Methodology 

 

As can be seen in Equation 1, several weights are used as an 
adjustment to determine the similarity of projects. We can use the 
genetic algorithm to optimize the amount of MMRE by varying the 
weight of each feature. Therefore, finding the best weights is our 
main goal. Achieving to the best possible optimization needs to 
adjust the genetic algorithm parameters accurately. Our 
methodology comprises of two studies. Firstly, settings of genetic 
algorithm are presented and afterward training and testing stage 
are described. Selected dataset is presented thereafter. 
 
 
Genetic algorithm settings 
 
Here, all settings regarding the genetic algorithm are described. An 
intensive search has been performed to find the best parameters 
for high accurate estimation. In current study, 250 individuals are 
considered in first population; because in selected dataset each 

project has 26 features which 25 out of them are used in genetic 
algorithm. Final feature is effort which should be estimated. As our 
main goal is minimizing the MMRE and increasing the accurate of 
estimations, the fitness function is defined based on MMRE 
because this metric can clarify the real amount of error regarding 
the estimation method. PRED is not a suitable metric to use as 
fitness function because the amount of PRED is determined based 
on the specified limit and the process of specifying the mentioned 

limit is performed subjectively. Minimizing of MMRE can ensure 
achieving to proper estimation model based on analogy method. 
Gaussian is used as mutation  function  and  the  amount  of  „scale‟ 
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and „shrink‟ are adjusted to 1. Scattered type of crossover functions 
is selected to produce the next generation. Number of generations 
is 100 and the amount of „function tolerance‟ is determined by 
0.000001. 
 
 
Training stage 
 
All data is divided into three sets called D1, D2 and D3 which are 
equaled (approximately equal). D1 and D2 are considered as 
training sets and D3 is used as test set. In training stage, genetic 
algorithm tries to minimize the amount of MMRE for set D2. Indeed, 
analogy method is performed on two sets: D1 is used as basic 
dataset (prediction of projects of D2 by using projects of D1). 
Genetic algorithm adjusts the weights so that the MMRE is 
minimized. For more optimizing the MMRE, a hybrid optimization 
function is used after obtaining the results from genetic algorithm. 

Indeed the output of genetic algorithm is treated as input of this 
function. The mentioned function attempts to find a constrained 
minimum of a scalar function of several variables starting at an 
initial estimate. This is generally referred to as constrained 
nonlinear optimization or nonlinear programming. Several trial and 
error processes showed that hybrid function could decrease the 
MMRE by more optimizing the weights. In this study, Fmincon (has 
been implemented in Matlab software) has been used as hybrid 
function (letcher and Powell, 1963; Goldfarb, 1970). 

 
 
Testing stage 
 
After finding the most suitable weights, test stage is started. In this 
stage all projects of D3 are treated as test set and analogy method 
is used to estimate the projects effort. The most important point is 
that the obtained weights from previous section are applied to the 
analogy method for estimating in this stage. Figure 1 shows the 
framework of proposed method. 
 
 
Dataset 
 
For the purpose of evaluating the proposed method, Maxwell 
dataset (Maxwell, 2002) is used because this dataset is relatively 
new and comprises of 62 software projects (enough large). Each 

project in this dataset is described by 26 features and this high 
number of features is useful to show the performance of proposed 
method. All features excluding features 1, 24, 25, 26 are categorical 
and the mentioned features are numerical. High number of 
categorical features usually decreases the accuracy of analogy 
method. Therefore, we selected this dataset with 22 categorical 
features to appear as the real improvement of analogy method by 
using proposed method. Table 1 gives some statistical information 

about Maxwell dataset. 
 
 
NUMERICAL RESULTS 
 
At first, all 62 projects are divided into three sets D1, D2 
and D3 randomly with 22, 20 and 20 projects. Training 
stage is started by two first sets to find the best weights. 
As mentioned previously, 25 features are applied to the 
genetic algorithm to find the best values for weights. After  
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Figure 1. Proposed framework. 

 
 
 
finding the best weights, test stage is started, D1 is 
treated as the basic set and D3 as test set. In this stage 
analogy method is used for forecasting the development 
effort for projects in D3 by using the obtained weights 
from training stage. To earn more reliable results, this 
process is repeated three times (round) so that each 
time, three sets D1, D2 and D3 are produced randomly. 
Train and test stages are applied and the results of each 
round are recorded. In the following study, more details 
about the executing of the proposed method are 
presented. Figure 2 shows the trend of minimizing the 
MMRE regarding round one. 52 generations are seen in 
the mentioned figure. Regarding each generation, the 
best MMRE and mean MMRE have been computed. 
According to Figure 2, the best MMRE in round one is 
close to 0.47 and the best mean MMRE among all 
generations is related to generation 31. In addition, the 
amount of MMRE has been decreased significantly 

during the generations 1 to 25; afterward there is no high 
decrease regarding MMRE. Figure 3 shows the trend of 
minimizing the MMRE regarding round two. As seen in 
Figure 3, genetic algorithm has reduced the amount of 
MMRE from 0.79 to less than 0.65 for sets D1 and D2 as 
basic and test sets respectively. The best amount of 
MMRE is a little more than 0.64 obtained on generation 
54. The best mean MMRE is obtained on generation 31. 
Most significant decreasing of MMRE has happened 
during generations 1 to 15; afterward there is no 
significant decrease regarding MMRE. Figure 4 shows 
the trend of minimizing the MMRE regarding round three. 
The best value of MMRE is obtained on generation 55 
and the best mean MMRE is obtained also on generation 
55. As seen in Figure 4, „genetic algorithm‟ has reduced 
the amount of MMRE from above 0.59 to less than 0.53 
for sets D1 and D2 as basic and test sets respectively. 

Process of deceasing the MMRE has been continued 
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Table 1. Maxwell dataset details. 

 

Feature Description Mean Std Dev Min Max 

Time Time 5.58 2.13 1 9 

App Application type 2.35 0.99 1 5 

Har Hardware platform 2.61 1 1 5 

Dba Database 1.03 0.44 0 4 

Ifc User interface 1.94 0.25 1 2 

Source Where developed 1.87 0.34 1 2 

Telon use Telon use 2.55 1.02 1 4 

Nlan Number of different development languages used 0.24 0.43 0 1 

T01 Customer participation 3.05 1 1 5 

T02 Development environment adequacy 3.05 0.71 1 5 

T03 Staff availability 3.03 0.89 2 5 

T04 Standards use 3.19 0.70 2 5 

T05 Methods use 3.05 0.71 1 5 

T06 Tools use 2.90 0.69 1 4 

T07 Software‟s logical complexity 3.24 0.90 1 5 

T08 Requirements volatility 3.81 0.96 2 5 

T09 Quality requirements 4.06 0.74 2 5 

T10 Efficiency requirements 3.61 0.89 2 5 

T11 Installation requirements 3.42 0.98 2 5 

T12 Staff analysis skills 3.82 0.69 2 5 

T13 Staff application knowledge 3.06 0.96 1 5 

T14 Staff tool skills 3.26 1.01 1 5 

T15 Staff team skills 3.34 0.75 1 5 

Duration Duration 17.21 10.65 4 54 

Size Application size 673.31 784.08 48 3,643 

Effort Effort 8,223.21 10,499.90 583 63,694 

 
 
 
during all generations. Table 2 shows the overall results 
after completing all the three rounds. Each round in Table 
2 has been divided into two sections; showed results of 
the first section (analogy) have been computed by 
applying analogy method without weighting (w = 1 in 
Equation 1) on D1 and D3 as basic and test sets 
respectively. Showed results of second section 
(proposed) have been computed by applying analogy 
method with weighting (best weights from train stage) on 
D1 and D3 as basic and test sets respectively. As can be 
seen in Table 2, the performance of proposed method 
regarding all three rounds based on MMRE and PRED 
(0.25) is better than analogy method. This means that 
genetic algorithm can improve the accuracy level of 
predictions computed by analogy method. Figure 5 
depicts the percentage of improvement in terms of 
MMRE and PRED (0.25) obtained from each round. 

According to Figure 5, the most improvement is related 
to the first round with about 50% for MMRE and 36% for 

PRED (0.25). Also the least improvement is seen in 
round two. Since performance metrics are computed 
based on the mean of results, we can say that the 
percentage of improvement regarding the proposed 
method is significant. An important point about choosing 
the test sets is that if the test set is selected from various 
types of projects in dataset, the performance of proposed 
method will be better. This means that there is the 
significant relation between the diversity of training set 
and the level of estimation accuracy in proposed method. 
 
 
Evaluation of proposed method 
 
Here, we are going to evaluate the proposed method 
against the other estimation methods. Several common 
methods like ANN (artificial neural network) (Mair et al., 
2000), classification and regression trees (CART) 
(Stensrud, 2001), stepwise regression (SWR) (Mendes et 
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Figure 2. Performance of Genetic Algorithm in round 1. 

 
 
 

 
 

Figure 3. Performance of „genetic algorithm‟ in round 2. 
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Figure 4. Performance of Genetic Algorithm in round 3. 

 
 
 

Table 2. Overall results on three rounds. 
 

 Method MMRE PRED (0.25) 

Round 1 
Analogy 0.82 0.3 

Proposed 0.52 0.45 

  
  

Round 2 
Analogy 0.88 0.2 

Proposed 0.74 0.25 

  
  

Round 3 
Analogy 0.64 0.35 

Proposed 0.50 0.45 

  
  

Average 
Analogy 0.78 0.28 

Proposed 0.59 0.38 

 
 
 
al., 2003) are considered for comparison. In addition, 
several adjusting methods which have been proposed to 

improve the analogy methods are participated in the 
comparison. The adjusting methods include adjusting 
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Figure 5. Percentage of improvement in each round. 
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Figure 6. Evaluation of proposed method versus other methods based on MMRE. 

 
 
 
with genetic algorithm (GA) (Chiu, 2007), linear adjusting 
the ABE (LABE) (Walkerden and Jeffery, 1999), 
regression adjusting the ABE (RABE) (Jorgensen et al., 
2003) and non linear adjusting the ABE (NABE) (Li et al., 
2009). All mentioned methods have been implemented in 
Li et al., 2009) on Maxwell dataset. The results of the 
proposed method should be compared with the other 
methods based on average amount of MMRE and PRED 

(0.25) in three rounds (Table 2). The following figures 
shows the performance of proposed method compared 
with the other estimation methods based on MMRE and 
PRED (0.25) to show the obtained improvement. Figure 6 
shows the comparison of all methods based on MMRE. 
As can be seen in Figure 6, proposed method presents 
the lowest MMRE among all methods; NABE and RABE 
are located in next places. The worst amount of MMRE is  
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Figure 7. Evaluation of proposed method versus other methods based on PRED (0.25).  

 
 
 
related to CART method with 1.4 and above error. Figure 
7 depicts the comparison of all mentioned methods 
based on PRED (0.25). According to Figure 7, the 
proposed method presents the highest amount of PRED 
(0.25) among other methods; NABE and LABE are 
located in next places. The least amount of PRED is 
related to ANN method. 

 
 
Conclusion 
 
One of the most important goals of the project managers 
is to estimate their own projects accurately because 
inaccurate estimations can lead to project fail easily. 
Since usually there are previous experiences regarding 
the software projects, the analogy based methods could 
be an ideal choice for estimating. This method has been 
widely used in recent decade but if the level of non 
normality in software projects is more than usual and 
number of categorical features is high, some complement 
techniques are necessary for avoiding from inaccurate 
estimations. In this paper, genetic algorithm was 
combined by analogy method to present the more 
accurate results. By performing an intensive trial and 
error, the best structure for genetic algorithm was found 
and a hybrid function was added for more optimizing. For 

the purpose of achieving more reliable results we 
repeated our proposed framework three times with 
random sets in training and testing stages. In addition, 
evaluation of the proposed method was done by using a 
large dataset with high number of projects and features. 
The results showed that the proposed method can 
improve the accuracy of estimations in analogy method 
significantly. In addition, comparison of proposed method 
with other methods showed that it outperforms the other 
methods based on evaluation metrics. As future works 
we are going to add other soft computing techniques to 
analogy methods to present more accurate and reliable 
estimations. 
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