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The functional variable method is a powerful mathematical tool for obtaining exact solutions of 
nonlinear evolution equations in mathematical physics. In this paper, the functional variable method is 
used to establish exact solutions of the (2+1)-dimensional Kadomtsov-Petviashivilli-Benjamin-Bona-
Mahony (KP-BBM) equation, the (2+1)-dimensional Konopelchenko-Dubrovsky equation, the (3+1)-
dimensional Burgers equation and the (3+1)- dimensional Jimbo-Miwa equation. The exact solutions of 
these four nonlinear equations including solitary wave solutions and periodic wave solutions are 
obtained. It is shown that the proposed method is effective and can be applied to many other nonlinear 
evolution equations. Comparison between our results obtained in this paper and the well-known results 
obtained by different authors using different methods are presented. 
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INTRODUCTION 
 
The investigation of exact solutions of nonlinear evolution 
equations that describe many physical phenomena help 
us to understand these phenomena better. These 
phenomena appear in various fields, such as fluid 
mechanics, plasma physics, optical fibers, biology, solid 
state physics, chemical physics, geochemistry and so on. 
With the development of soliton theory and the availability 
of computer symbolic system like Mathematica or Maple, 
many powerful methods for obtaining exact solutions of 
nonlinear evolution equations are presented, such as the 
inverse scattering method (Ablowitz and Clarson, 1991), 
the Bäcklund transformation method (Gu, 1995; Miura, 
1978), the bilinear method (Hirota, 1971; Ma, 2011), the 
Painlevé method (Weiss et al.,  1983),  the  tanh  function 

method (Malfliet, 1992), the sine-cosine method (Yan, 
1996), the homogeneous balance method (Wang, 1996), 
the homotopy perturbation method (He, 2005a), the 
variational method (He, 2005b), the exp-function method 
(He and Wu, 2006; Ma et al., 2010; Ma and Zhu 2012), 
the Adomain Padé approximation (Abassy et al., 2004), 
the algebraic method (Hu, 2005), the F-expansion 
method (Wang and Zhang, 2005), the Jacobi elliptic 
function method (Liu et al., 2001), the ( / )G G -expansion 

method (Liu et al., 2012; Wang et al., 2008), the modified 
simple equation method (Jawad et al., 2010; Zayed, 
2011; Zayed and Ibrahim, 2012b), the functional variable 
method (Bekir and San, 2012; Zayed and Ibrahim, 2012a; 
Zayed et  al.,  2013;  Zerarka  et  al.,  2010;  Zerarka  and 
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Ouamane, 2010; Zerarka et al., 2011), the generalized 
Riccati equation mapping method (Zhu, 2008), the local 
fractional variation iteration method (Yang and Baleanu, 
2013), the local fractional series expansion method (Yang 
et al., 2013), the transformed rational function method 
(Ma and Fuchssteliner, 1996; Ma et al., 2007; Ma and 
Lee, 2009) and so on. 

The authors (Bekir and San, 2012; Zayed and Ibrahim, 
2012a; Zayed et al., 2013; Zerarka et al., 2010; Zerarka 
and Ouamane, 2010; Zerarka et al., 2011) have applied 
the functional variable method for finding exact solutions 
of real and complex nonlinear evolution equations in 
mathematical physics. The advantage of this method is 
that one treats nonlinear problems by essentially linear 
methods. That is based on which it is easy to construct 
the exact solutions such as soliton-like waves, 
compacton and noncompacton solutions, trigonometric 
function solutions, pattern soliton solutions, black solitons 
or kink solutions and so on. 

The objective of this paper is to apply the functional 
variable method to find the exact solutions of four 
nonlinear evolution equations, namely, the (2+1)-
dimensional KP-BBM equation, the (2+1)-dimensional 
Konopelchenko-Dubrovsky equation, the (3+1)-
dimensional Burgers equation and the (3+1)- dimensional 
Jimbo-Miwa equation. All these four nonlinear equations 
were not investigated before using that method. 

The rest of this article is organized as follows: First is a 
description of the functional variable method. This is 
followed by illustration of applications of this method to 
the four nonlinear evolution equations indicated above; 
thereafter the paper is concluded. 
 
 

DESCRIPTION OF THE FUNCTIONAL VARIABLE 
METHOD  
 

Suppose we have a nonlinear evolution equation in the 
form: 
 

( , , , , , , ,...) 0,t x y tt xx yyF u u u u u u u                       (1) 

 

where F is a polynomial in ( , , )u x y t  and its partial 

derivatives. With reference to Bekir and San (2012), 
Zayed and Ibrahim (2012a), Zayed et al. (2013), Zerarka 
et al. (2010, 2011), and Zerarka and Ouamane (2010), 
the main steps of this method can be described as 
follows: 
 

Step 1. We use the wave transformation 
 

( , , ) ( ), ,u x y t u x y ct                          (2) 

 

where c is a non zero constant, to reduce Equation (1) to 

the following ODE : 
 

( , , , ,...) 0,P u u u u                                     (3) 
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where P  is a polynomial in ( )u   and its total 

derivatives, while / ,u du d  2 2/u d u d 

 

and so 

on. 
 
Step 2. We make a transformation in which the unknown 

function ( )u   is considered as a functional variable in 

the form: 
 

( ),u F u                                                          (4) 

 

and some successively derivatives of ( )u  are as 

follows: 
 

2

2 2

2 2 2 2

1
( ) ,

2

1
( ) ,

2

1 1
( ) ( ) ( ) ,

2 2

u F

u F F

u F F F F











 
    

 

                     (5) 

 

and so on, where ' / .d du  
 

Step 3. We substitute (4) and (5) into (3) to reduce it to 
the following ODE: 
 

( , , , ,...) 0.R u F F F                                     (6) 

 

After integration, the Equation (6) provides the 
expression of F, and this in turn together with the 
Equation (4) give the appropriate solutions of the 
Equation (1). In order to illustrate how the proposed 
method works, we examine some examples treated by 
other methods. This matter is subsequently introduced. 
 
 
APPLICATIONS 
 

Here, we will apply the functional variable method to 
construct the exact solutions for the following four 
nonlinear evolution equations: 
 
 
Example 1: The (2+1)-dimensional KP-BBM equation 
 
This equation is well-known (Wazwaz, 2008; Yu and Ma, 
2010; Zayed and Al-Joudi, 2010) and has the form: 
 

  2 0,t x xxt yyx x
u u u u u               (7) 

 

where , ,    are arbitrary constants. The solution of 

Equation (7) has  been  investigated  in  (Wazwaz,  2008) 
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Figure 1. The plot of the solution (13) when 

0

1 3
1, , , 0.
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Figure 2. The plot of the solution (14) when 

0

1 3
1, , , 0.

4 2
c y   


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using the extended tanh – function method and in (Yu 
and Ma, 2010) using the exp-function method and in 
(Zayed and Al-Joudi, 2010) using the auxiliary equation 
method respectively. Let us now solve Equation (7) using 
the aforementioned proposed method. To this end, we 
apply the wave transformation (2) to reduce Equation (7) 
into the following ODE: 
 

  2(1 ) 0.c u u c u u   

              (8) 

 

Integrating the Equation (8) with respect to  twice, we 

get  
 

2(1 ) 0.c u u c u                          (9) 

 

with zero constants of integration. Substituting (5) into (9) 
we obtain 
 

   2 2
(1 ) .

u
F u c

c
 




                                     (10) 

 
 
 
 
Integrating the Equation (10) with respect to u , we have 

 

2 3(1 )
( ) .

3 2

c
F u u u

c

 

 

  
                     (11) 

 
From (4) and (11) we deduce that 
 

0

2
( ),

33(1 )

2

du

cc
u u


 






 

 


                    (12) 

 

where 
0 is a constant of integration. After integrating 

(12), we have the following exact solutions: 
 

(i) If 
1

0,
c

c





 
  we obtain the bell-shaped solitary 

wave solutions 
 

2

1 0

3(1 ) 1 1
( , , ) sec ( ) ,

2 2

c c
u x y t h x y ct

c

 


 

     
      

   

   (13) 

 

2

2 0

3(1 ) 1 1
( , , ) csc ( ) ,

2 2

c c
u x y t h x y ct

c

 


 

      
      

   

  (14) 

 

(ii) If 
1

0,
c

c





 
  we obtain the periodic wave solutions 

 

2

3 0

3(1 ) 1 1
( , , ) sec ( ) ,

2 2

c c
u x y t x y ct

c

 


 

    
    

 

   (15) 

 

2

4 0

3(1 ) 1 1
( , , ) csc ( ) ,

2 2

c c
u x y t x y ct

c

 


 

    
    

 

 (16) 

 
(iii) If 1 ,c    we obtain the rational solution 

 

5 2

0

6
( , , ) .

( (1 ) )

c
u x y t

x y t



  


   
                     (17) 

 
Remark 1: Equation (12) can be found using the direct 
integration method as follows: Multiply both sides of 

Equation (9) by u and integrate with zero constant of 

integration, we arrive at the Equation (12). Our solutions 
(13) to (16) are in agreement with the solutions obtained 
in Wazwaz (2008), Yu and Ma (2010), Zayed and Al-
Joudi (2010) while the solution (17) is new. Figures 1 and 
2 describe the behavior of the solutions (13) and (14) 
while   Figures   3   and  4  describe  the  behavior  of  the 



 
 
 
 

 
 

Figure 3. The plot of the solution (15) when 
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Figure 4. The plot of the solution (16) when 

0

1 3
1, , , 0.
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c y           

 
 
 

solutions (15) and (16). 
 
 
Example 2: The (2+1)- dimensional Konopelchenko-
Dubrovsky equation 
 
This equation is well-known (Wang and Wei, 2010; 
Zhang and Xia, 2006) and has the form: 
 

2 23
6 3 3 0,

2

,

t xxx x x y x

y x

u u uu u u v vu

u v

       



        (18) 

 

where ,   are non zero constants. The solution of the 

system (18) has been investigated using different 
methods (Wang and Wei, 2010; Zhang and Xia, 2006). 
Let us now solve system (18) using the aforementioned 
proposed method. To this end, we apply the wave 
transformations (2) to reduce the system (18) into the 
following ODE: 
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2 23
( 3) 3(2 ) 0,

2
c u u u u uu                   (19) 

 

where ,v u  with zero constant of integration. 

Integrating the Equation (19) once with respect to
 

,  we 

get 
 

2 3 21 3
( 3) (2 ) 0,

2 2
c u u u u                (20) 

 

with zero constant of integration. Substituting (5) into (20) 
we obtain 
 

2 2 3 21 1 3
( ) (2 ) ( 3)

2 2 2
F u u c u                             (21) 

 

Integrating the Equation (21) with respect to
 

,u  we have 

 
2 2

2 4 2

2(2 ) 4(2 ) 4( 3)
( ) ,

2

c
F u u u

    

  

    
     

   

  (22) 

 

with zero constant of integration. From (4) and (22) we 
deduce that  
 

0
2 2

( ),
2( )

du

u u B A


  

 
                     (23) 

 

where 2 2

2 2

4( 3) 2(2 )
, .

c
A B B

 

 

 
    After integrating (23) 

with zero constant of integration, we have the following 
exact solutions: 
 

(i) If 3 0,c    we have the periodic wave solutions 

 

2

0

1

2

0

3
( )sec ( )

2
( , , ) ,

3
1 tan ( )

2

c
A B x y ct

u x y t
A B c

x y ct
A B





 
    

 


   
     

   

     (24) 

 

2

0

2

2

0

3
( )csc ( )

2
( , , ) ,

3
1 cot ( )

2

c
A B x y ct

u x y t
A B c

x y ct
A B





 
     

 


   
     

   

      (25) 

 

(ii) If 3 0,c    we have the solitary wave solutions 

 

2

0

3

2

0

( 3)
( )sec ( )

2
( , , ) ,

( 3)
1 tanh ( )

2

c
A B h x y ct

u x y t
cA B

x y ct
A B





  
    

  


   
     

    

   (26) 
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Figure 5. The plot of the solution (24) when 

01, 2, 0.c B A y       

 
 
 

2

0

4

2

0

( 3)
( ) csc ( )

2
( , , )

( 3)
1 coth ( )

2

c
A B h x y ct

u x y t
cA B

x y ct
A B





  
    

  


   
     

    

   (27) 

 

(iii) If 3c    and 0B   we have the rational solution 

 

5 2 2

0

2
( , , ) .

1 ( 3 )
4

B
u x y t

B
x y t






   

        (28) 

 
 
Remark 2: Equation (23) can be found using the direct 
integration method as follows: Multiply both sides of 

Equation (20) by u and integrate with zero constant of 

integration, we arrive at the Equation (23). Our exact 
solutions (24) to (28) of Equation (18) are new and not 
reported elsewhere using the proposed method. Figure 5 
describes the behavior of the solutions (24). 
 
 
Example 3: The (3+1)-dimensional Burgers equations 
 

This equation is well known (Dai and Wang, 2009; Zhou 
et al., 2008) and has the form: 
 

2 2 2 0,

, .

t y x z xx yy zz

x y z y

u uu vu wu u u u

u v u w

      

 
       (29) 

 

The solution of the system (29) has been investigated 
using different methods (Dai and Wang, 2009; Zhou et 
al., 2008). Let us now solve system (29) using the 
aforementioned proposed method. To this end, we apply 
the wave transformation 
 

( , , , ) ( ), ,u x y z t u x y z ct             (30) 

 
 
 
 
to reduce system (29) into the following ODE: 
 

6 3 0,cu uu u                                     (31) 

 

where v u  and w u  with zero constants of 

integration. Integrating the Equation (31) once with 

respect to
 
 , we get  

 
23 3 0,cu u u                                              (32) 

 
with zero constant of integration. Substituting (5) into (32) 
we obtain 
 

( ) .
3

c
F u u u

 
   

 
                                            (33) 

 
From (4) and (33) we deduce that 
 

0 ,

3

du

c
u u

 


 
 

 
 

                                                  (34) 

 

where 
0 is a constant of integration. After integrating 

(34), we have the following exact solutions: 
 

 1 0( , , , ) 1 tanh ,
6 6

c c
u x y z t x y z ct 

   
       

  

  (35) 

 

 2 0( , , , ) 1 coth ,
6 6

c c
u x y z t x y z ct 

   
       

  

  (36) 

 
Remark 3: We can solve Equation (32) using the 
separation of variable method directly. Our exact 
solutions (35) and (36) are new and not reported 
elsewhere using the proposed method. 
 
 
Example 4: The (3+1)-dimensional Jimbo-Miwa 
equation 
 
This is well-known (Zhang et al., 2009) and has the form: 
 

6 3 3 3 3 0,

.

xxxy x y xx xx yt zz

y x

u u u uv u v u u

u v

     


    (37) 

 
The solution of the system (37) has been investigated in 
Zhang et al. (2009) using the generalized F-expansion 
method. Let us now solve system (37) using the 
aforementioned proposed method. To this end, we apply 
the wave transformation (30) to reduce system (37) into 
the following ODE: 



 
 
 
 

 6 3( 1) 0,u uu c u  
                        (38) 

 
where ,v u  with zero constant of integration. 

Integrating the equation (38) twice with respect to
 
 , we 

get 
 

23 3( 1) 0,u u c u                                     (39) 

 
with zero constants of integration. Substituting (5) into 
(39) we obtain  
 

 2 21
3( 1) 3 ,

2
F c u u


                                   (40) 

 
Integrating the Equation (40) with respect to

 
,u  we have 

 

3( 1)
( ) 2 .

2

c
F u u u


                                  (41) 

 
From (4) and (41) we deduce that 
 

02( ),
3( 1)

2

du

c
u u

  





                                (42) 

 

where 
0 is a constant of integration. After integrating 

(42), we have the following exact solutions: 
 

(i) If 1 0,c    we obtain the periodic wave solutions 

 

2

1 0

3( 1) 1
( , , , ) sec 3( 1)( ) ,

2 2

c
u x y z t c x y z ct 

  
       

 
  (43) 

 

2

2 0

3( 1) 1
( , , , ) csc 3( 1)( ) ,

2 2

c
u x y z t c x y z ct 

  
       

 
    (44) 

 

(ii) If 1 0,c    we obtain the bell-shaped solitary wave 

solutions 
 

2

3 0

3( 1) 1
( , , , ) sec 3( 1)( ) ,

2 2

c
u x y z t h c x y z ct 

  
      

 

      (45) 

 

2

4 0

3( 1) 1
( , , , ) csc 3( 1)( ) ,

2 2

c
u x y z t h c x y z ct 

  
      

 
    (46) 

 

(iii) If 1,c    we obtain the rational solution 

 

5 2

0

2
( , , , ) .

( )
u x y z t

x y z t 




   
                       (47) 
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Remark 4: Equation (42) can be found using the direct 
integration method as follows: Multiply both sides of the 

Equation (39) by u and integrate with zero constant of 

integration, we arrive at the Equation (42). Our exact 
solutions (43) to (47) are new and not reported elsewhere 
using the proposed method. 
 
 

Conclusions 
 

The functional variable method applied in this paper has 
been used to find the exact solutions of four nonlinear 
evolution equations, namely, the (2+1)-dimensional KP-
BBM equation, the (2+1)-dimensional Konopelchenko-
Dubrovsky equation, the (3+1)-dimensional Burgers 
equation and the (3+1)- dimensional Jimbo-Miwa 
equation, which were not discussed elsewhere using that 
method. 

On comparing the proposed method in this article with 
the other methods used in Dai and Wang (2009), Wang 
and Wei (2010), Wazwaz (2008), Yu and Ma (2010), 
Zayed and Al-Joudi (2010), Zhang and Xia (2006), Zhang 
et al. (2009), and Zhou et al. (2008) we find that the 
functional variable method is simpler than those methods. 
Let us now compare between our obtained results and 
the well-known results obtained by other authors using 
different methods as follows: Our results (15) and (16) of 
the (2+1)-dimensional KP-BBM Equation (7) are in 
agreement with the results (20) and (21) obtained in Yu 
and Ma (2010) using the exp-function method, while our 
results (13) and (14) of the same Equation (7) are in 
agreement with the results (31) and (32) obtained in 
Wazwaz (2008) using the extended tanh- function 
method. Furthermore, our results (13) to (16) of the same 
Equation (7) are in agreement with the results 

, ( 1,2,3,4)iu i   obtained in Zayed and Al-Joudi (2010: 

96) using an auxiliary ordinary differential equation. Our 
obtained solutions of the nonlinear Equations (18), (29), 
(37) are new and different from those obtained in Dai and 
Wang (2009), Zhang and Xia (2006), Zhang et al. (2009) 
and Zhou et al. (2008) which are not reported elsewhere. 

In summary, we conclude that the proposed method 
used in this article allows us to produce easily exact 
solutions for several families of nonlinear evolution 
equations in mathematical physics. Finally, by using the 
Maple we have assured the correctness of the obtained 
solutions by putting them back into the original equations. 
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