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The point density is a preeminent parameter on airb orne laser scanner surveys. It is not only related to 
accuracy but costs and savings. The lack of uniform ity of the point density across the survey is well-
known in the scientific community. This paper analy zes the behaviour of the point density derived by a n 
oscillating mirror laser scanner on different singl e strips on flat bare ground in order to estimate a  
meaningful mean density value. The variation of the  point density at both extreme ends of the 
oscillating mirror scan is meaningful. It will be d emonstrated that excluding the extreme sectors acro ss 
the strip corresponding to 1/8 of the swath width ( 12.5% of the sampling area, half in each side) for the 
computation of the mean density value is enough to satisfy light detection and ranging (LiDAR) 
specifications for national level surveys. 
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INTRODUCTION 
 
Airborne laser scanning (ALS) technology, better known 
as light detection and ranging (LiDAR) is considered one 
of the best alternatives to obtain digital terrain models 
(DTMs) with reliable decimeter accuracy (Kraus and 
Pfeifer, 1998; Axelsson, 2000). Accuracy, high spatial 
resolution and the ability to penetrate partially through 
dense vegetation areas are namely the reason for the 
increasing number of applications of this technology. 
Over traditional photogrammetry and land surveying, 
LiDAR technology offers high accuracy, fast acquisition 
and processing time with minimum human dependence 
(Gungor et al., 2010). LiDAR DTMs can be used as input 
GIS data for analysis, monitoring and simulation tasks 
(Lohr and Droesen, 1997; Raber et al., 2007; Wang et al., 
2008), and specially for vegetation/biomass studies (Hall 
et al., 2005; Huang et al., 2009; Estornell et al., 2010; 
Jochem et al., 2011; Llorens et al., 2011).  

The   desired   number  of  points  per  unit  area  is  set 
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depending on the purpose of the LiDAR mission, for 
example, detailed 3D models of urban areas, flood-risk 
maps, vegetation-cover analysis, etc. This value fixes the 
level of detail that can be extracted from the LiDAR data 
(Triglav-Cekada and Crosilla, 2009). For countrywide 
models, the point density that is currently used is around 
0.5 to 1 point/m2 (Artuso et al., 2003); more demanding 
densities are required for example, for biomass studies 
and tree modeling (Wang et al., 2008; Llorens et al., 
2011). More than 7 to 8 points/m2 do not yield a 
significant improvement when computing the DTM 
accuracy. Higher densities (8 to 10 points/m2) are only 
recommended for dense vegetation areas (Reutebuch et 
al., 2003; Chasmer et al., 2006). 

Several factors are important when choosing the flight 
parameters for the LiDAR mission: purpose, accuracy, 
field conditions and savings. Increasing the height of the 
flight is the most frequent way to reduce data acquisition 
costs. Increasing the height of the mission, the density 
decreases as well as the accuracy, and the size of the 
footprint increases whether the pulse rate is kept 
constant (Yu et al., 2004; Hyyppä et al., 2005). However, 
LiDAR  flights   with   new   systems   allow   providers  to 



 
 
 
 

 
 
Figure 1.  Theoretical zigzag pattern over the ground produced 
by an oscillating mirror laser scanner. 

 
 
 
achieve the same density with lower costs (Ahokas et al., 
2005).  

Point density on the ground is determined by the 
aircraft speed, scan angle, pulse rate, scan rate, altitude 
and sensor drift (Axelsson, 2000; Kukko and Hyyppä, 
2009). Point density is considered one of the factors that 
affect DTM altimeter accuracy: with higher density, the 
resolution increases as well as the accuracy of the DTM 
(Hodgson and Bresnahan, 2004; Su and Bork, 2006; 
Aguilar et al., 2010). On the other hand, a low density 
implies more separation between points, degrading the 
accuracy in the point interpolation (Su and Bork, 2006).  

A reduction in the density, that is, an increase in the 
point-spacing, influences the accuracy of the DEM: the 
errors increase when the density decreases (Liu et al., 
2007). The point-spacing is the major contributor to the 
vertical error in LiDAR-derived DEM (Hodgson and 
Bresnahan, 2004). An empirical relationship between 
point-spacing and the accuracy of the DEM is established 
in Raber et al. (2007). DEM accuracy is also affected by 
the regularity of the points altogether with the density 
(Artuso et al., 2003; Raber, 2003). Estornell et al. (2010) 
confirmed that the DTM accuracy is also affected by the 
window size of the interpolation algorithm, the height 
thresholds and several effects such as slope, point 
density and vegetation. Su and Bork (2006) reported that 
the scan angle has relatively little impact on the DEM 
accuracy. 

Many authors studied the effects of vegetation density 
in reference to point density and DEM accuracy. Dense 
vegetation reduces the number of returns on the ground 
(Ahokas et al., 2005; Yu et al., 2005). The higher the 
LiDAR point density is used, the deeper the penetration 
into vegetation is possible (Triglav-Cekada and Crosilla, 
2009). Furthermore, point density has more influence 
than the size of the footprint to determine tree heights 
(Persson et al., 2002; Yu et al., 2004).  
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Point density is paramount for LiDAR surveys. It is not 
only related to accuracy but costs and savings. Small 
point-spacing requires higher frequency sensor flying at a 
lower altitude, narrower field of view (FOV) and slower 
speed, or a combination of these. In short, more flight 
(strip) lines are required, more operators and resources.  

LiDAR specifications at national level set that a 
percentage of the swath width should be excluded when 
planning the aerial mission. But there is no quorum. For 
instance, the technical specifications for the digital 
photogrammetric flight with LiDAR in Spain for the 
National plan of aerial orthophotography (PNOA) set a 
value of 2% for the first return, single swath; the draft 
document for the LiDAR guidelines and base 
specification from the United State Geological Survey set 
an approximate value of 10% (USGS, 2010). Besides the 
expected uniform spatial distribution of geometrically 
usable points, the latter document also specifies that the 
distribution should be free from clustering.  

In this study, the spatial variation of the point density 
across single strips is statically reported and analyzed. 
Some recommendations are presented in order to 
estimate accurately the mean density value of LiDAR 
surveys. 
 
 
OSCILLATING MIRROR MECHANISM AND GROUND 
MEASURING PATTERN 
 
There are several types of laser scanner mechanism: 
Rotating polygon, oscillating mirror, mirror palmer and 
fiber optic (Wehr and Lohr, 1999). Oscillating mirror is the 
mechanism that will be analyzed next.  

The oscillating mirror produces a zigzag pattern (Figure 
1) due to the bidirectional scanning mechanism. The 
output is an irregular pattern with smaller point spacing 
across the strip than along the strip. The sampling of the 
LiDAR-based points on the ground is more homogeneous 
along the center of the flight line than in the borders.  

Factors that influence the pattern of the scan are: The 
flight speed, the scan, and last but not least, the 
topography; the first two parameters lead to a reduction 
of the distance between points along the strip (Kukko and 
Hyyppä, 2009). Points found in the same line are usually 
scanned with an equal increase in angle, but the point-
spacing is not constant on the ground. This is due to 
acceleration or deceleration of the internal mirror and the 
slope of the ground. The points at the edges have 
different characteristics and so are often discarded from 
the raw data (Wehr and Lohr, 1999). 

Some theoretical formulas and relationships for 
airborne laser scanners with oscillating mirror can be 
found in Baltsavias (1999), assuming that the points have 
equal distance between them in a single scan line and 
that the scanning speed is constant. The point density 
per unit area can be defined as a function of pulse rate, 
flying time per strip and covered area. 
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Table 1.  Characteristics of the Leica Geosystems ALS60 
system. 
 

Wavelength 1064 nm 
Pulse length 5 ns 
Scanning method Oscillating mirror 
Scan rate 100 Hz 
Pulse rate 20-200 KHz 
Field of view (FOV) 75º 
Echoes per pulse 4 echoes or Full waveform 
Laser beam 0.15 mrad at 1/e 
Intensity dynamic range 8 bits 
Flight height 200-5000 m 

 
 
 

Table 2.  Flight parameters. 
 

System ALS60 
FOV 50º 
Flight altitude 2600-3070 m 
Flight speed 100-150 kn 
Scan rate 33.7 Hz 
Pulse rate 93900 Hz 
INS: IMU POS-AV 510 
GNSS: NovAtel MILLENIUM at 0.1 Hz 

 
 
 
STUDY AREA AND LIDAR DATA ACQUISITION 
 
The analysis of the spatial distribution of the point density from 
airborne LIDAR data was tested in the province of Castellón 
(Spain). It was surveyed between August and November 2009 for 
the PNOA project using a Leica Geosystems ALS60 system (Table 
1). According to the technical specifications of the mission, the 
average density should be better than 0.5 points per m2, the 
horizontal precision should be better than 30 cm and the vertical 
one better than 20 cm (RSME). A total of 355 strips were acquired 
for the whole province. The flight features of the ALS survey are 
presented in Table 2. 

Five representative samples were extracted from five strips 
(Figure 2). The swath width was approximately 2200 m, the 
maximum swath width at a 50º FOV, while its length was set up to 
200 m. Samples were selected on flat bare ground in order to 
minimize the influence of the topography. In addition, areas with 
man-made structures (namely building and bridges) and tall 
vegetation were excluded. The sampling areas were selected to 
minimize the number of returns for the laser pulses and maximize 
the density of points. Single strips were considered to avoid 
oversampling in overlapping areas. 
 
 
RESULTS AND STATISTICAL ANALYSIS 
 
Knowing the zigzag laser scanning pattern of the ALS 
system on the ground, every strip was divided across into 
16 sectors (polygons) with equal angular increments 
(3.125º), starting from the centre of each strip to the left 
(L) and to the right (R) (Figure 3). 

 
 
 
 

As stated in Vosselman and Klein (2010), much 
information can be retrieved from point density images. 
These images are obtained by counting the number of 
points within a cell. Figure 4 displays a point density 
image corresponding to one strip, categorized in six 
classes ranging from 0 points up to 1, 2, 3 to 10, 11 to 25 
and more than 26 points per cell, with a cell size of 2 × 2 
m. Figure 4 reveals the lack of homogeneity of the LiDAR 
points across the strip: in the centre there is a small 
number of points per cell but the sampling is 
approximately even; the number of points increases from 
the centre up to both sides (extremes); nearby the 
extremes of the swath width the number of points 
increases drastically. The output is an odd distribution of 
points across the strip, more and less symmetric along 
the strip. In short, most of the points are concentrated in 
the extremes (cf. the large number of points in FOV41) 
while in the centre (FOV10 left and right) the number of 
points is considerably modest. Subsequently, the study 
will try to confirm statistically the influence of the point 
sampling on the computation of the overall density across 
the strips. 

Table 3 shows the point density values over the bare 
ground computed for each sector across the five strips 
(Figures 5 and 6 displays a graphical representation of 
Table 3). The mean point densities range from 0.36 
points/m2 in the centre up to 1.345 points/m2 in the 
borders of the strip. Worth noticing is the range of values 
for the standard deviation, ranging from 0.025 points/m2 
in the centre up to 0.07 points/m2 in the borders. For both 
parameters (mean and standard deviation), a clear 
difference in magnitude is presented for both borders, 
keeping the rest of the sectors values close to the ones at 
the centre, that is, fourteen out of the sixteen sectors 
keep density values close to each other. 

Figure 5 displays the point densities for the different 
sectors of the five strips and the mean; the mean value is 
represented by the dash line. In general, the point density 
remains relatively constant in the central part of the strip 
while in the borders of the flight lines the point density 
increases exponentially, which increases the overall 
mean density of the whole strips.  

Figure 6 simplifies the density values across the FOV 
and adds the standard deviation to focus the attention in 
both extreme values, FOV41L and FOV41R: not only the 
mean density values differ substantially but also the 
standard deviations. Furthermore, both left and right 
sides are approximately symmetric as expected 
theoretically a priori. 

Considering the 80 sampling areas (16 sectors x 5 
strips), the mean density yields a value of 0.536 
points/m2. Only FOV40 and FOV41 present higher 
densities, that is, four intervals out of sixteen. Therefore, 
only 25% of the surface of the test strips has a density 
greater than the mean value, but the most extreme sector 
(FOV41), which represents only 12,5% of the surface of 
the strip, clearly  exceeds  by  far  (2.5  times)  the  mean
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Figure 2 . Sampling areas with indication of the original flight lines (FL). 

 
 
 

 
 
Figure 3.  Sectors across the swath width used to analyse the density. 

 
 
 
point density. Recalculating the statistics for the data set 
with and without FOV41 extreme sector, the following 
results are obtained (Table 4 and Figure 7). 

Without considering FOV41 in the computation of the 
density of points, the mean value drops 0.12 units, from 
0.54 to 0.42 points/m2. Second, the standard deviation 
drops more than four times, from 0.32 to 0.075 points/m2. 
The ‘Box and Whisker’ diagrams (Tukey, 1977; Frigge et 
al., 1989; Sheskin, 2007; Banacos, 2011) in Figure 7 
clarify the interpretation and confirm the smooth 
continuity in the computation of the range of density 
values per sector. 

At this point, the question arises whether the density 
values follow a normal (Gaussian) distribution or not. As 
previously confirmed, the left and right extreme sectors of 
the strips concentrate most of the points in a very small 
FOV range. Therefore, points belonging to both sectors 
might probably “break” the normality of the sample 
(Silverman, 1986). This observation will be confirmed 
next.  

The normal tendency of the distribution function  of  the 

data can be analyzed with the normal probability plots 
with and without FOV41 data (Figure 8). The continuous 
line up represents a normal function. Once the FOV41 
values are discarded (right chart Figure 8), the sample of 
point densities is much closer to a normal distribution 
function. In fact, Dixon (1950), Grubbs and Beck (1972) 
and Iglewicz and Hoaglin (1993) tests confirmed the lack 
of outliers within the data with a confidence level of 99%. 
Therefore, both sectors FOV41 (FOV41L and FOV41R) 
can be considered outliers and should be rejected when 
computing the mean point density of the survey. 

Complementary data to the one presented in Figure 8 
is undertaken, studying the accumulated frequencies 
from the range of density values. Figure 9 displays the 
accumulated frequency histograms of both solutions with 
and without the extreme sectors FOV41L and FOV41R. 
Figure 9a shows that there are two distributions, one with 
density values up to 0.64 that accumulates up to 87.5% 
of the frequency (black line) and 68.74% of the total 
points, and another small set of density values ranging 
from 1.24 to 1.43  that  concentrates  only  the  remaining
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(a) (b)  

   

FOV10 FOV21 FOV40 FOV41 

(c)  
 
Figure 4. Varying number of LiDAR points across a strip: (a) swath width divided by sectors; (b) 
corresponding points in central area (FOV10L+FOV10R) and extreme (FOV40R+FOV41R); (c) zoom 
into four patches. 

 
 
 
Table 3.  Density values (points/m2) for the sixteen sampling areas together with the mean and standard deviation. 
 

Flight line 
(FL) Sample  

FOV (Position-side) 
41L 40L 31L 30L 21L 20L 11L 10L 10R 11R 20R 21R 30R  31R 40R 41R 

229 1 1.29 0.56 0.45 0.41 0.38 0.36 0.36 0.35 0.36 0.36 0.37 0.38 0.41 0.46 0.57 1.30 
348 2 1.41 0.54 0.47 0.44 0.40 0.36 0.36 0.33 0.34 0.35 0.38 0.42 0.43 0.46 0.55 1.38 
124 3 1.26 0.53 0.44 0.37 0.37 0.36 0.34 0.34 0.34 0.35 0.36 0.36 0.38 0.44 0.52 1.24 
132 4 1.34 0.58 0.49 0.40 0.38 0.38 0.37 0.36 0.36 0.36 0.37 0.37 0.41 0.46 0.56 1.33 
396 5 1.43 0.64 0.52 0.47 0.44 0.42 0.41 0.40 0.40 0.40 0.41 0.43 0.45 0.51 0.63 1.43 

Mean density (µ) 1.35 0.57 0.47 0.42 0.39 0.38 0.37 0.36 0.36 0.36 0.38 0.39 0.42 0.47 0.57 1.34 
SD (σ) 0.07 0.04 0.03 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.07 
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Figure 5.  Profiles of the densities (points/m2) across the FOV for the five sampling strips. 
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Figure 6. Profile of the mean densities (points/m2) and the standard deviations across the FOV. 

 
 
 

Table 4.  Summary of statistics with all the sixteen sampling areas, and all but the extremes FOV41L and FOV4R 
(fourteen sampling areas). 
 

Statistic All the sixteen samples Fourteen samples excluding FOV41 
Frequency 80 70 
Mean density (points/m2) 0.536 0.421 
Standard deviation (points/m2) 0.315 0.075 

 



3016          Sci. Res. Essays 
 
 
 

0.3 0.6 0.9 1.2 1.5 0.33 0.43 0.53 0.63 0.73 0 

 
 
Figure 7.  Box and Whisker diagram obtained for each sector, considering all the sectors (left chart) and all but FOV41 (right chart). It is 
worth noticing the longer x-axis for the former than for the latter.  
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Figure 8.  Normal probability plots obtained for each sector, considering all the sectors (left chart) and all but FOV41 (right chart). 

 
 
 
12.5% of the frequency. Overall, it is expected that after 
excluding FOV41 (Figure 9b), only one distribution of 
points ranging from 0.33 to 0.64 will have a frequency up 
to 100%. In both diagrams, there is no data below a point 
density value of 0.33. 
 
 
DISCUSSION 
 
It is well-known that one of the most important 
parameters when planning a LiDAR campaign is the point 
density. The final goal is to obtain the right amount of 
points throughout the survey area. A homogeneous 
density of points allows the extraction of more infor-
mation, decreasing the gaps (areas without information) 
and modeling the ground surface in a way that is more 
reliable and more accurate (Gomes-Pereira and Janssen, 
1999; Sanii, 2008; Pirotti and Tarolli, 2010; Puetz et al., 
2009).  

More important than the overall density of points per 
area is the homogeneous density over the bare ground. A 
homogeneous distribution of the points over the bare 
ground allows users to have a full sampling of the 
ground. However, it is not clear the geometrically usable 
centre portion of each swath, for example, 98% for PNOA 
and 90% for USGS; this study  confirms  87.5%  which  is 

closer to the USGS despite the survey was ordered for 
PNOA. 

In this study, the LiDAR point density and its 
distribution pattern on five samples from different lines of 
flight is empirically analyzed considering true data. From 
the analyzed samples, it can be inferred that the density 
of points from LiDAR surveys with oscillating mirrors is 
not homogeneous across the strip, but rather irregular. 
However, the lack of uniformity in the spatial distribution 
of points is higher than expected from LiDAR textbooks. 
In fact, the ideal pattern of a LiDAR oscillating mirror that 
is presented in Figure 1 (as well as others such as the 
ones presented by Petrie and Toth, 2009) about the 
shape of the oscillating mirror mechanisms is not correct, 
and should be accordingly corrected based on the shape 
presented in Figure 4. This figure emphasizes the 
irregular point cloud pattern over the ground. Both 
extremes concentrate a large number of points because 
of the oscillating mirror that speeds up and decelerates 
for each scan line. Therefore, there is a high 
accumulation of points at the borders across track but 
with a significant space of points along the strip. In other 
words, ∆y tends to minimum (almost zero) and ∆x tends 
to maximum yielding cells without any point at the 
extremes for a FOV of 50º (Figure 4b and c).  

Higher   concentration   of   points   across  the  strip  is 
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Figure 9.  Accumulated frequency histograms considering all the sectors (a); and all but FOV41 (b). 

 
 
 
expected for larger FOVs, affecting negatively the 
computation of the mean data density. This study 
demonstrates empirically that an appropriate FOV should 
be 43.75º. With a right estimation of the mean point 
density, analytical studies can be conducted more 
precisely based on collateral effects such as quality and 
precision of LiDAR-based DTMs (Gomes-Pereira and, 
Janssen, 1999; Sanii, 2008). 

The irregular pattern distribution of LiDAR points with 
oscillating mirrors, especially when referring to both 
extreme sectors (FOV41L and FOV41R), has a number 
of important effects on the data processing. Whenever 
dealing with single LiDAR strips, the laser scanning  point 

cloud will not have the expected results owing to the odd 
distribution of points (Figure 4) in spite of satisfying the 
requirements of average point density, for example, 
either with overlapping strips or with cross strips.  

Regarding blocks with several strips, it is worth 
mentioning that the overlaps between strips are in the 
extreme sectors where the highest point densities are 
expected. Therefore, the average density of LiDAR points 
will be increased for the whole study area, but the 
distribution of points across the strips will be more 
irregular: the extreme sectors that concentrate more 
points on single strips will double the point densities 
across the FOV in the  overlapping  areas  while  the  rest 
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will keep the same point density values. 
 
 
Conclusions 
 
Point density is a relevant parameter in airborne LiDAR 
missions and surveys. Collateral effects such as quality 
and precision, and deliverables such as DSMs and 
DTMs, vegetation and biomass studies depend to a large 
extent on point density. Users and providers rely on its 
mean value either for planning or for post-processing. 
This paper presents an empirical study reflecting the 
large variability of point density values across the swath 
width when using an oscillating mirror laser scanning 
mechanism. The study is focused on flat bare ground 
areas to determine the mean point density of an airborne 
LiDAR survey. The spatial distribution pattern of LiDAR-
based points is also analyzed across single strips.  

Significant differences when computing the point 
density values across the strip are achieved. Statistical 
analysis shows that the extreme sectors (FOV41L and 
FOV41R), which represents only 12.5% of the swath 
width, clearly exceed 2.5 times the mean point density. 
This study demonstrates empirically that oscillating 
mirror-based LiDAR systems do not follow a normal 
(Gaussian) distribution of point densities. Both extreme 
sectors on 50º FOV systems, FOV41L and FOV41R in 
this study, can be considered as outliers with a 
confidence level of 99%. Both sectors should be rejected 
when computing the mean point density value of an 
airborne LiDAR survey. It means that for a 50º FOV 
oscillating mirror system, the usable centre portion of 
each swath width free from clustering should be 87.5% 
that is, 43,75º FOV. Therefore, the exclusion of an area 
of 12.5% is close to what specifies the United States 
Geological Survey but far away the 2% specified for the 
Spanish PNOA.  

As different laser scanning mechanisms exist on the 
LiDAR market, future research on point density is 
expected to deal with different LiDAR systems as well as 
on more complex scenarios with diverse degree of 
vegetation, slope and cover. 
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