Antibiotic susceptibility and plasmid pattern of *Pseudomonas aeruginosa* from the surgical unit of a university teaching hospital in north central Nigeria

A. T. Olayinka¹*, B. O. Olayinka² and B. A. Onile³

¹Department of Medical Microbiology, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria.
²Department of Medical Microbiology and Parasitology, University of Ilorin, Ilorin, Nigeria
³Department of Pharmaceutics and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria

Accepted 25 February, 2009

This study determined the susceptibility pattern and multiple antibiotic resistance (MAR) index of 92 *Pseudomonas aeruginosa* strains from clinical samples comprising mainly urine (51.1%) and wounds (41.3%) obtained from the surgical units of Ahmadu Bello University Teaching Hospital, Zaria, Nigeria; over a 24-month period. The strains were susceptible to imipenem (94.6%), ciprofloxacin (90.2%), amikacin (89.1%) and ceftazidime (78.3%) but resistant to ofloxacin (82.6%), perfloxacin (58.7%) and gentamicin (35.8%). Analysis of the MAR index of isolates revealed that 60.9% had MAR index of 0.3 and above, which is an indication of probable origin from the hospital environment where antibiotics are extensively used. A strict management of antibiotic policies and a continuous surveillance programme for multidrug resistant pathogens like *P. aeruginosa* in specialised units is advocated.

Key words: Antibiotic resistance, plasmid, *Pseudomonas aeruginosa*

INTRODUCTION

Pseudomonas aeruginosa is a classic opportunistic pathogen especially because of its innate resistance to many antibiotics and disinfectants; and also due to its armoury of putative virulence factors plus additional acquired resistance due to plasmids (Govan, 1998; Shahid and Malik, 2004). It is also the most common Gram negative bacterium found in nosocomial infections causing various spectra of infections especially in neutropenic, immunocompromised, burns/tissue injury and cystic fibrosis patients all over the world (Delden and Iglewiski, 1998; Song et al., 2003; Brown and Izundu, 2004).

Recent advances in medicine such as the advent of more elaborate surgery and intensive care, the use of immunosuppressive drugs, the availability of invasive procedures or instrumentation and the increase in number of immunocompromised patients means there is a rise in patients with impaired immune defences liable to nosocomial infections (Klutymas, 1997; Brown andn Izundu, 2004).

The increasing incidence of infections caused by multi-drug resistant organisms have caused attention to be focused on measures for fighting resistance, foremost of which is susceptibility surveillance (Masterton, 2002).

This study therefore determined the prevalence, antibiotic susceptibility and plasmid patterns of *P. aeruginosa* strains from clinical specimens obtained from the surgical units of a University Teaching Hospital in Northern Nigeria.

METHODOLOGY

A sample per patient was studied. A total of 1,452 clinical specimen received from the surgical unit were cultured on blood agar and MacConkey agar plates and incubated at a temperature of 37°C for 24 h and on Mueller Hinton agar plates to assess pigment production. The culture plates were processed using standard microbiological procedures (Cheesbrough, 1993). Characterisation and identification of *P. aeruginosa* was carried out using a combination of colonial morphology, Gram stain characteristics, motility tests, pigmentations, oxidation-fermentation tests, catalase and oxidase activity tests and pyocyanin production (Cheesbrough, 1993).

Antibiotic susceptibility was determined on Mueller Hinton agar using the disc diffusion method according to the modified Kirby-Bauer technique (Vandepitte et al, 1999). All the isolated *P. aerugi-
nos

dime, gentamicin, perfloxacin and ofloxacin resistance shown in Table 3; with combined resistance to ceftazi-

dime, gentamicin and ceftazidime. Isolates obtained from sputum, blood and ear swab were the least resis-

tant. A total of 51.1% and 41.3% P. aeruginosa strains were from urine and wounds respectively. Other recovery rates were from catheter tips (3.3%), ear swab (2.1%), blood (1.1%) and sputum (1.1%).

Figure 1 shows the antimicrobial susceptibility profile of the P. aeruginosa to imipenem (94.6%), ciprofloxacin (90.2%) and amikacin (90.2%), while 78.3% were sensitive to ceftazidime and 64.2% to gentamicin and there was high resistance to chloramphenicol (97.8%), ofloxacin 82.6% and perfloxacin 58.7%.

Table 2 shows the MAR index of the P. aeruginosa strains Analysis of the MAR index showed that 60.9% had MAR index of 0.3 and above. The resistance pattern of the P. aeruginosa strains is shown in Table 3; with combined resistance to ceftazidime, gentamicin, perfloxacin and ofloxacin resistance being most prevalent.

Screening for the presence of plasmids in these multi-resistant strains displayed the presence of plasmids in 14 of the MDR strains. Figure 2 shows the agarose gel electrophoretogram of the extracted plasmids. Eight of the isolates had similar plasmid band patterns, harbouring between 1-3 plasmid bands. Most of the bands were of low to intermediate molecular weights.

DISCUSSION

This reports that the prevalence of P. aeruginosa was 10.5% of the total bacterial pathogens isolated from the

RESULTS

Ninety two strains of P. aeruginosa out of 878 positive cultures were recovered from a total of 1,452 clinical specimens obtained from the surgical unit over the 2-year period. The distribution of P. aeruginosa strains from various clinical specimens and their antibiotic susceptibility pattern based on the source of the isolates is shown in Table 1. More than 80% of the isolates from wound and more than 70% from urine samples were sensitive to imipenem, ciprofloxacin, amikacin and ceftazidime. Isolates obtained from sputum, blood and ear swab were the least resistant. A total of 51.1% and 41.3% P. aeruginosa strains were from urine and wounds respectively. Other recovery rates were from catheter tips (3.3%), ear swab (2.1%), blood (1.1%) and sputum (1.1%).

Table 1. Distribution of Pseudomonas aeruginosa strains from various specimens and their antibiotic susceptibility pattern based on site of specimens

<table>
<thead>
<tr>
<th>Site</th>
<th>IMP</th>
<th>CIP</th>
<th>AN</th>
<th>CAZ</th>
<th>GN</th>
<th>PEF</th>
<th>OFX</th>
<th>CCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine (47)</td>
<td>46</td>
<td>1</td>
<td>43</td>
<td>4</td>
<td>40</td>
<td>7</td>
<td>36</td>
<td>11</td>
</tr>
<tr>
<td>Wound (38)</td>
<td>35</td>
<td>3</td>
<td>34</td>
<td>4</td>
<td>36</td>
<td>2</td>
<td>31</td>
<td>7</td>
</tr>
<tr>
<td>Catheter Tip</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ear swab (2)</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Blood (1)</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Sputum (1)</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>87</td>
<td>5</td>
<td>83</td>
<td>9</td>
<td>82</td>
<td>10</td>
<td>72</td>
<td>20</td>
</tr>
</tbody>
</table>

Key:
- **Imp** = Imipenem
- **Cip** = Ciprofloxacin
- **An** = Amikacin
- **Caz** = Ceftazidime
- **Gn** = Gentamicin
- **Pef** = Perfloxacin
- **Ofx** = Ofloxacin
- **Ccl** = Chloramphenicol
- **S** = Sensitive
- **R** = Resistance

Plasmid DNA isolation was carried out using the modified alkaline lysis procedure described below.

The P. aeruginosa strains were grown overnight in Tryptone soya broth. 1.5 ml of each overnight culture was poured into an Eppendorf tube, spun for 10 s in a micro-centrifuge. The supernatant was gently decanted leaving about 50 µl with the pellet. This was then vortexed at high speed to re-suspend the cells completely. 300 µl of TENS (TE buffer +0.1N NaOH +.5% sodium dodecyl sulphate [SDS]) was added and mixed for 2 - 5 s till the mixture became sticky. 150 µl of 3.0N sodium acetate (pH 5.2) was added, then vortexed for 2 - 5 s to mix completely. The contents were then spun for 2 min in a microcentrifuge to separate pellet cell debris and chromosomal DNA. The supernatant was transferred to a fresh eppendorf tube and mixed well with 0.9 ml of absolute ethanol which had been pre-cooled to -20°C. The mixture was then spun for 2 min to pellet plasmid nucleic acid which was rinsed twice with 1ml of 70% ethanol, then dried. The pellet was re-suspended in 20 µl of TE buffer and 1 µl of 0.25%bromophenol blue was added to it. These were then put into wells made in the agarose gel mould, placed in an electrophoretic tank containing Trisborate buffer and electrophoresed ran for one hour at 60volts. The stained gel was visualised under UV light and viewed for the presence of plasmid bands. The plasmids were then photographed using the Polaroid MP-4 camera system (Zhou et al., 1998)
Table 2. Multiple Antibiotic Resistance (MAR) index of *Pseudomonas aeruginosa* isolates.

<table>
<thead>
<tr>
<th>MAR index</th>
<th>No of isolates</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>13</td>
<td>14.1</td>
</tr>
<tr>
<td>0.1</td>
<td>23</td>
<td>25.0</td>
</tr>
<tr>
<td>0.3</td>
<td>21</td>
<td>22.8</td>
</tr>
<tr>
<td>0.4</td>
<td>13</td>
<td>14.1</td>
</tr>
<tr>
<td>0.6</td>
<td>11</td>
<td>11.9</td>
</tr>
<tr>
<td>0.7</td>
<td>9</td>
<td>9.9</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>1.0</td>
<td>1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Table 3. Resistance pattern of multi-resistant strains of *Pseudomonas aeruginosa*

<table>
<thead>
<tr>
<th>Resistance atten</th>
<th>Number of isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cip<sup>R</sup> An<sup>R</sup> Gn<sup>R</sup> Pei<sup>R</sup> Ofx<sup>R</sup></td>
<td>1</td>
</tr>
<tr>
<td>Caz<sup>R</sup> Gn<sup>R</sup> Pei<sup>R</sup> Ofx<sup>R</sup></td>
<td>5</td>
</tr>
<tr>
<td>Cip<sup>R</sup> Caz<sup>R</sup> Gn<sup>R</sup> Ofx<sup>R</sup></td>
<td>2</td>
</tr>
<tr>
<td>Cip<sup>R</sup> Gn<sup>R</sup> Pei<sup>R</sup> Ofx<sup>R</sup></td>
<td>1</td>
</tr>
<tr>
<td>An<sup>R</sup> Gn<sup>R</sup> Pei<sup>R</sup> Ofx<sup>R</sup></td>
<td>1</td>
</tr>
<tr>
<td>Gn<sup>R</sup> Ofx<sup>R</sup></td>
<td>2</td>
</tr>
<tr>
<td>Caz<sup>R</sup> Gn<sup>R</sup> Ofx<sup>R</sup></td>
<td>2</td>
</tr>
<tr>
<td>Cip<sup>R</sup> Prf<sup>R</sup> Ofx<sup>R</sup></td>
<td>1</td>
</tr>
<tr>
<td>Cip<sup>R</sup> An<sup>R</sup> Gn<sup>R</sup></td>
<td>1</td>
</tr>
<tr>
<td>An<sup>R</sup> Gn<sup>R</sup> Ofx<sup>R</sup></td>
<td>1</td>
</tr>
</tbody>
</table>

Key:

- Cip^R = Ciprofloxacin resistant
- An^R = Amikacin resistant
- Caz^R = Cefazidime resistant
- Gn^R = Gentamicin resistant
- Pei^R = Perflaxacin resistant
- Ofx^R = Ofloxacin resistant
- Imp^R = Imipenem resistant
- S = Sensitive
- R = Resistance

Figure 1. Antimicrobial susceptibility profile of *Pseudomonas aeruginosa* isolates.

Figure 2. Agarose gel electrophoretogram of extracted plasmids from multiresistant strains. There were no plasmids detected in lanes 6 and 14, while 8 of the isolates had similar plasmid bands.

The *P. aeruginosa* strains from urine, accounted for 51.1% of the total strains in this study which differs from other studies where majority of the *Pseudomonas* strains isolated were either from surgical site samples or wound swabs (Stark and Maki, 1984; Henwood et al., 2001).
The high rate obtained from urine is not surprising considering the fact that most patients going in for major surgery tend to get catheterised. Catheter associated urinary tract infections (CAUTIs) are said to comprise the largest institutional reservoir of nosocomial antibiotic resistant pathogens (Stark and Maki, 1984; Liu et al., 1992; Henwood et al., 2001). The current study included patients from the urology unit most of whom had been on catheter for a considerable long period of time which may also justify the higher recovery rates of \textit{P. aeruginosa} strains from urine specimens. Out of all the 92 isolates of \textit{P. aeruginosa} strains, 35.8% were resistant to gentamicin which used to be traditionally considered as a first-line drug against Gram negative bacterial infections in the hospital setting (Shanson, 1989; Oduyebo et al., 1997). In this study, 1.9% of the \textit{P. aeruginosa} strains were reportedly resistant to amikacin, while from the southern part of the country, less than 5% were resistant and in Jamaica, amikacin was the only antibiotic to which all the \textit{Ps. aeruginosa} strains were susceptible. This is worrisome since amikacin is considered a potent agent in the treatment of infections caused by multi-resistant \textit{P. aeruginosa} and those strains that have shown resistance to gentamicin and tobramycin (Vanhoof et al., 1993; Oduyebo et al., 1997; Gerding, 2000; Lambert et al., 2001; Brown and Izundu, 2004).

Generally most strains of \textit{P. aeruginosa} are known to be sensitive to ceftazidime (Vanhoof et al., 1993; Zemelman et al., 1993; Bonfiglio et al., 1998). While in this study, 11.9% of the isolates were resistant to ceftazidime (a 3rd generation cephalosporin) useful in the treatment of pseudomonal infection. In Belgium and Jamaica a lower level of resistance was found whereas the level was higher in Lagos (Vanhoof et al., 1993; Oduyebo et al., 1997; Brown and Izundu, 2004). This comparatively lower rate of resistance may be due to the relative high cost of the drug and the poor socio-economic status of majority of the people in this environment. As frequent use of drugs tend to induce selective pressure on multi resistant strains.

Resistance to imipenem has been found to be independent of β-lactamase production and in \textit{P. aeruginosa} has been attributed to diminished expression of certain outer membrane proteins (Buscher et al., 2000). More than 80% of isolates in this study were sensitive to imipenem (94.6%). Compared with results of a study conducted at the Lagos University Teaching Hospital (LUTH) in which 12.5% were resistant to imipenem, in this study only 5.4% Pseudomonas strains were resistant. Imipenem is a drug that is not readily available in our environment and its cost is also prohibitive.

Except in the case of ciprofloxacin in which, 90.2% of the Pseudomonas strains were susceptible, relatively lower susceptibility rates were recorded against some of the quinolone antibiotics. Just over 40% and about 17% of the Pseudomonas strains were recorded as being susceptible to pefloxacin and ofloxacin respectively.

Generally, most strains of \textit{P. aeruginosa} are sensitive to ciprofloxacin (Zemelman et al., 1993; Brown and Izundu, 2004; Oduyebo et al., 1997). The difference in the resistance pattern to the various quinolones is similar to a study in Turkey where a wide range of resistance status against various quinolones was also recorded (Algun et al., 2004). The main mechanism of resistance to fluoroquinolones has been reported to be the decrease in binding of the target quinolones to enzymes as a result of changes in DNA gyrase and or topoisomerase enzymes. Mutations occur in gyr A and par C genes. This is usually against all quinolones. However, resistance due to mutations of gyr B, though less common may not be against all quinolones (Algun et al., 2004). Other mechanisms of resistance are; the decrease in the amount of quinolones entering the cells because of defect in the function of porin channels and various efflux systems in the bacterial membrane which pump out the drug from the bacteria (Livermore, 2004).

The susceptibility pattern of the multi resistant strains of \textit{P. aeruginosa} showed that, 5 of the 18 strains were resistant to ceftazidime, gentamicin, pefloxacin and ofloxacin. All multi resistant strains were however sensitive to imipenem, almost all the strains, that is 16 out of 18 were resistant to gentamicin. It has been said that there is generally an excess of resistance among isolates from hospitalised patients compared with those from out patients (Livermore, 2004).

Analysis of the MAR index of the Pseudomonas strains showed that 60.9% had MAR index of 0.3 and above. MAR index higher than 0.2 has been said to be an indication of isolates originating from an environment where antibiotics were often used (Krumpernam, 1983; Paul et al., 1997). The practical significance of the index may however be lost in Nigeria and other 3rd world countries where antibiotic use and abuse is rampant since the cut-off point was determined in countries with tight antibiotic control protocols. The MAR values can however be viewed as an indication of the extent of microbial exposure to antibiotics used within the community.

Plasmid analysis of the multi-resistant strains showed that 14 of the \textit{Pseudomonas} strains harboured plasmids, eight of which had similar plasmid band patterns of 1-3 plasmid bands having low to intermediate molecular weights. Plasmid prevalence was higher in the strains from catheter tips and urine. Acquisition of mobile genetic elements is known to be the main mechanism for short term accumulation of resistance determinants in bacterial genomes (Liu et al, 2000).

In a study at LUTH, resistance to gentamicin, tobramycin and carbenicillin were attributed to transferable plasmids (Rotimi et al, 1984). In another study done in Greece, plasmids isolated from multi-resistant \textit{P. aeruginosa} strains were found to encode high level resistance to gentamicin and tobramycin (Tsakris et al, 1992).

In a few cases of outbreaks in Korea, Japan and Turkey, plasmids encoding potent β-lactamases together
with aminoglycoside-modifying enzymes were disseminated among \(P. \ aeruginosa \) strains rendering control even more difficult (Livermore, 2004).

When strains have multiple antibiotic resistance, the choice of therapy is limited and difficult. The tremendous therapeutic advantages afforded by the introduction of new antimicrobial agents will always be threatened by the emergence of increasingly resistant bacteria pathogens (File, 1999; Sexton, 2000). This is especially true in specialised units (e.g. surgery, intensive care units) where invasive procedures disrupt natural barriers to bacterial invasion and catheters may act as conduits for infection. These units may also provide foci of infection for other areas within the hospital. To prevent the spread and selection of the resistant bacteria, it is critically important to have strict antibiotic policies while surveillance programmes for multidrug resistant organisms and infection control procedures need to be implemented and continuously studied (Elliot and Lambert, 1999). In the meantime, it is desirable that the antibiotic susceptibility pattern of bacterial pathogens like \(P. \ aeruginosa \) in specialised clinical units be continuously monitored and the results readily made available to clinicians so as to maximize the possibility of administering an effective therapeutic agent whenever there is a need to do so.

REFERENCES

