Full Length Research Paper

Functional parameters modelling of transformer

Marius-Constantin Popescu* and Cristinel Popescu

Faculty of Electromechanical and Environmental Engineering, University of Craiova, B-dul Decebal, nr.107, 200440-
Craiova, Dolj, România.

Accepted 12 September, 2009

This paper analyses transformer loss of life, attending to the realistic variability of both structural and
functional parameters. The article begins with the modelling of load and ambient temperature profiles
by means of chronological series theory. A simple additive model is proposed and validated with
realistic data. Loss of life resulting from probabilistic functional and structural parameters is analysed
through a sensitivity study.

Key words: Transformer thermal, estimate thermal parameters.

INTRODUCTION

This paper is devoted to load and ambient temperature
(functional parameters) profiles modelling and to the sen-
sitivity study of thermal and loss of life models relatively
to functional and structural parameters. In this research,
the functional parameters modelling was based on rea-
listic data. It is not objective of this section to exhaustively
apply time series theory in modelling realistic load and
temperature profiles. Such complete analysis is out of the
scope of this work. The objective is based on data repre-
senting the load profiles of realistic distribution
transformers and ambient temperature profiles, to obtain
sufficient accurate models that will give physical support
to the probabilistic models. Loads modelling and
forecasting play a fundamental role in power systems
planning and management. Due to its connection with
weather characteristics, loads and weather modelling are
joined subjects of some works (Asbury, 1975; Chong and
Malhame, 1984; Sachedev et al., 1977; Srinivasan and
Pronovost, 1975). Provided a transformer thermal model
is chosen, deterministic hot-spot temperature can easily
be computed, given the input profiles of load and ambient
temperature. When analysing the time series representa-
tive of a given transformer load (or the time series of a
localised ambient temperature), one can visualise a
cycling (deterministic) behaviour (daily, weekly, monthly,
seasonally) to which is superposed a random behaviour.

Such input profile structure will be reflected on conse-
quent hot-spot temperature profile: deterministic and
random components. Apart from specific characteristics
and improvements that transformer thermal model may
reflect, the validity of deterministic input profiles is
questionable, due to unpredictable (random) changes
that realistic profiles do present. This fact determines a
probabilistic analysis of the system, which is being
discussed in this research. The objective of this section is
to study loss of life sensitivity over given statistics of the
inputs. Simulation results using thermal and loss of life
models linearisation and direct Monte Carlo methods will
be presented for Normal and Uniform distributions of both
input variables. Thermal and loss of life models sensitivity,
relatively to structural parameters, is also developed.

Usually, it is assumed that model structural parameters
are known without error. Some of these parameters are
transformer specific (|ΔΘQ,R|, |ΔΘo,R|, R), determined either
from tests or from manufacturer’s catalogue data. And
they do present some variability for a given transformer
rated power, depending on the manufacturers, as
presented on by Popescu (2008). Others, like n and m
are difficult to determine with precision from tests, since
they are closely related to transformer cooling conditions
and geometry. The variability that these parameters do
present in practice, is the basis of this study which objec-
tive is under a reference scenario of functional inputs to
analyse models output (LOL) sensitivity, and models
structural parameters, namely, |ΔΘQ,R|, |ΔΘo,R|, R, n, and
m.

*Corresponding author. E-mail: mrapopescu@em.ucv.ro.
Tel/Fax: +40-251-435255.
FUNCTIONAL PARAMETERS MODELLING

Time series descriptive techniques

Despite the diversity of approaches, methodologies and end-use applications, when studying realistic load and weather data profiles, one can always identify trends (deterministic) components, to which are superposed irregular (random) behaviours. Deterministic data can be described by an explicit mathematical relationship (a mathematical model). In as much as no unforeseen event in the future will influence the phenomenon, producing the data set under consideration for identical experience conditions, the mathematical model will reproduce the same exact data set, no matter how many times the experiment is repeated. Random data values are unpredictable in a future instant in time, and therefore must be described in terms of probability statements and statistical averages, rather than by explicit mathematical relationships. In practical problems, involving random variables, one must not expect to obtain theoretical results, namely, a purely random variable. The main reason is that a random variable is a theoretical concept, which can not be reproduced (simulated) in practice; only samples of random variables can numerically be simulated. The statistics of samples only asymptotically (with the increasing length of the sample) tend to be random variable statistics. A random variable can be viewed as a sample of infinite length. Time series representative of load and ambient temperature profiles do present deterministic and random characteristics simultaneously (Figure 1). Such a data set, presenting concomitant time and random characteristics is referred to as a stochastic process. Time plot will often show the most important properties of a time series (Chatfield, 1975; Popescu et al., 2009a). It was predictable and can be visually confirmed that ambient temperature time series do exhibit a seasonal effect that, although not representative of the sample, is expected to be cyclic. Possible long-term trends will not be considered since, although might be present, the sample length is insufficient to allow this kind of analysis. A common model to describe time series as the one represented on Figure 1 is the additive model of the form (Chatfield, 1975; Friedlander and Francos, 1996; Mastorakis et al., 2009b):

\[x_t = x_{\text{det}} + x_{\text{ran}}, \]

(1)

Where; \(x_{\text{det}}\) represents the deterministic cyclic component and \(x_{\text{ran}}\) the random component.

Most of the time series theory concerns stationary time series, which, intuitively, is a time series where no systematic temporal variations in mean and variance occur. From the analysis of series residuals, after removing the seasonal effects (and trends when existent), one may conclude that it is possible to model residuals by means of a stationary stochastic process. Several approaches, methodologies and tests can be used to detect time series characteristics such as cyclic variations, stationary, randomness (Gutmann and Wilks, 1982; Popescu, 2006; Popescu et al., 2009; Ross, 1987). However, a complete and powerful tool is provided by the autocorrelation function. If \(x_t\) and \(y_t\) are two samples, length \(N\) of two stationary ergodic processes, an estimator of their correlation function, \(\hat{\rho}_{xy}(k)\) is, according to Chatfield (1975) and Popescu (2006):

\[\hat{\rho}_{xy}(k) = \frac{\hat{C}OV_{xy}(k)}{\hat{C}OV_{x}(0)}, \]

(2)

Where; \(\hat{C}OV_{xy}(k)\) denotes an estimator of the covariance function

\[\hat{C}OV_{xy}(k) = \frac{1}{N} \sum_{i=1}^{N-k} (x_i - \bar{x})(y_{i+k} - \bar{y}), \]

(3)

with \(\bar{x}\) and \(\bar{y}\) representing the samples averages given by:

\[\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \text{ and } \bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i, \]

(4)

When \(x_t \equiv y_t\) expression (4) represents the autocorrelation function and expression (3), the autocovariance function. When the variable it refers to is clear, the estimator of the autocorrelation function will be denoted by \(\hat{\rho}_x(k)\) or simply by \(\hat{\rho}(k)\), and the estimator of the autocovariance by \(\hat{C}OV_x(k)\) or simply by \(\hat{C}OV(k)\). The analysis of the corresponding sample autocorrelograms (plot of the autocorrelation coefficients as a function of time lag \(k\)) often provides fully insight into the probabilistic model that describes the data. The autocorrelation function is the measurement of correlation (link) between series data values at different time and distances apart.

For a random variable, correlation coefficients must be null for any lag \(k\), but \(k = 0\). It should be remarked that, mathematically, the maximal time lag \(k\) in (2) is limited to \(N/2\), although (Chatfield, 1975) states that \(N/4\) is the usual limit. Information contained in the sample time series may not always be sufficient to completely characterise it. Figure 2a represents the autocorrelogram of the one-year time series of data represented on Figure 1. And although yearly cyclic variations are expected to occur, the autocorrelogram does not evidence them. However, by increasing the sample size to two years length, the respective autocorrelogram being represented on Figure 2b, clearly evidences an almost sinusoidal variation, which, although expected, should be confirmed with a longer size sample. If a time series could be
Figure 1. Annual time series representing daily maximal ambient temperatures. Data from 2005.

Figure 2a. Autocorrelogram of daily maximal ambient temperatures in 2005.
described by a purely deterministic sinusoidal function of the form, then:

\[x_t = X \cos \omega t \]

(5)

Where; \(X \) and \(\omega \) are constants, its autocorrelation would evidence this cyclic variation, since for large sample lengths (\(N \rightarrow \infty \)) it would tend to:

\[\rho(k) = \cos \omega t . \]

(6)

Following the evidences of Figure 2 autocorrelogram and International Standards (IEC-354, 1991) suggestion, the deterministic component, \(x_{\text{det},t} \), of model (1) was assumed to be given by a generic deterministic sinusoidal variation represented by:

\[x_{\text{det},t} = \bar{x}_d + \Delta x_d \cos(\omega t + \varphi_x) , \]

(7)

Where; \(\bar{x}_d \), \(\Delta x_d \) and \(\varphi_x \) are constants.

From the analysis of time series residuals (random component \(x_{\text{ran},t} \)) in Figure 3a and respective autocorrelogram in Figure 3b, one can extract clues towards its modelling. The interpretation of autocorrelogram does require considerably experience in time series analysis and, according to Chatfield (1975) and Popescu (2008), this is one of the hardest aspects of time series analysis.

Plot diagram of random component (Figure 3b) shows no evident cyclic or mean variations; as a first approximation, variable could be taken as random. However, a more accurate analysis shows that autocorrelogram represented on Figure 3b is not typical of a random variable since it should be \(\rho(0) =1 \) and \(\rho(k)=0 \) for \(\forall k \neq 0 \). Apart from small amplitude and of high frequency (probably) cyclic variations, one can find considerably high \(\hat{\rho}(k) \) values for initial time lags, \(k=1...6 \).

To determine the best model that fits a given sample autocorrelation function, the methodology proposed by Box and Jenkins (1970) consists of comparing sample autocorrelation function with the theoretical autocorrelation function of several models, and choosing the one which best agrees with the sample autocorrelation function. Most common models are the AutoRegressive models (AR), the moving Average Models (MA) and mixed models such as AutoRegressive Moving Average models (ARMA) and Autoregressive Integrated Moving Average models (ARIMA). As far as the objective of this work is concerned, one will limit oneself to present the AR model. The process \(\{X_t\} \) is said to be AR of the order,
Figure 3a. Random component; and respective autocorrelogram.

Figure 3b. Random component of maximal ambient temperature in 2005.
If given a purely random process \(\{Z_t\} \) with null mean and variance \(\sigma^2_z \) (Chatfield, 1975; Popescu, 2009):

\[
x_t = \alpha_1 x_{t-1} + \ldots + \alpha_m x_{t-m} + Z_t,
\]

(8)

Where; \(\alpha_1, \ldots, \alpha_m \) are constants.

For first order AR processes (also referred as Markov process [8]), the estimator of \(\alpha_1 \) denoted by \(\hat{\alpha}_1 \), is (Chatfield, 1975):

\[
\hat{\alpha}_1 = \hat{\rho}(0).
\]

(9)

Autocorrelrogram of Figure 3 is suspicious to correspond to a first order AR model since initial \(\hat{\rho}(k) \) values appear to decrease geometrically (Chatfield, 1975; Popescu, 2009). If time series \(x_{ran} \) is a sample of a first order AR process \(\{X_{ran}\} \), it must be:

\[
x_{ran,t} = \alpha_1 x_{ran,t-1} + Z_t.
\]

(10)

Using estimator (9) and sample \(x_{ran,t} \), the resulting \(Z_t \) sample (being \(Z_t \) a sample of the random variable, \(Z_t \)) and corresponding autocorrellogram are represented on Figure 4.

To determine whether Figure 4 corresponds to a sample autocorrellogram of a random variable (\(\rho(k) = 0 \) for \(k > 0 \)) or not, confidence intervals must be determined. For large \(N \) values, being the sample autocorrelation, \(\hat{\rho}(k) \), normally distributed with Mastorakis et al. (2009b) and Popescu et al. (2009b):

\[
\mu_{\hat{\rho}(k)} = \rho(k) \quad \text{and} \quad \sigma^2_{\hat{\rho}(k)} = \frac{1}{N} \left(1 + 2 \hat{\rho}(0) \right) \quad \text{for} \; k > 0
\]

(11)

a \((1 - \alpha_S) \% \) confidence interval for \(\hat{\rho}(k) \), being \(\alpha_S \) the significance level of the test, is given by:

\[
P \left(-\Phi^{-1}(1-\alpha_S) < \frac{\hat{\rho}(k)-\mu_{\hat{\rho}(k)}}{\sigma_{\hat{\rho}(k)}} < \Phi^{-1}(1-\alpha_S) \right) \geq 1-\alpha_S
\]

(12)

For \(k > 0 \) being \(\Phi^{-1}(1-\alpha_S) \) the inverse of the standardised normal distribution evaluated at \((1-\alpha_S) \). Attending to (11), and that for a random variable it is \((\rho(k)=0 \) for \(k>0 \), probability expression (12) is traduced by the statement:

\[
\hat{\rho}_k \in \left[-\frac{1}{N} \left(1 + 2 \hat{\rho}(0) \right) \Phi^{-1}(1-\alpha_S), \frac{1}{N} \left(1 + 2 \hat{\rho}(0) \right) \Phi^{-1}(1-\alpha_S) \right] \quad \text{for} \; k > 0
\]

(13)

On Figure 4, limits of (13) with \(\alpha_S = 5\% \) are also represented. If \((1-\alpha_S) \% \) of the \(\hat{\rho}(k) \) values, with \(k > 0 \), are within (13) limits, \(\hat{\rho}(k) \) is accepted as representative of the autocorrelation of a random variable and therefore, \(Z_t \) is accepted as a random variable. A second step for the complete modelling of time series \(x_t \) is the determination of random variable \(Z_t \) distribution function. This is achieved by testing the probability density functions (pdf) of theoretical (expected) random variables against the realistic (observed) pdf one obtains for \(Z_t \). These tests are referred to as goodness-of-fit tests (Bendat and Piersol, 1990; Gutmann and Wilks, 1982; Popescu, 2006; Ross, 1987). A key element associated to statistical tests is its p-value. According to Ross (1987) test formulation, the p-value represents the maximal significance level at which the hypothesis should be accepted. Its value measures the closeness of the observed pdf relatively to the theoretical pdf; the p-value will be as close to the unity as the observed pdf is close to the theoretical pdf. Justification to give relevance to AR models resides on their physical base. They represent memory systems in the sense that values at instant \(t \) are influenced by the memory of previous values at \(t-1, \ldots, t-m \). Due to earth thermal inertia, ambient temperature is expected to be a function of near past ambient temperatures; due to its correlation with ambient temperature similar behaviour can be expected on the load profiles of distribution transformers.

Case studies

Previously described techniques applied to four time series, representing maximal, \(\Theta_M \), minimal, \(\Theta_m \), average, \(\Theta_{av} \), and half-amplitude \(\Theta_{am} \) values of daily ambient temperature in the Dolj (RO) region from 2002 to 2005 were:

\[
\Theta_{av} \equiv \left(\Theta_M + \Theta_m \right) / 2 \quad \text{and} \quad \Theta_{am} \equiv \left(\Theta_M - \Theta_m \right) / 2.
\]

(14)

Samples length is, therefore, \(N = 365 \). In order to keep exposition as clear as possible, the previous generic notations \(x \) and \(z \) of §2.1 will be used, being \(x, z \equiv \Theta_M, \Theta_m, \Theta_{av}, \Theta_{am} \). By means of discrete Fourier transform, parameters \(\bar{\omega}d, \Delta\bar{\omega}d, \varphi_d \), and of deterministic model represented by (7) were determined (Mastorakis et al., 2009a; Popescu et al., 2009). Resulted random residuals, \(x_{ran,t} \), were analysed. Although respective autocorrellograms revealed the presence of an AR model, the histogram of \(x_{ran} \) amplitudes passed a Chi-Square test, regarding a Gaussian distribution. If model:

\[
x_t = \bar{x}_d + \Delta x_d \cos(\omega t + \varphi_d) + N(\hat{\mu}_z, \hat{\sigma}_z),
\]

(15)
Figure 4a. Variable z_{run}.

Figure 4b. Variable z_{run}; respective autocorrelogram.
Table 1. Deterministic model parameters, random component x_{ran}, first moment estimators and p-value, for ambient temperature time series.

<table>
<thead>
<tr>
<th>Year</th>
<th>$\bar{\Theta}_M$</th>
<th>Δx_d</th>
<th>ϕ_x [rad]</th>
<th>$\bar{\Phi}_x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>20.935</td>
<td>7.109</td>
<td>2.829</td>
<td>0.000</td>
</tr>
<tr>
<td>Θ_m</td>
<td>12.395</td>
<td>5.384</td>
<td>2.657</td>
<td>0.000</td>
</tr>
<tr>
<td>Θ_{av}</td>
<td>16.233</td>
<td>6.237</td>
<td>2.753</td>
<td>0.000</td>
</tr>
<tr>
<td>Θ_{am}</td>
<td>4.275</td>
<td>1.009</td>
<td>-2.969</td>
<td>0.000</td>
</tr>
<tr>
<td>2003</td>
<td>20.027</td>
<td>6.803</td>
<td>2.821</td>
<td>0.000</td>
</tr>
<tr>
<td>Θ_m</td>
<td>12.455</td>
<td>5.339</td>
<td>2.733</td>
<td>0.000</td>
</tr>
<tr>
<td>Θ_{av}</td>
<td>16.247</td>
<td>6.067</td>
<td>2.783</td>
<td>0.000</td>
</tr>
<tr>
<td>Θ_{am}</td>
<td>3.789</td>
<td>0.777</td>
<td>3.125</td>
<td>0.000</td>
</tr>
<tr>
<td>2004</td>
<td>21.011</td>
<td>6.428</td>
<td>2.733</td>
<td>0.000</td>
</tr>
<tr>
<td>Θ_m</td>
<td>12.975</td>
<td>4.629</td>
<td>2.531</td>
<td>0.000</td>
</tr>
<tr>
<td>Θ_{av}</td>
<td>16.993</td>
<td>5.465</td>
<td>2.647</td>
<td>0.000</td>
</tr>
<tr>
<td>Θ_{am}</td>
<td>4.021</td>
<td>0.963</td>
<td>3.243</td>
<td>0.000</td>
</tr>
<tr>
<td>2005</td>
<td>22.111</td>
<td>6.797</td>
<td>2.810</td>
<td>0.000</td>
</tr>
<tr>
<td>Θ_m</td>
<td>14.011</td>
<td>4.639</td>
<td>2.606</td>
<td>0.000</td>
</tr>
<tr>
<td>Θ_{av}</td>
<td>18.059</td>
<td>5.687</td>
<td>2.725</td>
<td>0.000</td>
</tr>
<tr>
<td>Θ_{am}</td>
<td>4.051</td>
<td>1.223</td>
<td>-3.082</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Where: $\bar{\mu}_x = 0$ is valid, x_t can be considered as a non-stationary random variable, which mean is time dependent, μ_{x_t}, according to:

$$\mu_{x_t} = \bar{x}_d + \Delta x_d \cos(\omega t + \phi_x)$$ \hspace{1cm} (16)

and which standard deviation, generically denoted by σ_{x_t}, results, in fact, in a time independent (stationary) function:

$$\sigma_{x_t} = \bar{\sigma}_x.$$ \hspace{1cm} (17)

From (16) and (17) one can obtain the variation coefficient, CV_{x_t}:

$$CV_{x_t} = \frac{\sigma_{x_t}}{\mu_{x_t}} = \frac{\bar{\sigma}_x}{\bar{x}_d + \Delta x_d \cos(\omega t + \phi_x)},$$ \hspace{1cm} (18)

which mean value, \bar{CV}_{x_t}, is:

$$\bar{CV}_{x_t} = \frac{\bar{\sigma}_x}{\bar{x}_d}.$$ \hspace{1cm} (19)

From \bar{CV}_{x_t} values one can realise the degree of x_t concentration around its mean μ_{x_t}. Deterministic model parameters, $\bar{x}_d, \Delta x_d$ and ϕ_x, estimators of residuals first moment, $\hat{\mu}_x$ and $\hat{\sigma}_x$, mean value of variation coefficient, \bar{CV}_{x}, and p-value from the Chi-Square test are resumed in Table 1 for the 4 analysed years.

For these four analysed years, the model reproduces very well each year, although the number of considered years is insufficient to draw generalised conclusions or forecasts for the coming years. All samples passed with relatively high p-values Chi-square tests, regarding the hypotheses of being Gaussian distributed. From the low values of \bar{CV}_{x}, one can conclude that random component x_{ran} is relatively concentrated around the deterministic component. The histograms and respective theoretical probabilistic density functions (pdf) of a Gaussian distribution with parameters $\hat{\mu}_x$ and $\hat{\sigma}_x$ are represented on Figures 5 and 6.

A deeper analysis of x_{ran} residuals with respective autocorrelation functions revealed the presence of possible first order of AR models. The resulted z_t variables, once the first order AR model was removed, were studied. All passed a randomness test with a confidence level of 5%. Concerning the probabilistic distributions, in some cases z_t variable gets closer to the Gaussian distri-
Figure 5a. Histogram and respective Gaussian pdf for random component of Θ_M and Θ_m.

Figure 5b. Histogram and respective Gaussian pdf for random component of Θ_M; Data from 2005.
Figure 6a. Histogram and respective Gaussian pdf for random component of Θ_{av} and Θ_{am}.

Figure 6b. Histogram and respective Gaussian pdf for random component of Θ_{av}; Data from 2005.
Table 2. Random component z_{ran} first moment estimators and p-value, for ambient temperature time series.

<table>
<thead>
<tr>
<th>Year</th>
<th>Θ_M</th>
<th>Θ_m</th>
<th>Θ_{av}</th>
<th>Θ_{am}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>2.556</td>
<td>1.613</td>
<td>1.612</td>
<td>1.361</td>
</tr>
<tr>
<td>2003</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>2.447</td>
<td>1.963</td>
<td>1.752</td>
<td>1.330</td>
</tr>
<tr>
<td>2004</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>2.390</td>
<td>1.982</td>
<td>1.753</td>
<td>1.281</td>
</tr>
<tr>
<td>2005</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>2.390</td>
<td>1.982</td>
<td>1.753</td>
<td>1.281</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>σ_1^0</th>
<th>σ_1^s</th>
<th>p-value</th>
<th>$\hat{\sigma}_x / \hat{\sigma}_s$ [p.u.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>2.556</td>
<td>1.613</td>
<td>0.000</td>
<td>43</td>
</tr>
<tr>
<td>2003</td>
<td>2.447</td>
<td>1.963</td>
<td>0.000</td>
<td>12</td>
</tr>
<tr>
<td>2004</td>
<td>2.390</td>
<td>1.982</td>
<td>0.000</td>
<td>14</td>
</tr>
</tbody>
</table>

By comparing $\hat{\sigma}_x$ and $\hat{\sigma}_s$ values, one concludes that the taking into consideration the first order AR model reduces the variance level of random component ($\hat{\sigma}_s < \hat{\sigma}_x$). However, it is $\hat{\sigma}_x / \hat{\sigma}_s \approx 1$, meaning that supplementary information carried by the AR model is quite reduced.

Although the model is traduced by:

$$x_t = \bar{x} + \Delta x_d \cos(\omega t + \varphi_x) + \frac{\hat{\Delta}_0}{l} x_{t-l} + N (\hat{\mu}_x, \hat{\sigma}_x)$$ \hspace{1cm} (20)$$

Where: $\hat{\mu}_x = 0$ results more precise for some of the analysed time series, the model traduced by:

$$\bar{x}_d + \Delta x_d \cos(\omega t + \varphi_x) + N (\hat{\mu}_x, \hat{\sigma}_x) \hspace{1cm} (21)$$

Where: $\hat{\mu}_x = 0$ can describe in a more generic way, although less accurate, the time series representative of maximal, minimal, average and half-amplitude values of daily ambient temperatures of analysed years.

A similar analysis was performed for the load profiles of two distribution transformers, denoted by ES1 and BI1. Available data include daily maximal, K_M minimal, K_m, average, K_{av} and half-amplitude, K_{am}, load factor for the 2003, 2004 and 2005 years, being, analogously to ambient temperature:

$$K_{av} \equiv \left(K_M + K_m \right) / 2 \hspace{1cm} (22)$$

During this period, no structural network changes occurred in the network. As an example, maximal and minimal load factor values of ESI transformer, relatively to 2005, are represented on Figure 7. The loads served by this transformer are mainly of the residential type with a small component of industry.

Similar to ambient temperature modelling, the previous generic notations x and z will be used, being $x, z \equiv K_M, K_m, K_{av}, K_{am}$.

Deterministic cyclic component was assumed to follow also a sinusoidal variation as represented on (7) and resulted residuals, x_{ran}, were studied. Table 3 resumes obtained values for deterministic model parameters, $\bar{x}_d, \Delta x_d$ and φ_x, estimators of residuals first moment, $\hat{\mu}_x$.
Table 3. Deterministic model parameters, random component x_{ran} first moment estimators and \(p \)-value, for ESI distribution transformer.

<table>
<thead>
<tr>
<th>Year</th>
<th>\bar{x}_d [p.u.]</th>
<th>Δx_d [p.u.]</th>
<th>φ_x [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003: K_M</td>
<td>0.611</td>
<td>0.053</td>
<td>-0.029</td>
</tr>
<tr>
<td>K_m</td>
<td>0.277</td>
<td>0.016</td>
<td>0.292</td>
</tr>
<tr>
<td>K_{av}</td>
<td>0.443</td>
<td>0.034</td>
<td>0.025</td>
</tr>
<tr>
<td>K_{am}</td>
<td>0.165</td>
<td>0.023</td>
<td>-0.157</td>
</tr>
<tr>
<td>2004: K_M</td>
<td>0.582</td>
<td>0.055</td>
<td>0.115</td>
</tr>
<tr>
<td>K_m</td>
<td>0.273</td>
<td>0.016</td>
<td>0.571</td>
</tr>
<tr>
<td>K_{av}</td>
<td>0.426</td>
<td>0.037</td>
<td>0.209</td>
</tr>
<tr>
<td>K_{am}</td>
<td>0.156</td>
<td>0.023</td>
<td>-0.042</td>
</tr>
<tr>
<td>2005: K_M</td>
<td>0.602</td>
<td>0.035</td>
<td>-0.932</td>
</tr>
<tr>
<td>K_m</td>
<td>0.281</td>
<td>0.016</td>
<td>-0.773</td>
</tr>
<tr>
<td>K_{av}</td>
<td>0.440</td>
<td>0.025</td>
<td>-0.879</td>
</tr>
<tr>
<td>K_{am}</td>
<td>0.157</td>
<td>0.009</td>
<td>-1.089</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>$\bar{\mu}_x$ [p.u.]</th>
<th>σ_x [p.u.]</th>
<th>CV_{x_l} [p.u.]</th>
<th>p-value [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003: K_M</td>
<td>0.000</td>
<td>0.045</td>
<td>0.074</td>
<td>47</td>
</tr>
<tr>
<td>K_m</td>
<td>0.000</td>
<td>0.025</td>
<td>0.086</td>
<td>0</td>
</tr>
<tr>
<td>K_{av}</td>
<td>0.000</td>
<td>0.033</td>
<td>0.074</td>
<td>35</td>
</tr>
<tr>
<td>K_{am}</td>
<td>0.000</td>
<td>0.018</td>
<td>0.104</td>
<td>15</td>
</tr>
<tr>
<td>2004: K_M</td>
<td>0.000</td>
<td>0.049</td>
<td>0.085</td>
<td>59</td>
</tr>
<tr>
<td>K_m</td>
<td>0.000</td>
<td>0.026</td>
<td>0.095</td>
<td>19</td>
</tr>
<tr>
<td>K_{av}</td>
<td>0.000</td>
<td>0.035</td>
<td>0.079</td>
<td>11</td>
</tr>
<tr>
<td>K_{am}</td>
<td>0.000</td>
<td>0.019</td>
<td>0.121</td>
<td>85</td>
</tr>
<tr>
<td>2005: K_M</td>
<td>0.000</td>
<td>0.040</td>
<td>0.065</td>
<td>25</td>
</tr>
<tr>
<td>K_m</td>
<td>0.000</td>
<td>0.018</td>
<td>0.061</td>
<td>12</td>
</tr>
<tr>
<td>K_{av}</td>
<td>0.000</td>
<td>0.024</td>
<td>0.053</td>
<td>0</td>
</tr>
<tr>
<td>K_{am}</td>
<td>0.000</td>
<td>0.019</td>
<td>0.118</td>
<td>67</td>
</tr>
</tbody>
</table>

and $\hat{\sigma}_x$, and \(p \)-value from the Chi-square test regarding a Gaussian distribution of the residuals.

On Figure 7, time series representative of K_M "looks" much more disperse than the K_m time series, which is a common fact in the three analysed years. Minimal values of distribution transformer load profiles are very well defined by (usually) night loads, corresponding to "base" equipment which is almost constant if no structural changes or accidents occur in the transformer network, while maximal values traduce temporary overloads due to residential/industrial activity. From CV_{x_l} values, represented on Table 3, one realises that load profiles are much more concentrated around respective deterministic components, than ambient temperature profiles are. Globally, results resumed on Table 3 can be considered as good although residuals from K_m in 2003 and K_{av} in 2005 can not be considered to follow a Gaussian distribution. In fact, from the study of the autocorrelation function, one realises the presence of higher frequencies than the fundamental frequency (annual) on the deterministic
nistic sinusoidal model (7). This was an expected occurrence since load profiles are constrained to a much greater diversity of factors than ambient temperature profiles are. One can detect, for example, the increasing appearance of a second harmonic (bi-annual) reflecting the increase in loads due to air-conditioning equipment during summer period. However, one should recall the purpose of this work: to give a physical justification for theoretical load and ambient temperature profiles used in following simulations and not fully modelling these profiles. The histograms and respective theoretical pdf's of Gaussian distributions, with parameters \(\hat{\mu}_x \) and \(\hat{\sigma}_x \), reproduced on Table 3 are represented on Figures 8 and 9, for the 2005 data set.

The great dispersion of \(K_M \) time series relatively to \(K_m \) time series can be visualised by the limits of histograms represented on Figure 8. The hypothesis that random component \(x_{ran} \), of time series representative of load profiles could be modelled by an AR model did not give as good results as with ambient temperature profiles. This fact is due, in part, to the already referred presence of other cyclic (bi-annual) variations in \(x_{ran} \) which were not taken into consideration on the deterministic model (7). Results are resumed on Table 4.

Results obtained with the second analysed distribution transformer, referred as BI1, are resumed on Table 5, where \(\hat{\mu}_z \) values were omitted since it is \(\hat{\mu}_z = \hat{\mu}_x = 0 \) for all samples.

This transformer serves an area where loads are of residential and industrial types, in similar proportions. Residuals \(x_{ran} \), after removing the deterministic cyclic variation are not as normally distributed as residuals resulting from the ESI load profiles; in the 12 presented samples, 3 of them even fail the respective chi-square test. This fact does not invalidate the generic model represented by (20). Since 2004 is the year which data give the worst results, meaning lower \(p \)-values on the chi-square test for a Gaussian distribution of residuals, histograms of \(x_{ran} \), residuals and respective theoretical pdf's are represented on Figures 10 and 11. Although not passing the Chi-square test, the statistical distribution of random component \(x_{ran} \), relativeley to 2004 \(K_M, K_m, K_{av}, \) and \(K_{am} \) values, is not far from a Gaussian distribution as can be visualised on Figures 10 and 11.

Although more elaborated models are required to fully model the load profiles of distribution transformers, it has been shown that (21) can be considered as a good generic model.

Global model

On this section a global model to represent the whole set of maximal, minimal and average temperatures (or load...
Figure 8a. Histogram and respective Gaussian pdf for random component x_{ran} of K_M and K_m.

Figure 8b. Histogram and respective Gaussian pdf for random component x_{ran} of K_M; ESI transformer and data from 2005.
Figure 9a. Histogram and respective Gaussian pdf for random component x_{ran} of K_{am} (a) and K_{av}.

Figure 9b. Histogram and respective Gaussian pdf for random component x_{ran} of K_{am}; ESI transformer and data from 2005.
Table 4. Random component z_{ran}, first moment estimators and p-value, for ESI load profiles.

<table>
<thead>
<tr>
<th></th>
<th>$\bar{\mu} [\text{C}]$</th>
<th>$\bar{\sigma} [\text{C}]$</th>
<th>p-value</th>
<th>$\hat{\sigma}_x / \hat{\sigma}_z \text{[p.u.]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003: K_M</td>
<td>0.000</td>
<td>0.033</td>
<td>5</td>
<td>1.417</td>
</tr>
<tr>
<td>K_m</td>
<td>0.000</td>
<td>0.011</td>
<td>11</td>
<td>1.987</td>
</tr>
<tr>
<td>K_{av}</td>
<td>0.000</td>
<td>0.017</td>
<td>12</td>
<td>1.819</td>
</tr>
<tr>
<td>K_{am}</td>
<td>0.000</td>
<td>0.015</td>
<td>24</td>
<td>1.097</td>
</tr>
<tr>
<td>2004: K_M</td>
<td>0.000</td>
<td>0.034</td>
<td>15</td>
<td>1.455</td>
</tr>
<tr>
<td>K_m</td>
<td>0.000</td>
<td>0.022</td>
<td>0</td>
<td>1.183</td>
</tr>
<tr>
<td>K_{av}</td>
<td>0.000</td>
<td>0.022</td>
<td>0</td>
<td>1.620</td>
</tr>
<tr>
<td>K_{am}</td>
<td>0.000</td>
<td>0.018</td>
<td>53</td>
<td>1.075</td>
</tr>
<tr>
<td>2005: K_M</td>
<td>0.000</td>
<td>0.032</td>
<td>6</td>
<td>1.223</td>
</tr>
<tr>
<td>K_m</td>
<td>0.000</td>
<td>0.011</td>
<td>84</td>
<td>1.427</td>
</tr>
<tr>
<td>K_{av}</td>
<td>0.000</td>
<td>0.016</td>
<td>56</td>
<td>1.337</td>
</tr>
<tr>
<td>K_{am}</td>
<td>0.000</td>
<td>0.015</td>
<td>11</td>
<td>1.155</td>
</tr>
</tbody>
</table>

Table 5. Deterministic model parameters, random components x_{ran} and z_{ran}, first moment estimators and p-values, for BI1 distribution transformer.

<table>
<thead>
<tr>
<th></th>
<th>$\bar{x}_d \text{[p.u.]}$</th>
<th>$\Delta x_d \text{[p.u.]}$</th>
<th>$\varphi \text{[rad]}$</th>
<th>$\bar{\mu}_x \text{[p.u.]}$</th>
<th>$\bar{\sigma}_x \text{[p.u.]}$</th>
<th>$\hat{\sigma}_x / \hat{\sigma}_z \text{[p.u.]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003: K_M</td>
<td>0.351</td>
<td>0.075</td>
<td>-0.196</td>
<td>0.000</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>K_m</td>
<td>0.166</td>
<td>0.014</td>
<td>-0.147</td>
<td>0.000</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>K_{av}</td>
<td>0.258</td>
<td>0.046</td>
<td>-0.189</td>
<td>0.000</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>K_{am}</td>
<td>0.093</td>
<td>0.033</td>
<td>-0.206</td>
<td>0.000</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>2004: K_M</td>
<td>0.375</td>
<td>0.068</td>
<td>-0.088</td>
<td>0.000</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>K_m</td>
<td>0.188</td>
<td>0.011</td>
<td>0.545</td>
<td>0.000</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>K_{av}</td>
<td>0.282</td>
<td>0.039</td>
<td>-0.001</td>
<td>0.000</td>
<td>0.027</td>
<td></td>
</tr>
<tr>
<td>K_{am}</td>
<td>0.095</td>
<td>0.031</td>
<td>-0.238</td>
<td>0.000</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>2005: K_M</td>
<td>0.391</td>
<td>0.071</td>
<td>-0.019</td>
<td>0.000</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>K_m</td>
<td>0.201</td>
<td>0.016</td>
<td>0.091</td>
<td>0.000</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>K_{av}</td>
<td>0.296</td>
<td>0.043</td>
<td>-0.001</td>
<td>0.000</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>K_{am}</td>
<td>0.097</td>
<td>0.029</td>
<td>-0.051</td>
<td>0.000</td>
<td>0.011</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$CV_{x_d} \text{[p.u.]}$</th>
<th>p-value</th>
<th>$\hat{\sigma}_x / \hat{\sigma}_z \text{[C]}$</th>
<th>p-value</th>
<th>$\hat{\sigma}_x / \hat{\sigma}_z \text{[C]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003 K_M</td>
<td>0.102</td>
<td>63</td>
<td>0.033</td>
<td>51</td>
<td>1.118</td>
</tr>
<tr>
<td>K_m</td>
<td>0.083</td>
<td>31</td>
<td>0.012</td>
<td>1</td>
<td>1.307</td>
</tr>
<tr>
<td>K_{av}</td>
<td>0.089</td>
<td>61</td>
<td>0.017</td>
<td>21</td>
<td>1.236</td>
</tr>
<tr>
<td>K_{am}</td>
<td>0.171</td>
<td>5</td>
<td>0.016</td>
<td>14</td>
<td>1.028</td>
</tr>
</tbody>
</table>
Table 5 contd.

<table>
<thead>
<tr>
<th>Year</th>
<th>K_M</th>
<th>K_m</th>
<th>K_{av}</th>
<th>K_{am}</th>
<th>M</th>
<th>K_m</th>
<th>K_{av}</th>
<th>K_{am}</th>
<th>av</th>
<th>am</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>0.095</td>
<td>0.085</td>
<td>0.101</td>
<td>0.191</td>
<td>6</td>
<td>0.027</td>
<td>0.015</td>
<td>0.018</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>0.081</td>
<td>0.079</td>
<td>0.078</td>
<td>0.116</td>
<td>21</td>
<td>0.019</td>
<td>0.011</td>
<td>0.014</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

From x_m and x_{am} definition, (14) and (22), one can realise that the chosen α_G range, determines (23) to model variables from minimal to maximal values according to:

\[-1 \leq \alpha_G \leq 1 \Rightarrow x_m \leq x_t \leq x_M \]

If both x_m and x_{am} time series can be assumed to follow a deterministic and random components according to (21),

Figure 10a. Histogram and respective Gaussian pdf for random component xran of K_M (a) and K_m.

(a)
Figure 10b. Histogram and respective Gaussian pdf for random component xran of K_M; BI1 transformer and data from 2004.

Figure 11a. Histogram and respective Gaussian pdf for random component X_{ran} of $K(a)$ and K_{am}.
and attending to (23), \(x_t \) model will also result with deterministic and random components:

\[
x_t = x_{det} + x_{ran}
\]

with:

\[
x_{det} = \bar{x}_d + \Delta x_d \cos(\omega t + \varphi_x)
\]

\[
x_{ran} = N(0, \sigma_x)
\]

(25)

(26)

(27)

Each of the parameters \(\bar{x}_d, \Delta x_d \), and \(\varphi_x \) can be analytically determined and result as:

\[
\hat{x}_d = \bar{x}_{av} + \alpha_G \hat{x}_{am+d}
\]

\[
\Delta x_d = \sqrt{(\Delta x_{av})^2 + (\Delta x_{am})^2 + 2 \Delta x_{av} \Delta x_{am} \cos(\varphi_{av} - \varphi_{am})}
\]

\[
\varphi_x = \arctan\left(\frac{\Delta x_{av} \sin(\varphi_{av}) + \alpha \Delta x_{am} \sin(\varphi_{am})}{\Delta x_{av} \cos(\varphi_{av}) + \alpha \Delta x_{am} \cos(\varphi_{am})}\right) \pm \pi
\]

(28)

(29)

(30)

and

\[
\sigma_x = \sqrt{(\sigma_{av})^2 + (\alpha \sigma_{am})^2 + 2 \text{COV}(x_{av}, \alpha_G \cdot x_{am})}
\]

(31)

Where; \(\text{COV}(x_{av}, \alpha_G, x_{am}) \) denotes the covariance (covariance function (3) with null time lag, \(k=0 \)) between the random components \(x_{av} \) and \(\alpha_G \cdot x_{am} \). If profiles perfectly fitted model represented by (21), random components \(x_{av} \) and \(x_{am} \) would result as random variables and therefore uncorrelated from each other. Under this condition, (31) could be replaced by:

\[
\sigma_x = \sqrt{(\sigma_{av})^2 + (\alpha \sigma_{am})^2}
\]

(32)

Since (21) is only an approximate model of profiles evolution, covariation between random components \(x_{av} \) and \(x_{am} \) is considerably. Since correlation is an image of covariation but normalised by variables respective variations, the strength of the link between \(x_{av} \) and \(x_{am} \) results clearer if correlation values are represented instead of covariation (Figure 12).

The usefulness of this global model resides on modelling compactness it traduces; by means of \(\alpha_G \) parameter \(-1 \leq \alpha_G \leq 1\), this single model is able to reproduce ambient temperature (or load factor profiles) models previously derived, from minimal to maximal

Figure 11b. Histogram and respective Gaussian pdf for random component \(X_{ran} \) of \(K(a) \); BI1 transformer and data from 2004.
values. Numerical validation of this model is not reproduced here, since obtained values are in agreement with those reproduced on Tables 1, 3 and 5.

Ambient temperature and load profiles correlation

From the time evolution of load and ambient temperature profiles the distribution transformers are subjected to, one can infer a relationship between them. For the analysed cases, when ambient temperature drops, loads increase, and when ambient temperature increases, transformer loads decrease. The strength of this relationship between loads and ambient temperature is measured by the correlation between them. Since models have a deterministic and a random part (21), correlation coefficient between each of these components, will be determined, to evidence that correlation between time series is mainly due to their deterministic components; random components are practically independent (uncorrelated) of each other. Correlation coefficients between transformer ESI load profile and 2004 ambient temperature are represented on Table 6.

![Figure 12. Correlation between random components x_{ran} and x_{ran}'.](image)

Table 6. ESI deterministic and random correlation for 2004 data set.

<table>
<thead>
<tr>
<th>Ambient temperature</th>
<th>ESI Load Profile</th>
<th>Deterministic</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic</td>
<td>Maximal</td>
<td>-0.471</td>
<td>-0.074</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>-0.569</td>
<td>-0.111</td>
</tr>
<tr>
<td></td>
<td>Minimal</td>
<td>-0.636</td>
<td>-0.112</td>
</tr>
<tr>
<td>Random</td>
<td>Maximal</td>
<td>-0.089</td>
<td>-0.143</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>-0.135</td>
<td>-0.143</td>
</tr>
<tr>
<td></td>
<td>Minimal</td>
<td>-0.143</td>
<td>-0.143</td>
</tr>
</tbody>
</table>
strength increases as walking towards maximal values, which means that loads, and in particular, maximal ones, are much more "sensitive" to maximal ambient temperature than minimal ambient temperature. In fact, minimal loads along the year are almost constant and they traduce, in practice, a "base" load that is almost invariant with ambient temperature changes and depends most upon load characteristics of transformers distribution network. Previous considerations about correlation result clearer on Figure 13a, where Table 6 deterministic and random correlation values are graphically represented.

Although correlation coefficients are all negative, on Figure 13 correlation axis is in reverse order, so that graph visualisation results clearer. Similar relationship between deterministic and random correlation values can be obtained from BI1 transformer data (Figure 13b) and from 2003 and 2005 data sets (Figures 14 and 15). The constancy in the sign of correlation between random parts (all negatives in 2004 or all positives in ESI 2004) is an indication that random components \(x_{\text{rand}} \) of these profiles still carry deterministic behaviours that were not removed by the assumed deterministic model (21). If profiles were perfectly modelled by (21), correlation between any random component would result as null. Attending to the magnitude of correlation between deterministic parts and random parts and to results presented on the functional parameter modelling, it can be consider that,

\[
x_i = \bar{x}_i + \Delta x_i \cos(\omega t + \varphi_i) + N (\mu_i, \sigma_i),
\]

is a generic sufficiently accurate model to traduce the load annual evolution of distribution transformers as well as ambient temperature. Also, simulated load and ambient temperature profiles with random components will be used, to study the sensitivity of transformer thermal and loss of life models presented on Popescu (2006b), to such functional parameters.

FUNCTIONAL PARAMETERS SENSITIVITY

Probabilistic formulation

Input profiles

System inputs, \(K \) and \(\Theta_u \), are the transformer load and ambient temperature profiles which, by assumption, can be represented by an additive model of deterministic and random components, of the form:

\[
K = K_{\text{det}} + K_{\text{run}} \quad \text{and} \quad \Theta_u = \Theta_{a,\text{det}} + \Theta_{a,\text{run}}.
\]

In fact, possible correlation can occur between \(K \) and \(T \). In this general case, a non-stationary model must be considered. In this work this increase in model complexity will not be considered, since when the correlation exists, it derives, mainly, from a strong link between deterministic components (that is concomitant sinusoidal load and ambient temperature variations) and a weakest link between corresponding random components, as shown in Figure 13. The objective of this study is, under stationary conditions, to determine, on the output variable (LOL), its deterministic and random components, based on the previously referred additive model.

Methodology

The data acquisition frequency of a continuous type system must be carefully defined since it plays an important role on posterior analysis of data. Namely, the data acquisition set must represent faithfully the signal and, from this data set, one must be able to "rebuild" the original signal in a univocal way. The sampling theorem states that a continuous signal which Fourier Transform exists and is null out of the frequency interval \([-f_s, f_s]\) should be sampled at a frequency \(f_s \) such that:

\[
f_s > 2f
\]

(35)

Reciprocally, if the sampling frequency is \(f_s \), no information can be inferred from the sampled data set, about signal occurrences with frequencies above the Nyquist, \(f_N \) frequency, given by:

\[
f_N = f_s / 2,
\]

(36)

Usually, in the case of long term forecasting, the acquisition period of data for analyses is long enough and therefore it is possible to neglect variables rapid fluctuations having a period of the same order of involved thermal time constants. Typically, it is \(\tau = 3 \) h and the windings constant \(\tau_w = 5 \) to 10 min (Asbury, 1975; IEC-354, 1991; Pierrat et al., 1996; Popescu, 2006a). Taking into account that input variables are approximately stationary, this simplification represents a second argument to consider a probabilistic stationary model, instead of a stochastic dynamic one. Both transformer thermal and ageing models, are strongly non-linear ones, which will determine the non-preservation of inputs statistical distribution structure (Bendat and Piersol, 1990; Bendat and Piersol, 1993; Popescu, 2006; Popescu, 2008). Nevertheless, provided each mathematical transformation can be defined as a one-to-one function (with inverse) of an input random variable which \(pdf \) is known, output variable \(pdf \) can be analytically determined, either directly with recourse of characteristic functions. However, this methodology is not suitable for the system under study, since some transformations do not have an analytical exact expression for its inverse function:

\[
y = \varphi(x),
\]

(37)
Figure 13. Deterministic and random correlation between ambient temperature and ESI Data from 2004. (Table 6 for ESI transformer).

Figure 13. Deterministic and random correlation between ambient temperature and Bil. Data from 2004. (Table 6 for ESI transformer).
Figure 14a. Deterministic and random correlation between ambient temperature and ESI profiles. Data from 2003.

Figure 14b. Deterministic and random correlation between ambient temperature and BII profiles. Data from 2003.
a)

Figure 15a. Deterministic and random correlation between ambient temperature and ESI profiles. Data from 2005.

b)

Figure 15b. Deterministic and random correlation between ambient temperature and Bll profiles. Data from 2005.
which must be determined numerically.

The methodology used to estimate the stochastic output variable LOL, once the random inputs \(K \) and \(\Theta_a \) are defined, is based on realistic characteristics of distribution transformers load profiles and ambient temperature ones. As already shown from the case studied, in a statistical sense, \(K \) and \(\Theta_a \) can be considered as unimodal random variables concentrated around their modal values (mode) (Papoulis, 1984; Popescu, 2006) which means a reduced variation coefficient \(CV_x \). Under this condition, it will be assumed as valid the linearisation of (37) in the vicinity of its input expected value \(m_x \), which first three terms are:

\[
y = \phi(m_x) + \frac{\partial \phi(x)}{\partial x} \bigg|_{x=m_x} (x - m_x) + \frac{\partial^2 \phi(x)}{\partial^2 x} \bigg|_{x=m_x} (x - m_x)^2.
\]

(38)

From (39) one can obtain estimators for \(y \) moments, denoted by \(\hat{\mu}_y \) and \(\hat{\sigma}_y \), as functions of \(x \) moments, denoted by \(\mu_x \) and \(\sigma_x \). Second order estimators will be given by:

\[
\hat{\mu}_y = \phi(m_x) + \frac{1}{2} \frac{\partial^2 \phi(x)}{\partial^2 x} \bigg|_{x=m_x} \sigma_x^2
\]

(39)

\[
\hat{\sigma}_y^2 = \left[\frac{\partial \phi(x)}{\partial x} \bigg|_{x=m_x} \right]^2 \sigma_x^2 + \frac{1}{2} \left[\frac{\partial^2 \phi(x)}{\partial^2 x} \bigg|_{x=m_x} \right]^2 \sigma_x^4
\]

(40)

The errors one commits by considering the first order estimators, against the second order ones, can approximately be bounded by:

\[
\varepsilon_\mu = \frac{1}{2} \sigma_x^2 \left[\frac{\partial^2 \phi(x)}{\partial^2 x} \bigg|_{x=m_x} \right] \frac{1}{\phi(m_x)}
\]

and

\[
\varepsilon_\sigma = \frac{1}{2} \sigma_x^2 \left[\frac{\partial^2 \phi(x)}{\partial^2 x} \bigg|_{x=m_x} \right] \frac{1}{\phi(m_x)} \left[\frac{\phi(x)}{\partial x} \bigg|_{x=m_x} \right]^2
\]

(41)

If the linearisation of (37) is assumed to be valid, it will also lead to the preservation of input variable statistical structure. Being the \(x \) variable pdf defined, the output variable \(y \) will present a similar structure and its pdf can be determined, approximately, with recourse of its first moments, which estimators are given by (39) and (40).

Approximate analytical model

Linearisation error

In order to evaluate the validity of the linearisation traduced by (38), the errors \(\varepsilon_\mu \) and \(\varepsilon_\sigma \), (39) and (40), for a range of \(\mu_x \) and \(\sigma_x \), corresponding to realistic values of distribution transformer load profiles, were studied:

\[
\mu_x \in [0.1,1.5] \quad \text{and} \quad \sigma_x \in [0.01,0.8].
\]

To \(\mu_x = 0.1 \) p.u. corresponds a very low load, while \(\mu_x = 1 \) p.u. corresponds to an overload of limited duration. The resulting variation coefficient ranges, approximately: \(CV_x \in [0.007,8] \). Numerical results, presented on Figure 16, are determinant in concluding for the importance of second order estimators, as \(CV_x \) increases, traducing the limits of linearisation procedure, based on first order estimators.

Stationary normal inputs

Considering that both system input variables are normally distributed, with parameters:

\[
k \sim N (\mu_k, \sigma_k) \quad \text{and} \quad \Theta_a \sim N (\mu_a, \sigma_a).
\]

(42)

Resulting that \(\hat{\mu}_{\Theta_a} \) will present an approximately normal distribution, which estimated parameters are:

\[
\hat{\mu}_{\Theta_a} = \hat{\mu}_{\Theta_a} + \mu_{\Theta_a},
\]

(43)

\[
\hat{\sigma}_{\Theta_a}^2 = \sigma_{\Theta_a}^2 + \hat{\sigma}_{\Theta_a}^2,
\]

(44)

since mutual independence between random parts was admitted. Under a probabilistic formulation, where time dependence does not exist and for stationary statistical distributions \(V_{ag} \) is identical to \(LOL \), and therefore (Popescu, 2008), being \(\Theta_{ba} \) approximately Normal, LOL will result strictly as a lognormal distributed random variable:

\[
pdf(LOL) = \frac{1}{\sigma_{LOL} 2\pi} \exp \left[-\frac{(\ln(LOL) - \hat{\mu}_{LOL})^2}{2\sigma_{LOL}^2} \right]
\]

(45)

Where:

\[
\hat{\mu}_{LOL} = \frac{\ln 2}{6} (\hat{\mu}_{\Theta_a} - 98) \quad \text{and} \quad \hat{\mu}_{LOL} = \frac{\ln 2}{6} \sigma_{\Theta_a}
\]

(46)

Stationary uniform inputs

Input variables are considered to be uniformly distributed:

\[
K \sim U[K_1, K_2] \quad \text{and} \quad \Theta_a \sim U(\mu_{\Theta_a}, \sigma_{\Theta_a}).
\]

(47)

Their first moments are given by:

\[
\mu_x = \frac{X_2 + X_1}{2} \quad \text{and} \quad \sigma_x = \frac{X_2 - X_1}{2\sqrt{3}},
\]

(48)
Figure 16a. First order linearisation error ϵ_{μ}.

Figure 16b. First order linearisation error ϵ_{σ^2}.
and the resulting variation coefficient by:

\[CV_x = \frac{1}{\sqrt{3}} \frac{X_2 - X_1}{X_2 + X_1}, \tag{49} \]

with \(X \equiv K \Theta_a \). In this case, analytic pdf of output variable LOL is unknown because \(\Theta_{hs} \) is a bounded random variable.

Results for normal and uniform inputs

For normally distributed load and ambient temperature profiles, which parameters are represented on Table 8, \(\Delta \Theta_{hs}, \Theta_{hs} \) and LOL pdf's results are represented in Figures 19 and 20(a), respectively; LOL cumulative distribution function (CDF) is represented on Figure 20b. For Uniform distributed input variables, corresponding variables are represented in Figures 20 and 21.

In the figures, dots represent simulated values and lines represent Normal pdf's (and subsequent lognormal ones, for LOL), which parameters are the corresponding variables second order \(\hat{\mu} \) and \(\hat{\mu} \) estimators, obtained from the linearisation procedure (39) and (40).

Results analysis

Estimators determined from the linearisation method, corresponding to \(\Delta \Theta_{hs}, \Theta_{hs} \) and LOL variables are represented in Table 9.

These estimators are, by definition, independent of input distributions (Normal and Uniform). Table 10 represents estimators obtained from the Monte Carlo method, for the variables \(\Delta \Theta_{hs}, \Theta_{hs} \) and LOL, respectively for Uniform and Normal distributions.

Taking into account inherent errors of Monte Carlo methodology, these values can be considered as references. A general idea of linearisation precision can be drawn out from deviations of, for example, second order \(\hat{\mu} \) variable parameters; maximal deviations between Tables 9 and 10 values are 3%. Since these errors also include Monte Carlo inherent errors (Popescu et al., 2009a; Rubinstein, 1981) (Table 11), one can consider that second order estimators are of sufficient precision.

Simulation results and analysis

Simulation parameters and method

The results presented were obtained considering a distribution transformer rated 630 kVA, 10 kV/400V with copper windings. When needed parameters were omitted on transformer data sheet, the ones proposed on IEC-354 (1991) were assumed: \(\Delta \Theta_{oR} = 55K, \Delta \Theta_{hs,R} = 23K \), \(R = 5, n = 0.8, m = 1.6 \). Input variables sample length is \(N = 3000 \) and were simulated from a Monte Carlo Method (Popescu et al., 2009a; Popescu, 2007; Rubinstein, 1981). Histograms were drawn, considering 100 binary classes, for each variable. Table 7 represents the 95% confidence intervals of Normal inputs simulated by Monte Carlo.

In order to compare results from normal and uniform input distributions, random variables were simulated for similar expected and standard deviation values, on both sets of distributions (Table 8).

Their respective histograms are represented in Figures 17 and 18. Concerning uniformly distributed inputs, the bounds of their variation range are determined by (48), taking into account the same means and standard deviations of Table 8.

Tables

Table 7. Limits of 95% confidence intervals of Normal inputs simulated by Monte Carlo.

<table>
<thead>
<tr>
<th>(K)</th>
<th>(\Theta_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>(\hat{\mu})</td>
<td>0.802</td>
</tr>
<tr>
<td>(\hat{\sigma})</td>
<td>0.098</td>
</tr>
<tr>
<td>(\hat{\gamma})</td>
<td>0.123</td>
</tr>
</tbody>
</table>

Table 8. Input distribution parameters.

<table>
<thead>
<tr>
<th>(\mu_k)</th>
<th>(\sigma_k)</th>
<th>(CV_k)</th>
<th>(\mu_{\theta_a})</th>
<th>(\sigma_{\theta_a})</th>
<th>(CV_{\theta_a})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>0.1</td>
<td>0.125</td>
<td>20</td>
<td>5</td>
<td>0.25</td>
</tr>
</tbody>
</table>

The results presented were obtained considering a distribution transformer rated 630 kVA, 10 kV/400V with copper windings. When needed parameters were omitted on transformer data sheet, the ones proposed on IEC-354 (1991) were assumed: \(\Delta \Theta_{oR} = 55K, \Delta \Theta_{hs,R} = 23K \), \(R = 5, n = 0.8, m = 1.6 \). Input variables sample length is \(N = 3000 \) and were simulated from a Monte Carlo Method (Popescu et al., 2009a; Popescu, 2007; Rubinstein, 1981). Histograms were drawn, considering 100 binary classes, for each variable. Table 7 represents the 95% confidence intervals of Normal inputs simulated by Monte Carlo.

In order to compare results from normal and uniform input distributions, random variables were simulated for similar expected and standard deviation values, on both sets of distributions (Table 8).

Their respective histograms are represented in Figures 17 and 18. Concerning uniformly distributed inputs, the bounds of their variation range are determined by (48), taking into account the same means and standard deviations of Table 8.
Figure 17a. Histograms of Normal K.

Figure 17b. Histograms of Normal inputs Θ_α.
a)

Figure 18a. Histograms of Uniform K inputs.

b)

Figure 18b. Histograms of Uniform Θ_a inputs.
a)

Figure 19a. (a) $\Delta \Theta_{hs}$ pdf’s for Normal inputs.

b)

Figure 19b. Θ_{hs} pdf’s for Normal inputs.
Figure 20a. LOL and pdf for Normal inputs.

Figure 20b. LOL and CDF for Normal inputs.
Figure 21a. $\Delta \Theta_{hs}$ pdf's for Normal inputs.

Figure 21b. Θ_{hs} pdf's for Normal inputs.

Table 9. Second order LL, C and CV estimator values.

<table>
<thead>
<tr>
<th></th>
<th>$\Delta \Theta_{hs}$</th>
<th>Θ_{hs}</th>
<th>LOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\mu}$</td>
<td>57.950</td>
<td>78.131</td>
<td>0.222</td>
</tr>
<tr>
<td>$\hat{\sigma}$</td>
<td>9.579</td>
<td>10.869</td>
<td>0.433</td>
</tr>
<tr>
<td>CV</td>
<td>0.163</td>
<td>0.137</td>
<td>1.957</td>
</tr>
</tbody>
</table>
Table 10. Estimators from Monte Carlo simulations for Normal and Uniform inputs.

<table>
<thead>
<tr>
<th></th>
<th>Normal distribution</th>
<th>Uniform distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\Delta \Theta_{hs})</td>
<td>(\Theta_{hs})</td>
</tr>
<tr>
<td>(\mu)</td>
<td>58.268</td>
<td>78.209</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>9.656</td>
<td>10.870</td>
</tr>
<tr>
<td>(CV)</td>
<td>0.166</td>
<td>0.139</td>
</tr>
</tbody>
</table>

Table 11. Monte Carlo errors propagation for Normal inputs.

<table>
<thead>
<tr>
<th></th>
<th>Lower</th>
<th>Upper</th>
<th>Lower</th>
<th>Upper</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu)</td>
<td>57.524</td>
<td>58.208</td>
<td>77.286</td>
<td>78.327</td>
<td>0.281</td>
<td>0.419</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>9.391</td>
<td>9.935</td>
<td>10.602</td>
<td>11.203</td>
<td>0.000</td>
<td>1.681</td>
</tr>
<tr>
<td>(CV)</td>
<td>0.161</td>
<td>0.173</td>
<td>0.135</td>
<td>0.145</td>
<td>0.000</td>
<td>5.971</td>
</tr>
</tbody>
</table>

STRUCTURAL PARAMETERS SENSITIVITY

This section objective is to study thermal and loss of life models sensitivity relatively to structural parameters, namely, \(\Delta \Theta_{0R} \), \(\Delta \Theta_{oR} \), \(R \), \(n \) and \(m \) (Resende et al., 1998).

Methodology

Functional inputs are the transformer load, \(K \), and ambient temperature, \(\Theta_a \), profiles which, by assumption, will be represented by the additive model of (34). The deterministic component of functional inputs will be considered stationary. In fact, this basic representation on functional input profiles will have no influence on structural parameter sensitivity study, since these profiles will remain unchanged along the study. Both system functional input variables will be considered as normally distributed:

\[
k \sim N(\mu_k, \sigma_k) \quad \text{and} \quad \Theta_a \sim N(\mu_{\Theta_a}, \sigma_{\Theta_a}). \tag{50}
\]

The values of two first variables moments are: \(\mu_k = 1 \) [p.u.], \(\sigma_k = 0.1 \) [p.u.], \(\mu_{\Theta_a} = 20^\circ \text{C} \) and \(\sigma_{\Theta_a} = 5^\circ \text{C} \). These values will lead to corresponding variation coefficient values of: \(CV_K = 0.1 \) [p.u.] and \(CV_{\Theta_a} = 0.25 \) [p.u.]. For the reference scenario, structural parameters will be considered as deterministic variables, which values are those proposed by IEC-354 (1991):

\[
\Delta \Theta_{0R} = 55, \ \Delta \Theta_{hsR} = 23 K, \ R = 5, \ n = 0.8, \ m = 1.6. \tag{51}
\]

For this referential scenario, structural parameters will be considered as random variables. Other possible distribution could be envisaged, depending upon the available knowledge of parameters; due to its generality, it will be considered that structural parameters are random variables normally distributed:

\[
\Delta \Theta_{0R} \sim N(\mu_{\Theta_0}, \sigma_{\Theta_0}), \ \Delta \Theta_{hsR} \sim N(\mu_{\Theta_{hs}}, \sigma_{\Theta_{hs}}), \ n \sim N(\mu_n, \sigma_n), \ R \sim N(\mu_R, \sigma_R) \quad \text{and} \quad m \sim N(\mu_m, \sigma_m) \tag{52}
\]

which first moment values are those represented on (51) and second moment values are imposed by limiting physical conditions:

\[
\Delta \Theta_{0R}, \Delta \Theta_{hsR}, \ R, n, m > 0, \ n < 1 \quad \text{and} \quad m < 2 \tag{53}
\]

Procedure

Using a Monte Carlo simulation method (Popescu et al., 2008; Rubinstein, 1981), load and ambient temperature profiles are simulated and, under the referential scenario, output variable two first moments \(\mu_{LOL} \) and \(\sigma_{LOL} \) are determined. The model output sensitivity will be studied separately for each structural parameter. Therefore, five more simulations are performed where, one at the time, each structural parameter is considered as a random variable defined on (52), while the remain four, stay as deterministic ones; with this procedure, one is able to study output sensitivity due to each parameter, separately. The variability of each parameter was incremented up to the limits imposed by physical conditions stated in (53). This variability can be measured through the variation coefficient, \(CV \). The output variable sensitivity is measured through the \(LOL \) variation coefficient, in per unit values based on those obtained under the referential
Table 12. Structural parameter values.

<table>
<thead>
<tr>
<th>Set</th>
<th>$\Delta\Theta_{s,R}$ [$^\circ$C]</th>
<th>$\Delta\Theta_{h,R}$ [$^\circ$C]</th>
<th>R [p.u.]</th>
<th>n</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$\mu = 55$, $\sigma \in [0.15]$</td>
<td>23</td>
<td>5</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td>B</td>
<td>55</td>
<td>$\mu = 23$, $\sigma \in [0.6.5]$</td>
<td>5</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td>C</td>
<td>55</td>
<td>23</td>
<td>$\mu = 5$, $\sigma \in [0.14]$</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td>D</td>
<td>55</td>
<td>23</td>
<td>5</td>
<td>$\mu = 0.8$, $\sigma \in [0.0.2]$</td>
<td>1.6</td>
</tr>
<tr>
<td>E</td>
<td>55</td>
<td>23</td>
<td>5</td>
<td>0.8</td>
<td>$\mu = 1.6$, $\sigma \in [0.0.4]$</td>
</tr>
</tbody>
</table>

\[
CV_{LOL\text{[p.u.]}} = \frac{CV_{LOL}}{(CV_{LOL})_{\text{Reference Scenario}}}.
\]

Simulation results and analysis

The results presented were obtained considering a standardised distribution transformer rated 630 kVA, 10 kV/400 V with copper windings and mean values of structural parameters given by (51). Input variables sample length is $N = 3000$ and were simulated from a Monte Carlo Method (Popescu et al., 2009a; Rubinstein, 1981). In order to compare, separately, models sensitivity to each parameters, five set of input data were considered (Table 12).

Simulation results are represented in Figures 22, 23 and 24. LOL sensitivity to $\Delta\Theta_{s,R}$ and $\Delta\Theta_{h,R}$ parameters variability is important (Figure 22).

In fact these are the thermal model parameters that represent the transformer cooling conditions which are fundamental on hot-spot temperature estimation and so loss of life. Results show the importance of standardising with variation coefficients below 5%, the values obtained from tests for these two parameters. Under this condition, LOL sensitivity to them becomes negligible. Output variable sensitivity to R parameter variability is negligible (Figure 23) since, even with an increase in transformer losses (which would increase LOL), this R ratio stays almost constant. Parameter R is fundamental to optimise transformer efficiency as a function of load variability and losses economical value but its importance is reduced on hot-spot temperature estimation, at least assuming (IEC-354, 1991) thermal model. Parameter R is fundamental on economical models but its importance is reduced on thermal model. Sensitivity to n and m parameter is an important and actual subject since many discussions can be found on literature about these two parameters, for example Boteanu and Popescu (2008) and Zodeh and Whearty (1997). These parameters are of difficult measurement and therefore, one can find in specialised literature a great dispersion of measuring methodologies and correspondent obtained values.

Conclusion

The modelling of the time series representative of annual evolution of ambient temperature and transformer load showed that a non-complex additive model of deterministic and random components could genetically model such time series. Good results were obtained considering the deterministic component as a time varying function represented by a constant value (mean annual value) to which a first order sinusoidal function is added (annual added (annual cyclic variation). The model can easily be extended to daily, weekly or seasonally sinusoidal variations. Resulted residuals still denoted the presence of deterministic cyclic behaviours of higher than the first order but, generally, they could be approximated to random variables closely following a Gaussian distribution.

Most detailed models, such as the autorregressive models were experienced. They proved to mostly precise model some of the analysed time series but they could not be generalised for the analysed sample of profiles. The correlation between ambient temperature and distribution transformer load was also analysed. For the studied cases, the results obtained by splitting this analysis into correlation between deterministic components and correlation between random components, showed that ambient temperature and distribution transformer load were inversely correlated and that this correlation derives mainly from a strong link between deterministic components rather than from random components. Due to their relative values, correlation be-ween random components is practically negligible, compared to that between deterministic com-ponents. Due to the strongly non-linearity of transformer thermal and loss of life models the statistical structure of input variables (load and ambient temperature) is not preserved on the output variable (loss of life). Moreover, the analytical determination of output statistical pdf is not possible either directly either with recourse of characteristic functions, since some mathematical transformations do not have an analytical exact expression for its inverse. Since, in a statistical sense, load variable is of reduced variability, meaning concentrated around its mean, a second order linearisation of the model, valid in the vicinity of load mean, was developed. The linearised model was validated for two different pdf’s of the input variables: the Gaussian...
Figure 22a. LOL sensitivity to $\Delta \Theta_{\varphi h k}$ variability.

Figure 22b. LOL sensitivity to $\Delta \Theta_{Rh R}$ variability.

Figure 23. LOL sensitivity to R variability.
and the uniform pdf's. The input variables were simulated by a Monte Carlo method and results obtained from simulations are of good accuracy with those analytically estimated. Last study presented on this chapter refers to the sensitivity of transformer thermal and loss of life models, relatively to its structural parameters variability. The existence of this variability has been shown on Borcosi et al. (2009:2008). The sensitivity was studied through the variability of output variable and was achieved by considering structural parameters as represented by random variables normally distributed. This statistical structure was chosen attending to its generality. Variables were simulated by a Monte Carlo method and their mean values equalled those proposed by International Standards. Respective variation values were the maximum ones allowed by parameters' physical constrains. Results showed that the transformer thermal and loss of life assembly model is practically insensitive to the variability of the parameters R, n and m. On the other hand, its sensitivity to $\Delta \Theta_{\text{syr}}$ and mainly to $\Delta \Theta_{\text{tr}}$ variability is important. Justification for this sensitiveness resides on the fact that these two parameters are those which values directly reflect the cooling conditions of the transformer and therefore are determinant on thermal loss of life estimation. For this reason, the study showed the
importance of international standardisation of these parameters. If these parameters were standardised with variation coefficients below 5%, one could consider that loss of life sensitivity to symbols would be negligible.

LIST OF MOST IMPORTANT SYMBOLS

CVₙ, Variation coefficient of x; CŌVₓ, Estimator of Xᵣ variable autocovariance (xᵣ sample autocovariance); CŌVₓᵧ, estimator of covariance between Xᵣ and Yᵣ; Xᵣ variables (covariance between Xᵣ and yᵣ variable); k, time lag on chronological series [times]; LOL, relative loss of life over a period [p.u.]; n, oil exponent depending upon transformer refrigeration method [dimensionless]; N, generic integer number [dimensionless]; m, hot-spot exponent depending upon transformer refrigeration method [dimensionless]; P (statement), probability of occurrence of statement between brackets [p.u.]; R, loss ratio (rated load loss on windings to no-load loss) [p.u.]; x, generic variable; Tᵢ, arithmetic averages of xᵣ; Xᵣ, first moment (mean or expected value) of variable x [same dimension as xᵣ]; ρₓᵧ, estimator of Xᵣ variable autocorrelation (autocorrelation of xᵣ sample); ρₓᵧ, estimator of correlation between Xᵣ and Yᵣ variables (correlation between xᵣ and yᵣ samples); σₓ², second moment (variance) of variable x (the square of x dimension); Θᵣ, ambient temperature; ΔΘₓᵧ, top-oil temperature rise referred to ambient temperature under rated load [K]; ω, angular frequency [rad s⁻¹].

REFERENCES

Sachedev MS, Billinton R, Peterson CA (1977). Representative Biblio-