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This study investigates the long-term effects of instructing Cantor set theory using constructivist 
learning approach on student knowledge retention. The participants included 60 first-year secondary 
mathematics pre-service teachers. Students were divided into two classes one of which was taught via 
traditional lecture (n = 30) and the other was taught using active learning approach (n = 30). A pre-test 
named “Minimum Requirements Identification Test” developed by the researcher was used in the 
determination of the groups. This test involves the concepts such as “set, relation, and function” which 
were required to be able to learn Cantor set theory. Student retention of Cantor set theory was 
measured by using a questionnaire which consists of open-ended questions about the topic. The test 
was administered to all of the students approximately 14 months after the first instruction. In addition, 
five students from each group were interviewed. Analyses of the data revealed that the students in the 
constructivist learning environment showed better retention of almost all of the concepts related to 
Cantor set theory than the students in the traditional class.  
 
Key words: Cantorian set theory, teacher education, infinity, retention, active learning. 

 
 
INTRODUCTION 
 
There has been an increasing emphasis on active 
learning during the last decade. It has been regarded as 
a radical shift from traditional instruction. Active learning 
method has gained supporters among instructors who 
seek for alternative means of imroving instruction. 
However, there are faculty who regarded active learning 
as no more effective than traditional instruction (Prince, 
2004). 

Although it is not possible to provide a widely accepted 
definition for the terms used within active learning 
instruction, it may be possible to provide commonly 
accepted definitions in the literature and show how active 
learning terms are used by different researchers. 

Most common defition used for active learning is one 
that involves students in the learning process. In other 
words, active learning needs students carry out learning 
activities on their own and think about their learning 
(Bonwell and Eison, 1991).  While  traditional   homework 

activities could be included in this definition, actually the 
activities that are carried out in the classroom are the 
ones which referred to. The fundamental elements of 
active learning are students involved in the activities and 
in the learning process. Researchers often compares 
active larning with the traditional instruction where 
students are though as passive information receivers. 

Constructivists believe that people who come to 
classes with the goals and curiosity given by the nature 
are information producers and effective inquirers 
(information seekers) (Brooks and Brooks, 1993, Fosnet 
1989, Piaget 1954). Constructivist theorists believe the 
discovery and transformation of complex knowledge, thus 
they do not approve teacher-centered instruction, skills, 
and content (Brooks and Brooks 1993, Fosnet 1993). 
Constructivists believe that conditions and social 
activities shape student understanding. These become 
important   when   the  traditional-type  teacher  does  not 



 
 
 
 
provide students with tools required for learning and force 
students to settle for artificial and shallow resources of 
learning without an opportunity to use or apply knowledge 
(Chi, Feltovich, and Gloser 1981). Some educational 
psychologists say that students from different parts of the 
world learn better when they gain experience together 
and tackle with problems which require authenticity and 
simulation (Bednar, Cunnigham, Duffy and Perry, 1992, 
Coollins, Brown and Newman 1988, Resnick 1987, 
Wilson 1993). 

Since instructional methods often consists of several 
elements, they also involve several learning outcomes 
(Norman and Schmidt, 2000). If one asks about whether 
active learning works, it should be considered in terms of 
learning outcomes such as students’ content knowledge, 
skills and abilities, attitudes, and student retention in 
schools. However, it is not easy to assess all of the 
outcomes together, thus researchers provide no concrete 
comprehensive data on the effects of instructional 
methods on these learning outcomes. On accasional data 
on multiple learning outcomes researchers report 
inconclusive results. For instance, in some studies on 
problem-based learning with medical students (Vernon 
and Blake, 1993, Albanese, Mitchell, 1993), it was 
reported that while students’ performance on 
standardized exams declined slightly their clinical 
performance was slightly enhanced. In such studies, 
whether this approach works perhaps depends on how 
one interpret results and also on the procedure used in 
the study. 

A significant issue in assessment is that many learning 
outcomes are difficult to measure especially for some of 
the complex learning outcomes intended to be gained by 
active learning (Prince, 2004). 

A determining factor in deciding what works is to 
understand what an improvement means. It may be 
possible to have improvements in active learning studies; 
however, the magnitude of the improvement may be 
small which may make the results insignificant (Colliver, 
2000). The commonly used statistics to measure the 
effect of an instructional approach is the effect size. The 
effect size is defined as the difference between the 
means of an experimental and control groups divided by 
the pooled standard deviation of the groups. Research 
indicates that statistics used to measure academic 
achievement do not particularly depend of instructional 
approach (Dubin, Taveggia, 1968). 

In this case, it may be disputable whether the learning 
gains provided by constructivist learning environments 
are due to the method itself or due to a situational 
increase in students’ motivation because of the new 
instructional method. In addition, the effects of active 
learning methods on long-term memory are not fully 
understood. The factors and effects of human memory 
have been analytically investigated since Ebbinghauss 
(1885) who tested short-term memory of a subject using 
nonsense syllables. The beliefs about long-term memory 
have developed significantly since  Craik  and  Lockhart’s 
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(1972) modeling related to long-term memory named as 
“level-of-processing.” According to this model, familiar 
and meaningful stimuli are formed by the brain with 
moving from a less meaningful stimulus to a deeper level. 
According to previous theories of memory, for instance, 
Waugh and Norman’s (1965) theory of “boxes-in-head,” it 
was thought that information was transferred to long-term 
memory especially via rehearsals and practice. Craik and 
Lockhart on the other hand, argued that long-term 
memory is the process of information via thinking the 
recalled items with all the other meanings together rather 
than how often something is repeated. For example, 
Craick and Tulving (1975) showed that a deeper 
processing of a memorized term occurs when the 
meaning of the term is asked (e.g., is this alive or not?) 
rather than the structure of it (e.g., does the term include 
the letter “a”?). 

These findings indicate that using instructional methods 
which include understandable real materials rather than 
struggling with only mathematical concepts and artificial 
problems develops long-term memory better (Kvam, 
2000). Due to its nature, active learning can provide 
deeper learning since it enhances long-term memory. 
 
 
Long-term retention of knowledge 
 
Knowledge retention is a significant goal of education (St. 
Clair, 2004), as noted in Semb and Ellis (1994: 253) “the 
very existence of school rests on the assumption that 
people learn something of what is taught and later 
remember some part of it”. 

Retention of knowledge means recalling or 
remembering pieces of knowledge, processes, or skills 
that were learned earlier in time (Semb and Ellis, 1994). 
However, retention is different from knowledge transfer. 
Although retention is the ability to remember information 
as it has been learned, knowledge transfer is both to 
remember information and apply it to new situations. For 
knowledge transfer to be possible, there should be 
retention first. 

It is obvious that memory has a significant play in 
knowledge retention. Activities in classrooms can be 
used as stimulus for memorization (Engelbrecht et al., 
2007). It is suggested that students gain memory 
systems via which they carry out their classroom 
experiences by internalizing structures of classroom 
activities (Nuthall, 2000). 

In educational psychology, retention is regarded as one 
stage in a dynamic model of learning process (Kohen and 
Kipps 1979). Researchers (Brewer 1987; Derry, 1996) 
examined the means by which knowledge structures 
effect the recollection of experience. It was claimed that 
these knowledge structures grow out of repeated 
experiences with common characteristics. More general 
representations are developed from these common 
properties. It is said that long-term memory involves a 
stepwise system  of  these  structures,  moving  from   the 



38         Educ. Res. Rev. 
 
 
 
solid to the more abstract (Neisser 1989). 

It may prove to be important to examine factors 
involving better retention. Sousa (2000) proposes that 
successful recall depens on efficient encoding that is 
related to making connections with existing knowledge 
that can expedite future recall. 

Semb and Ellis (1994) argue that unlike the common 
belief that students forgot much of what they learn in 
classrooms, long-term knowledge retention is valuable. 
Results obtained by Anderson et al. (1998) catradict the 
view of Semb and Ellis. Anderson et al. (1998)  examined 
the long-term knowledge retention by focusing the extent 
to which certain first year topics are retained and 
understood. Anderson et al. (1998) stated that 
 

... “only about 20% of the responses were 
substantially correct and almost 50% did not contain 
anything that could be deemed to be minimally 
‘credit-worthy’. This suggests that a considerable 
amount of what is taught to mathematics students in 
general as ‘core material’ in the first year is poorly 
understood or badly remembered. (p. 417 )”. 

 
A literature review on retention reveals that there are not 
much studies on retention that have practical application. 
In addition, it was shown that when the main source of 
instruction is lectures, knowledge retention was the 
lowest. Moreover, different instructional approaches have 
been effective in improving retention to some extent. 
Based on these findings, these issues involving retention 
of mathematical knowledge may prove to be useful 
(Engelbrecht et al., 2007). 
 
 
Instructional approaches towards better retention of 
mathematics 
 
It is suggested that retention can be improved in several 
ways such as comprehensive learning of concepts and 
involving different instructional approaches. It was shown 
that knowledge and skills learned through understanding 
are retained and transferred better than that which is 
learned by rote memorization (Katona, 1940). There is 
more recent evidence that using active learning 
approaches and involving students in inquiry and 
discovery processes ehnaces knowledge retention 
(Handelsman et al., 2004). 

Steyn (2003) agrues that knowledge retention is related 
to the way it is taught. The teachers is seen responsible 
to guide students in the process of learning and retention. 
St. Clair (2004) found no significant improvement on 
long-term retention of knowledge of engineering students 
over a twenty-five week period after intervention where 
the effect of the use of technology was investigated. It 
was concluded that using instructional technology does 
not hinder long-term knowledge retention and can make 
instructional process more effective. 

 
 
 
 

In a study with engineering students, Townend (2001) 
used case studies to contextualize mathematics and 
concluded that it contributed to students’ retention level of 
mathematical knowledge. 

The limited number of studies in the field of knowledge 
retention indicates that it is generally not good. This may 
be due to the fact that traditional lecture method is the 
most popular instructional approach used in higher 
education (McKeachie, 1999). It should be emphasized 
that when compared to other types of instructions, 
lecturing has been shown to result in the lowest level of 
knowledge retention (Elshorbagy and Schonwetter, 
2002). It was found that when learning is measured 
immediately after instructional intervention, both lecturing 
and alternative teaching methods had similar effects. 
However, when learning is measured some time after 
instruction, in other words when retentin is assessed, 
students who have received alternative teaching usually 
outperform students who received only lectures 
(McKeachie, 1999). 
 
 
Procedural versus conceptual understanding 
 
Recent studies show interest in conceptual and 
procedural learning of students in mathematics 
(Engelbrecht et al., 2005). Allen et al. (2005) investigated 
students’ retention of conceptual and procedural 
knowledge via analysing their performance by using a 
post-test after one year of instruction in two differential 
equations classes. The results of this study suggest that 
teaching for conceptual understanding can lead to longer 
retention of mathematical knowledge. 

Kwon (2005) compared students exposed to an inquiry-
oriented course in differential equations with students in a 
similar but traditional class. It was reported that inquiry 
class showed better long-term retention of conceptual 
knowledge. Garner and Garner (2001) reported the 
results of a study where a reform and a traditional 
calculus course were compared with respect to students’ 
long-term retention of basic concepts and skills. They 
reported no significant difference in the performance of 
the traditional and reform groups of students, however, 
the reform class retained conceptual knowledge better 
and the traditional students retained procedural 
knowledge better. 
 
 
Retention and integration of certain topics across 
different contexts 
 
Integrating knowledge between different subjects and 
different years of study is related to long-term retention of 
knowledge. Polanco et al. (2004) did a three-year follow-
up study of an experimental integrated curriculum, 
integrating mathematics, physics and computer science 
courses,  with  second-year  engineering  students.  They  



 
 
 
 
reported that in probability and statistics and in oral 
communication, integrated curriculum students performed 
significantly better than students in a comparison group in 
the knowledge retention. Finelli and Wicks (2000) 
measured engineering students understanding and 
retention of basic concepts in a circuits course. They 
found that students performed the best immediately after 
the course is over. They expect to use the results of that 
study as a feedback when the mathematics and circuits 
courses’ curricula are revised. Cui (2006) investigated 
students’ retention and transfer from calculus to physics. 
The results yielded that although students seemed to 
retain their basic calculus well for solving calculus 
problems, they had difficulties in retaining their calculus 
knowledge when solving a physics problem. 
 
 
Cantorian set theory and infinity 
 
Cantor’s set theory which involves the concept of infinity 
brings about some perceptual difficulties due to its 
nature. It may be worthwhile to investigate whether 
employing active learning methods in the instruction of 
this concept would be effective in reducing these 
difficulties. In this context, the present study investigates 
the effects of using active learning approach in the 
instruction of Cantorian set theory on students’ long-term 
retention. A theoretical description of the infinity concept 
and Cantorian set theory is provided next. 

The concept of infinity is an abstract notion that is 
difficult to conceive for human mind. Infinite sets have not 
been accepted as mathematical objects since the time of 
Aristotle who believed that infinity can exist only 
potentially not in reality (Tirosh, 1991). This view has 
been a dominant conception in mathematics for many 
years. One can detect the concept of infinity in the 
studies of pioneering mathematicians, either implicitly or 
explicitly. Even among mathematicians the concept has 
led to conflicting ideas resulting from the nature of the 
notion itself.  For instance, Galileo and Gauss concluded 
that actual infinity could not be incorporated into logical 
and coherent thinking. In 1831, Gauss argued that it is 
not possible to use an infinite magnitude as a complete 
quantity. Kant introduced the idea that the notions of 
spatial-temporal finiteness or infiniteness could not be 
comprehended by the human mind. Consequently, he 
concluded that our mind tries to understand and organize 
the outside world and for that it requires some mentally 
constructed space and time.  Therefore, space and time 
actually do not exist in reality but only in the human mind 
(Fischbein, 2001). 

The notion of infinity has been differentiated as actual 
and potential by philosophers and mathematicians. 
Aristotle, for instance, regarded mathematical infinity as 
potential infinity (Bagni, 1997). The type of infinity that is 
really challenging for human mind to comprehend is 
actual infinity, as  in  the following  examples;  “an  infinite 
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world” and “an infinite number of points in a line 
segment.” Actually our mind is accustomed to finite 
realities that we acquire via our actions in space and 
time. Mind can deal with the notions if they are expressed 
in finite realities. Thus, as soon as we start dealing with 
actual infinity, contradictions begin to arise. 

Cantor formulated a theory for the infinite sets towards 
the end of 19th century in which he defined infinite set as 
a set having one-to-one correspondence with one of its 
proper subsets. Cantor with this formulation disbanded 
the historical barriers against using numbers as an infinite 
magnitude. However, Kronecker, Poincaré and their 
colleagues fiercely criticized this theory where “a set 
could be at the same length as its subsets, a line could 
contain the same number of points with a line of half of its 
length, and infinite processes could be seen as complete 
things” (Rucker, 1982). Despite these criticism, however, 
there were significant others, Bertrand Russell and David 
Hilbert, who accepted and welcomed the theory as an 
important discovery. Cantor’s definition of infinite set 
includes a significant cognitive obstacle due to the notion 
of “the equivalence of a set to one of its proper subsets.”  
Approving this theory requires cognitive effort since one 
who accepts this idea needs to acknowledge the idea 
that “whole is greater than its parts.” Thus, we may not 
expect students, who had never studied Cantorian Set 
Theory, to use this definition of infinite sets on their own 
(Tirosh, 1999).  

Since Cantor’s definition, the notion of infinity has 
become a field of study. The work of Piaget and Inhelder 
(1956: 125-149) has been regarded (Fiscbein et al., 
1979: 4-5) as the beginning of studies about children’s 
understanding of infinity (Monaghan, 2001). Fischbein 
(1987) identified two categories of student conceptions of 
infinity: Students develop the idea of infinity via personal 
experiences and formal education. Research also 
determined that students have some misunderstandings 
about the notion of infinity (Tall, 1990; Tsamir andTirosh, 
1994; Tsamir, 2002; Singer and Voica, 2003). Efforts 
have been made to find out different empirical methods to 
study teaching and learning of infinity by mathematics 
educators (Fishbein et al., 1979). Tall (1980) investigated 
the intuition of infinity in regard to infinity of real numbers.  
In addition, with Vinner (1981), he introduced the terms of 
“concept images” and “concept definition” to explain the 
difficulties in learning limit and continuity concepts. Duval 
(1983) studied students’ concerns of infinite sets in 
relation to the difficulty in assigning different roles to 
mathematical objects (For example, 4 as a whole 
number, 4 as square of 2, and 4 as an even number).  
Falk and his colleagues (1986) discussed student 
reactions to non-existence of very big natural numbers. In 
1987, Sierpinska analyzed the types of problems in 
regard to conceptualizing limit. Furthermore, Moreno and 
Waldegg (1991) showed the similarities of students’ 
response schema when confronted with the 
contradictions   while   studying   actual  infinity  by  using 



40         Educ. Res. Rev. 
 
 
 
intuitions of finite sets and historical developments.  

Tall (1992) suggested a transition from primitive 
mathematical thinking to sophisticated mathematical 
thinking through discussions of limit, function, 
mathematical proof, and infinity concepts. Tsamir and 
Tirosh (1992) presented a paper on students’ 
comprehension of contradictory ideas at the 16th 
Psychology of Mathematics Education Conference 
(PME). Several other studies about infinity (Nunez, 
1993), comparison of infinite sets with people who gained 
intuition based on their previous experiences rather than 
their formal conceptions (Waldegg, 1993b), cognitive 
challenge of comprehending infinity (Falk, 1994), and 
infinity intuitions of the Hispanic students in the USA 
(Gonzalez, 1995) were conducted. From a teacher’s 
perspective, both in-service and pre-service, the concept 
of infinity was first studied by Mura and Louce (1997). 
Arrigo and D’Amore (1999) analyzed the answers of 
students with respect to equivalency of a square and the 
points on one edge of the same square. Garbin (2000) 
tried to identify the contradictions of high school students 
through their conceptual schema about actual infinity. A 
special issue (Vol. 48) of the Journal of Educational 
studies in Mathematics was published about infinity. 
Studies by Monoghan (2001) and Tsamir (2001) 
investigate opinions of young people about actual infinity. 
Waldegg (1988) elaborated on Cantor’s studies about the 
collocation of actual infinity from a historical aspect, 
discussed Aristotle’s definition of infinity in Aryan Greek 
culture (Waldegg, 1993a), and analyzed Bolzano’s 
existential definitions (Waldegg, 2001). Horng (1995) 
examined the connections between Greek and Chinese 
mathematics with respect to infinity. There is a recent 
interest in paradoxical infinities, which include potential 
equivalence of infinite sets (Waldegg, 2005; Mamolo and 
Rina, 2008; Dubinsky et al., 2005). 

Research suggested that 8-year old children think that 
natural numbers series have no end. Later, by the age of 
11–12, children realize the dimensionless feature of 
points and then argue that line segments can be divided 
into infinitely many pieces. In these studies, students 
were asked whether some processes would end or not. 
Researchers have assumed that students who thought 
that some processes would end were regarded to be 
understood that the appearing set was infinite (Tirosh, 
1999). Studies involving older students indicated that 
students had difficulties in understanding Cantorian Set 
Theory (Tsamir, 1999, 2001, 2002, Narli et al, 2008). The 
concept of Cantorian Set Theory is very important for the 
prospective mathematics teachers since the concept of 
infinity is a prerequisite in courses like Topology, Algebra 
etc. In addition, prospective teachers may need to 
associate the notion of infinity with their professional life 
when teaching infinite sets like natural and real numbers 
or when talking about infinite rational numbers in a finite 
interval. 

There is a lack of research in the literature about the 
effects of using active learning  methods  in  teaching  the 

 
 
 
 
concept of infinity on students’ retention of knowledge. 
Therefore, this study investigates the efficiency of 
constructivist learning environments on students’ 
retention of knowledge of infinity concept. 
 
 
METHODS 
 
Subjects 
 
The study involved two groups of freshmen pre-service 
mathematics teachers in the department of Secondary Science and 
Mathematics Education of a state university in Turkey. 

One of the groups is called the experimental group with 30 
students and the other is the control group with 30 students. 

A Minimum Requirements Identification Test (MRIT) was used in 
the formation of the groups. This test includes the prerequisite 
concepts required to understand Cantorian Set Theory such as 
“sets, relations, and functions.” All students’ (n = 60) MRIT scores 
were listed from the highest to the lowest. Then the first student 
was assigned to first group, the second student to second group, 
the third student to first group, the forth student to second group 
and so on, and the two groups were formed in this way. After 
forming the two groups, they were randomly assigned to one of the 
control and experimental groups. The control group was instructed 
via traditional, formal instructional methods with time-to-time 
question-and-answer and whole class discussions. The 
constructive learning approach used for the instruction in the 
experimental group was designed as follows: 
 
 
Active learning based course in cantorian set theory 
 
In order to determine the active learning methods to be used in 
teaching Cantorian Set Theory experts have been consulted. In the 
light of expert opinions, necessary teaching conditions and learning 
environments have been prepared. In the preparation of these 
methods, the subject was divided into four sections, which were (a) 
basic concepts and definitions about equivalence, (b) special 
equivalence theorems and proofs, (c) countability, and (d) cardinal 
numbers. 

Finally, in the introduction part of the subject brainstorming 
method; in the second section, question-and-answer and 
discussion techniques, and computer animations; in the part (c), 
problem-based learning (PBL); and in the last section, group study 
techniques were decided to be used. 

These techniques were then applied to the experimental group. 
The applications were as follows: 
 
 
Application of brainstorming technique 
 
Brainstorming technique was used particularly in learning the notion 
of equivalence. 

Students were asked to define the concept of “equivalence.” 
Students freely expressed their ideas and stated the definitions, 
which they regarded as true. These definitions were noted. 

No critic or comment was made about students’ definitions of 
equivalence. Definitions were noted exactly as stated by students. 
These definitions then discussed one by one together with 
students. Definitions, which were wrong, were discussed as to why 
they were wrong; definitions, which were short or insufficient, were 
discussed to correct them; and in the end, a common consensus 
about the definition of equivalence was reached and students 
constructed a common definition for equivalence. 
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Figure 1. Animation related to N2 ~ N. 
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Figure 2. Animation related to N ∼/  (0, 1). 

 
 
 

Brainstorming technique was employed from time to time during 
the later stages of instruction. 
 
 
The use of question-and-answer, discussion, and animation 
techniques 
 
The notion of Cantorian Set Theory mainly deals with equivalence 
of two sets. When two sets are finite, it can be easy to see their 
equivalence; however, if they are infinite it is hard to show their 
equivalence to students. 

Consequently, the concepts related to the equivalence of infinite 
sets and their proofs are difficult subjects for students to 
comprehend. To teach these subjects, question-and-answer and 
discussion techniques were employed in the experimental group. 
Moreover, computer animations were created for three proofs that 
were thought as important and rather abstract. These  proofs  were;  
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the proofs of “the equivalence of N natural numbers and N2 set;”  
“the non-equivalence of N natural numbers set and interval (0, 1);” 
and “non- equivalence of R real numbers set and F functions set” 
theorems. 

Animations were prepared using Macromedia Flash-mx vector-
based Web enhanced animation program, Photoshop-6 image 
program, and Macromedia Director. The question-and-answer 
animations were produced so that students could manipulate the 
program with the help of a button, and necessary information was 
included where it is needed. Some examples of animation’s 
interfaces are shown Figures 1, 2 and 3. 
 
 
Application of problem-based learning method in countability 
 
Countability is one of the concepts that constitute an important part 
in Cantorian Set Theory. Countable and uncountable sets are 
important concepts for mathematics students. For this reason, 
special attention is given to the teaching of this subject in this study.  

In the experimental group, this concept is taught by using PBL. 
PBL is applied via a written scenario. PBL scenario is written after 
consulting experts. 

PBL sessions are carried out with groups of 6 to 8 students and 
with a moderator guiding students (Abacioglu et al., 2002). As an 
active learning method, the basic principle of PBL is that the 
information that is assumed necessary and has professional 
importance is learned by doing research through learning objectives 
that are developed by students with curious and skeptical approach 
to problems and is applied to solve a problem (Abacioglu et al., 
2002).  In accordance with this situation, the story of Hilbert hotel 
was chosen as the scenario for this study. This story is interesting 
enough to draw and keep students’ attention. The story is as 
follows: 
 

“You have a hotel. The hotel has infinite number of rooms. 
Each room has a number: 1, 2, 3, 4, 5, 6… Thereby goes to 
infinity. There is no “last” room. There is not also a room, 
which numbered “infinite.” Number of each room is finite, only 
number of rooms is infinite. 
First Story: It is your lucky day; a bus full with customers 
arrives at your hotel. Infinitely many customers…. Customer 
names numbered as 1, 2, 3, 4, 5, 6….You assign a room to 
each customer. Room number 1 to customer 1, room number 
2 to customer 2, and room number 3 to customer 3, and so 
on… 
Just as you were thinking that everything was going all right, 
you saw one more customer came to your hotel. How are you 
going to arrange a room to this customer? 
Second Story: Another lucky day, you have a bus full with 
customers, infinitely many…. They are named as a1, a2, a3, 
a4, a5, a6 …. You assign a room to each customer. Customer 
a1 to room 1, customer a2 to room 2, and so on… 
Just as you were thinking, everything was going all right, all of 
a sudden….Surprise! Another bus full with customers parks in 
front of your hotel. There are infinitely many customers in that 
bus as well. They are named as b1, b2, b3, b4, b5, b6 …. You 
have no vacancy…. You have infinitely many new customers. 
How are you going to settle your new customers? 
Third Story: This is your luckiest day, you have infinitely many 
busses every one of which full with infinitely many 
customers…. The busses are numbered: 1, 2, 3, 4, 5, 6…How 
can you arrange rooms to your customers?” 

 
The story given above was written as a scenario to be used in PBL 
sessions to teach the notion of countability. Scenario was revised 
with corrections and additions in light of expert opinions. 

Scenario has three sections, which develops together and taught 
in three sessions. First session is organized as to be able to teach 
the notion of infinite and countable set,  properties  of the  union   of 
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Figure 3. Animation related to IR ∼/  F. 

 
 
 
finite sets and countable infinite sets and set properties such as 
difference and intersection of these sets. In the first session, the 
questions like “what is countability?, can an infinite set be 
countable? and is finite set countable?” were determined as 
learning objectives. 

In the second session of the scenario, the union of two countable 
infinite sets and other set operations, differences between these 
operations and the operations that are carried out on finite sets, the 
union and set operations of more than two countable sets has been 
taught and a connection has been established with uncountable 
sets. The learning objectives in this session were: how can union of 
countable sets and the proof of countability of set operations be 
done. Is there an uncountable set? If so, what does that mean? 

In the third session, the students studied the differences and 
similarities between finite and infinite sets, types of infinite sets, and 
the proof of countability of union of finite countable or infinite sets.  

The sessions were done 3 days apart from each other because 
of students’ time disagreement and the issue of finding moderators. 
The experimental group was divided into three groups of 10 
students each. Each session lasted 90 min. 
 
 
Employing the group work 
 
In Cantorian Set Theory, the last section that comes after the 
countability is the notion of cardinal numbers. In this part, group 
work was employed in the experimental group.  

In working groups, students plan to learn a subject, apply the 
plan, collect information, use that information to solve a complex 
problem, synthesize the solution, and put together their results 
(Acikgoz, 2002). 

Students have enough background from previous mathematics 
concepts they learned to do research on the cardinal numbers. 

The experimental group was divided into 6 groups of 5 students 
each. Each group researched cardinal numbers and prepared to 
present their findings in class. During presentations, question-and-
answer and discussion techniques were used. Each group 
submitted their findings as a report after the presentations. 
The previous research about the effects of active learning 
approaches on student achievement and attitudes in  Cantorian  set  

 
 
 
 
theory showed significant improvements in the control group (Narli 
et al., 2008, 2010). This study investigates whether these 
instructional approaches are effective in students’ retention of 
knowledge. To determine this, a questionnaire that includes open-
ended questions about the Cantorian set theory is administered to 
the control and experimental groups 14 months after the first study. 
In addition, five students from each group were interviewed to 
obtain further information about their knowledge of the topic. 
 
 
Materials 
 
In this study the MRIT was used in the determination of the 
experimental and control groups. More information about the MRIT 
can be found in Narli et al. (2010). In addition, a questionnaire was 
administered to determine students’ knowledge of Cantorian set 
theory and a semi-structured interview format was planned based 
on this questionnaire. All students allowed for 100 min for 
completing the questionnaire. The questionnaire is provided in 
Appendix 1.  
 
 
Validity and reliability 
 
The questionnaire was examined by two faculty members from the 
Mathematics Education Department in terms of the context of the 
study and its content was found to be valid for this study. Reliability 
studies were carried out via examination of the qualitative data by 
two researchers separately (Miles and Huberman, 1984:23). The 
data were categorized and coded by two different faculty members 
separately and then the results were compared which yielded 90% 
consistency between the two codings. 
 
 
Data analyses 
 
Data were analyzed by using qualitative research methods. χ2 

compatibility tests were used to test the differences among the 
categories. 
 
 
RESULTS 
 
Equal sets can be defined in two ways: (1) Two sets that 
have equal number of elements are said to be equal, or 
(2) two sets are said to be equal if a 1-1 correspondence 
can be defined between them (Güney, 1993). Although 
the former definition can be used to represent the 
equality of finite sets, it is not sufficient to define the 
equality of infinite sets. However, 1-1 correspondence 
can be used to show the equality of both finite and infinite 
sets. In fact, Cantorian set theory is based on 1-1 
correspondence. The first question in the questionnaire 
was supposed to determine which definition of equality of 
sets the study groups preferred to choose. A summary of 
analysis of students’ responses to the first question is 
shown in Table 1. 

It can be seen in Table 1 that the experimental group 
preferred the 1-1 correspondence definition more often 
than the control group. More than half of the control 
group did not prefer the 1-1 correspondence definition. 
Categorized data obtained from two groups can be 
compared using χ2

 tests (Tekin, 2008). The  groups  were
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Table 1. Frequency of preferred definitions for the equality of sets 
 

TC AC 
Definitions 

f % f % 
Two sets are equal if a 1-1 correspondence can be 
defined between the sets. 
 

10 33.3 21 70 

Two sets which have equal number of elements are said 
to be equal. 
 

16 53.3 2 6.7 

Two sets are said to be equal if their number of elements 
are equal or if there exist a 1-1 correspondence between 
them. 

4 13.4 7 23.3 

  

TC: traditional class, AC: active clas. 
 
 
 

Table 2. Frequency of responses to the second question in the questionnaire. 
 

2-a 2-b 2-c 2-d 2-e 2-f 2-g 2-h  
TC AC TC AC TC AC TC AC TC AC TC AC TC AC TC AC 

Eq. 30 30 28 29 18 24 23 27 25 24 19 26 20 22 7 3 
InEq. - - 2 1 11 5 5 2 3 4 9 4 6 4 21 26 
UnAnsw. - - - - 1 1 2 1 2 2 2 - 4 4 2 1 

 
 
 
compared using χ2 test and they were found to differ 
significantly (χ2

calculation=15,61, sd=2, p<0,05). 
 
 
The (un)equal judgments and justifications 
 
In the second question, students were asked to compare 
the number of members of infinite sets. All of these pair 
of sets are equal except the one given in section (h), 
“A={1,2,3,4,5,…} and B={points on the segment ]AB[}” 
which are not equal. Students’ responses to this question 
are tabulated and presented in Table 2. 

It may be inferred from Table 2 that the experimental 
group performed better than the control group on the 
second question. 

The difference between the groups gets even clearer 
when students’ explanations are examined. As described 
in the literature, in general students employ five separate 
approaches to explain whether two sets are equal or not 
(Tirosh, 1991; Tsamir, 1990). These are: (1) all infinite 
sets are ‘equal’, (2) infinite sets can not be compared, 
they are incomparable, (3) matching, that is 1-1 
correspondence, (4) inclusion, and (5) intervals (i.e., 
when the elements of two sets have the same range but 
different intervals, then, the set in which the intervals are 
larger consists of fewer elements). Tsamir (1999) added 
two more justifications that are used by students: (1) 
bounded vs. infinite – bounded sets must have fewer 
elements than sets that are not bounded, (2) justifying 
their judgments by referring to the (in)equality of powers 
of   the   sets.  Students  in   this   study    did    not     use 

justifications such as “intervals, infinite bounded, and 
incomparable.” Students’ justifications are presented in 
Table 3. 

Blank responses and irrelevant ideas are shown as 
“other ideas” in Table 3. Except for the question 2-h, 
students who said that “two sets are equal since there is 
a 1-1 correspondence between the sets” but did not 
indicate their choice of equality or indicated a wrong 
choice are coded as W-correspondence. Similarly, 
students who said that “two sets are equal since they 
have the same power” but indicated wrong power, 
categorized as W-power.  
 
 
The use of 1-1 correspondence and power 
 
According to frameworks of Cantorian set theory 
described in the literature, two approaches may be 
mentioned in the justification of (in)equality of infinite 
sets. These are 1-1 correspondence and power. Table 3 
indicates that the correct use of 1-1 correspondence 
justification is greater in every category for the active 
group than it is for the control group. The traditional group 
was found to use 1-1 correspondence justification 
considerably less especially for the judgments of the 
equality of whole numbers and natural numbers, equality 
of even natural numbers and prime numbers, and 
equality of the sets A={1/n: n, positive integer} and 

B={ 3 n | n, positive integer}. In the comparison of 
(in)equal sets in question 2-h, more students in the active
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Table 3. Frequencies of judgments and justifications to each problem. 
 

Equivalent Sets- oℵ  Equivalent sets-c Unequivalent 
sets 

{1,2,3,,…} {-
1,-2,-3,…} 

{{1,2,3,…} 
{{50,51,…} 

{1,2,3,4,…} 
{…,-1,0,1,…} 

{2,4,6,8,…} 
{prime 

numbers} 

{1/n: n is a 
Natural 

number}{ 3 n |||| 
n is a Natural 

number} 

(2,7) IR 

{points- 
circle of 1 

cm}{points- 
square of 2 

cm } 

{1,2,3,…} 
{points on  

A-----B} 

 

TC AC TC AC TC AC TC AC TC AC TC AC TC AC TC AC 
Equal                 
1-1 
corres. 17 23 18 21 5 19 4 17 8 19 - 2 - 3 - - 

Power 4 2 3 3 1 1 5 2 2 2 6 9 4 9 - - 
W-1-1 
corres. 5 2 4 3 8 3 8 5 9 1 4 2 3 2 - 2 

W-Power - 1 - 1 - 1 - - 1 1 - 1 - - 2 - 
∞ = ∞ 1 - 2 - 2 - 2 1 2 - 4 1 6 2 4 - 
Other 3 2 1 1 2 - 4 2 3 1 5 11 7 6 1 1 
                 

Inequal                 
1-1 
corres. - - - - - - - - - - - - - - 1 4 

Power - - - - - - - - - - - - - - 9 13 
W-1-1 
corres. - - - - 7 2 4  1 1 2 1 1 2 - 1 

W-Power - - - - - 1 - 1 1 - 1 2 - 1 - - 
Inclusion - - 1 1 1 1 1 - - - 2 - - - 2 - 
Other - - 1 - 3 1 - 1 1 3 4 1 5 1 9 8 
                 

Missed                 
 - - - - 1 1 2 1 2 2 2 - 4 4 2 1 

 
 
 

group provided valid justification. Students, who said that 
the sets were not equal, used power justification for their 
judgments. The number of students who used 1-1 
correspondence justification correctly in this question is 
also greater in the active group than those in the control 
group. Students in both groups used “power” justification 
more often than 1-1 correspondence in questions where 
they compared pairs of sets that are equal to real 
numbers (2-f, 2-g).  This may be due to the difficulty of 
determining a bijective correspondence between the 
pairs of sets in these questions. In addition, in the 
justification of “(2,7) ∼ IR” equality, only two students from 
the active group and none from the control group; and in 
the justification of  “points on a circle of radius of 1 cm ∼ 
points on a square of 2 cm on one side” equality, only 
three students from the active group and none from the 
control group were found to use 1-1 correspondence as 
their justification. 

In addition, it was determined that in all questions, all 
students used 1-1 correspondence and power 
justifications and the control group used incorrect 
justifications (coded as W-1-1 correspondence and W-
power)   more   often   than    the    experimental    group. 

Students’ justification in the equality of the sets {1, 2, 3, 
…} and {…, -2, -1, 0, 1, 2, …} includes incorrect use of 1-
1 correspondence justification, for instance statements 
such as 
 

“the infinities of these sets are different”, “since there 
is a zero, it is confusing, I couldn’t form a 1-1 
correspondence”, “there is not 1-1 correspondence 
between the sets”, “because of uncountability”, and 
“although these sets have infinite number of 
elements, since the set A contains half of the 
number of elements of the set B, it  is impossible to 
define a 1-1 correspondence between them”. 

 
In question 2-h, where two inequal infinite sets are 
compared, 21 students in the traditional group and 26 
students in the active group correctly determined the 
inequality. Those who provided the correct answer used 
“power” justification more often than 1-1 correspondence. 
The number of students who used 1-1 correspondence is 
larger in the active group than they are in the control 
group. One particular student in the active group, 
although not with perfect notation, used  an  evidence  for  
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Figure 4. The explanation of a student in the active group for the question 2-h. 
([…the element (a11, a22, a33, …ann,…) will be left alone, there will not be any element to match with]) 

 
 

Table 4. Students’ ideas about the inequality “A ∼/ 2A”. 
 

TC AC Responses 
f % f % 

There is a larger infinite set from every infinite set. 2 6.7 9 30 
     
There is a larger infinite set from every infinite set and 
therefore there is a bigger cardinal number from every 
cardinal number. 
 

- 0 2 6.7 

It enables the comparison of infinite sets. 5 16.6 2 6.7 
Other 23 76.7 17 56.6 

 
 
 
his proof of why these sets could not be equal, which 
shows that he remembered the proof quite well. His proof 
is provided in Figure 4. 
 
 
The global justifications 
 
There are two global methods to compare infinite sets 
(Tsamir, 1999). These methods are: “All infinite sets are 
equal” and “infinite sets can not be compared (they are 
incomparable).” When the Table 3 is examined, it can be 
seen that the incomparability method is never used in 
both groups and the justification “all infinite sets are 
equal” is used quite less frequently. In addition, this 
justification is used only in some questions by the 
traditional group. Particularly in question 2-h where two 
inequal sets were compared, four students from the 
traditional group used the justification “all infinite sets are 
equal” and incorrectly claimed that these sets were equal. 
Another interesting finding was that this justification was 
used more often in questions where it was difficult to set 
a 1-1 correspondence. 
 
 
Results of third question 
 
The last question in the questionnaire was determined as  

“in terms of infinite sets what could be the most important 
consequence of inequality of a set to its power set? 
Explain.” By this question it was intended to determine 
students’ knowledge of the principle that “there is a larger 
infinite set from every infinite set” and the “infinity of 
cardinal numbers.” Students’ responses to this question 
are summarized and presented in Table 4. 

In Table 4, other ideas represent irrelevant ideas and 
the choices left blank. More than half of the students in 
both groups did not respond to this question. However, in 
the active group, proportion of the non-respondents was 
less and relatively more students could provide the 
expected answer as compared to the traditional group.  
 
 
Interviews 
 
The interview results also support the data given above. 
Regarding Cantorian set theory, first students were asked 
what general ideas or thoughts they had or remembered. 
The students in the active group were observed to 
provide more clear responses to this question. To 
illustrate students’ ideas, an interview excerpt from each 
group is provided below: 
 
Researcher (R): Hello. Let me ask you first in which 
group you were with in the presentation of Cantorian set 
theory? 
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Student (S): In active group. 
 
R: OK. Let’s start with, what do you remember regarding 
that presentation? 
 
S: I remember that it belongs to George Cantor. I know 
that for two sets to be equal, it is sufficient to find a 
bijective or 1-1 onto function between them. Then we 
looked at various propositions for two sets to be equal.  
We have seen proofs of equality or inequality of two sets, 
I mean, we have seen natural numbers, whole numbers, 
IN, 2IN, 2IN+1, prime numbers were equal to or not 
equal, and the proof of these. Rational number and 
natural numbers are (in)equal, the proof of that. I 
remember that rational numbers were equal to natural 
numbers, I remember there was a proof for this. Then, 
regarding cardinality, I mean, I remember that cardinal 1 
was equal to infinity of all the sets which have one 
element, and that cardinal 2 represented all the subsets 
having two elements. Um, I remember that there was a 
fancy F, I remember that there was a “c” and that was I 
think the infinity of the real numbers. What I remember 
about cardinal numbers is that they had infinitely infinite 
varieties, that is, set of cardinal numbers was infinite. I 
had something in my mind about power set, that is, the 
infinity of the power set of a set was always greater than 
the infinity of the set. Then there was a paradox, was it 
zenno paradox or something like that. No not that. Is 
there an infinity or not between the infinity of natural 
numbers and the infinity of real numbers which are equal 
to power set of natural numbers? Then I remember there 
was a proof like, it does not make much difference 
whether that infinity existed or not. It might or might not 
exist, didn’t matter. Apart from that, I remember equality 
of sets; I mean, set of functions were equal to power set 
of real numbers,  interval (0,1) is equal to IR, we could 
even find a linear function between them. In fact, there 
wasn’t any curve at a higher level, since if it intersects at 
two different points, it prevents the bijectivity. That’s all I 
remember for now. 
 
R: Hello, you were in the control group in the presentation 
of Cantorian set theory, weren’t you? 
S: Yes. 
R: What do you remember about that presentation? 
S: I remember lots of photocopies (laughing), shall I talk 
about those? 
R: Sure, you can tell anything you remember. 
S: I remember making photocopies, I do not remember 
much about the subject. I do not remember much about 
topics, like cardinality. I remember something about the 
equality of two sets, I mean, if 1-1 correspondence can 
be defined between two sets, then they are equal. 
 
We defined something as cardinality, cardinality of 
infinity, I do not remember exactly. 
 
In summary, it can be deduced that active group students  

 
 
 
 
were more successful in answering all the questions in 
the questionnaire than the traditional group students. 
 
 
Conclusion 
 
One-to-one correspondence forms the bases of Cantor’s 
set theory (Guney, 1993). When asked the meaning of 
equality of two sets, proportion of the active group 
students who preferred to respond as “two sets are equal 
if a 1-1 correspondence can be defined between them” 
was significantly larger than that of the traditional group. 
This finding may indicate that the method used in the 
instruction enabled students to internalize the use of “1-1 
correspondence” in defining the equality of sets. 

Research indicates that students who did not receive 
an instruction on Cantorian set theory tended to employ 
intuitional approaches to compare infinite sets (Fischbein 
et al., 1979; Martin and Wheeler, 1987; Tirosh and 
Tsamir, 1996; Tsamir, 1999). These students were 
reported to use comments such as “all infinite sets are 
equal” or “infinite sets can not be compared, they are 
incomparable.” In the present study, both groups 
received an instruction in Cantorian set theory and they 
hardly used these justifications. None of the students 
from both groups used “incomparable” justification and “∞ 
= ∞” justification was used very rarely. In addition, in this 
study, students’ explanations were not as intuitive as 
those that were reported in the literature. Because 
students who used this justification did not respond to the 
other questions as “∞ = ∞”. This justification was used in 
questions where it was difficult to define a 1-1 
correspondence. Students wrote statements such as they 
remembered that since both sets were infinite, they would 
be equal. Notwithstanding, the traditional students 
preferred to use this justification 23 times and the active 
group students preferred to use it four times. In most of 
the questions, active group students never used the 
justification, “all infinite sets are equal.” This finding may 
also indicate a positive effect of the active learning 
approach on the retention of knowledge about infinity.  

It was also determined that active group students used 
the “power” justification correctly and also more often 
than that of the traditional group students. Similar results 
were reported in the literature (Tsamir, 1999). The use of 
“power” justification in the active group more often than 
that in the traditional group in the questions 2-f, 2-g, and 
2-h may indicate that computer animations enhance 
retention of knowledge. Since mostly animations were 
used to compare these kinds of sets, might have such an 
influence. 

Students’ responses to the third question as well as the 
findings from the interview transcripts indicate that active 
group students remembered what they learned more 
clearly than that of the traditional group students about 
the topics “there is a larger infinite set than any infinite 
set” and “the infinity of cardinal numbers.” This may be 
due   positive     effects    of    active   learning   approach  



 
 
 
 
employed, and particularly brainstorming and group work 
utilized during the instruction of these topics on students’ 
retention of knowledge in these topics. 

Another interesting point in this study was that a 
problem-based learning activity based on a scenario 
called “magic hotel” was developed to teach the concept 
of countability. Students indicated positive comments 
about this activity in the interviews. An excerpt from 
student interviews illustrates this idea: 
 
“...The most useful example I remember about Cantorian 
set theory is that hotel example. In addition, countability 
of rational numbers was quite interesting for me, I 
remember these two... .” 
 
The effect of problem-based learning on students’ 
retention of knowledge in countability will be investigated 
in a different study. 

Whether the effect of an active learning approach on 
learning is due to the method itself or due to a positive 
increase in students’ motivation because of the utilization 
of a new and different approach is disputable. Previous 
studies reported positive effects of active learning 
approaches utilized in this study on student achievement 
and ideas (Narli et al., 2008, 2010). Results of this study 
indicate that even 14 months after instruction, the active 
group students remember subjects more clearly than 
those of the control group. Therefore, it may be argued 
that constructivist learning environment is really effective 
on retention of student knowledge in this study. This 
effect of constructivist learning environment may be 
explained as follows: Students utilize intuitive knowledge 
when they start learning a new concept. These primary 
intuitive ideas are formed in daily life and by previous 
experiences. Mathematics education literature showed 
that this primary intuitive knowledge influences students’ 
and pre-service teachers’ performance in many 
mathematics subjects (Ball, 1990; Fischbein, 1987, 1993; 
Tall, 1990; Tall and Vinner, 1981; Tirosh, 1991; Tsamir, 
1999). 

In this study, students’ intuitional ideas about the 
concept infinity were taken into consideration in the 
development of constructivist learning environment. In 
other words, the method was prepared in such a way to 
prevent students from being influenced negatively by 
their primary intuitions. It should be reminded that sole 
awareness of intuitions is not enough (Tsamir, 1999). 
There should also be formal knowledge of Cantorian set 
theory. This study tried to process formal knowledge in a 
manner to help students internalize it in the constructivist 
learning environment. This process may have improved 
the efficiency of the active learning approach. 
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Appendix 1. Questionnaire 
 
1. What does it mean for two sets to be equal? Explain. 
 
2. Compare the number of members of the following couple of 
sets and explain your answer. 
The sets to be compared     
  Number of members  
a. A={1,2,3,4,5,…}      B={-1,-2,-3,-4,-5,…}             
 Equal �  -Unequal �  
Your explanation: ----------------------------------------------- 
b. A={1,2,3,4,5,…}      B={50,51,52,…}  
 Equal �  -Unequal �  
Your explanation: ----------------------------------------------- 
c. A={1,2,3,4,5,…}      B={…,-3,-2,-1,0,1,2,3,…}   
  Equal �  -Unequal �  
Your explanation: ----------------------------------------------- 
d. A={2,4,6,8,10,…}      B={x: x prime 
number}={2,3,5,…}  Equal �  -Unequal �  
Your explanation: ----------------------------------------------- 
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e. A={1/n: n, positive integer}  B={ 3 n | n, positive integer} 
  Equal �  -Unequal �  
Your explanation: ----------------------------------------------- 
f. A={points on real segment}    B=(2,7)                
 Equal �  -Unequal �  
 
Your explanation: ----------------------------------------------- 
g. A={Points on a circle of radius of 1cm}                
  Equal �  -Unequal �  
    B={Points on a square of 2 cm on one side} 
Your explanation: ----------------------------------------------- 
h. A={1,2,3,4,5,…}      B={points on the segment 
]AB[}   Equal �  -Unequal �  
 
Your explanation: ----------------------------------------------- 
3. In terms of infinite sets, what could be the most important 
consequence of inequality of a set to its power set? Explain.  
-------------------------------------------------------------------------- 
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