Full Length Research Paper

Antibacterial activity of indium curcumin and indium diacetylcurcumin

Saeed Tajbakhsh1*, Khosro Mohammadi2, Iman Deilami1, Keivan Zandi1, Moradali Fouladvand1, Elissa Ramedani1 and Golandam Asayesh1

1Department of Microbiology and Parasitology, Faculty of Medicine, The Persian Gulf Tropical and Infectious Diseases Research Center, Bushehr University of Medical Sciences, P. O. Box 3631, Bushehr, Iran.
2Chemistry Department, Faculty of Sciences, Persian Gulf University, Bushehr, 75169, Iran.

Accepted 8 October, 2008

Studies on curcumin, the principal element of turmeric powder, have demonstrated several biological actions such as antibacterial activity. Evaluation of new analogs or new compounds of curcumin for their antibacterial effect is interesting for researchers. In this in vitro study, we attempted to test the antibacterial activity of indium curcumin (In(CUR)3), indium diacetylcurcumin (In(DAC)3), and diacetylcurcumin (DAC) in comparison with curcumin. The action of these agents were examined on Staphylococcus aureus (ATCC 25923), Staphylococcus epidermidis (ATCC 14990), Pseudomonas aeruginosa (ATCC 27853), and Escherichia coli (ATCC 25922). Curcumin was effective against S. aureus and S. epidermidis, whereas In(DAC)3 showed activity against S. epidermidis and P. aeruginosa. The effect of In(DAC)3 on P. aeruginosa is an advantage. Strikingly, In(CUR)3 exhibited antibacterial activity on all the four mentioned strains. DAC did not show antibacterial effect on any of the four test bacteria. The minimum inhibitory concentration (MIC) of curcumin was 187.5 µg/ml for S. aureus, and 46.9 µg/ml for S. epidermidis. However, the MIC of In(CUR)3 was lower for the same bacterial strains (93.8 µg/ml for S. aureus and 23.4 µg/ml for S. epidermidis). Therefore, In(CUR)3 was found to have more antibacterial effect than curcumin itself and could be a suitable candidate for further in vivo investigations.

Key words: Antibacterial activity, indium, curcumin, diacetylcurcumin.

INTRODUCTION

Development of bacterial resistance to the available antibiotics and increasing popularity of traditional medicine has led researchers to investigate the antibacterial compounds in plants. Curcuma longa is a medicinal plant that botanically is related to Zingiberiaceae family (Chattopadhyay et al., 2004). Turmeric powder, derived from the rhizome of C. longa, is commonly used as a spice, food preservative, and food-coloring agent (Aggarwall et al., 2007; Di Mario et al., 2007; Menon and Sudheer, 2007). It also has a long history of therapeutic use (Chattopadhyay et al., 2004). Curcumin [1,7-bis (4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione; Diferuloylmethane], a yellow bioactive pigment, is the major component of turmeric (Mohammadi et al., 2005; Menon and Sudheer, 2007; Hatcher et al., 2008). It has been shown that curcumin have a wide spectrum of biological actions such as anti-inflammatory (Punithavathi et al., 2000; Siddiqui et al., 2006), antioxidant (Mohammadi et al., 2005; Menon and Sudheer, 2007), anticancer (LoTempio et al., 2005), anti-diabetic (Aggarwal et al., 2007), anti-allergic (Suzuki et al., 2005), antiviral (Si et al., 2007), antiprotozoal (Reddy et al., 2005) and antifungal activities (Chattopadhyay et al., 2004). Moreover, anti-bacterial activity of curcumin has been reported (Chattopadhyay et al., 2004; Di Mario et al., 2007; Rai et al., 2008).

Synthetic modification of previously described antibacterial agents has been prominent in the development of new compounds which may possess an enhanced antibacterial activity or new pharmacological properties. There are reports on synthesis of mono-carbonyl analogues of curcumin (Liang et al., 2008) or preparation of bioactive conjugates of curcumin (Dubey et al., 2007) in
order to increase antimicrobial and anticancer activity. Furthermore, it has been shown that indium curcumin complex (a metal complex of curcumin), diacetylcurcumin, and indium diacetylcurcumin have anticancer activity (Mohammadi et al., 2005). The objective of the present study was to evaluate the antibacterial activity of indium curcumin, indium diacetylcurcumin, and diacetylcurcumin compared with curcumin.

MATERIALS AND METHODS

Bacterial strains and maintenance procedure

Staphylococcus aureus (ATCC 25923), Staphylococcus epidermidis (ATCC 14990), Psudomonas aeruginosa (ATCC 27853), and Escherichia coli (ATCC 25922) were used as test organisms. The strains were cultured on brain heart agar (Merck, Germany). Afterwards, grown bacterial colonies were picked from the plate, suspended in sterile skim milk (Merck, Germany) containing 10% glycerol (Merck, Germany) and stored at -20°C.

Antibacterial activity assay

The test agents in this study were curcumin, indium curcumin \((\text{In(CUR)}_3)\), indium diacetylcurcumin \((\text{In(DAC)}_3)\) and diacetylcurcumin \((\text{DAC})\). Curcumin (Sigma) was purchased and then, DAC, \(\text{In(CUR)}_3\), and \(\text{In(DAC)}_3\) were prepared as previously described (Mohammadi et al., 2005). Stock solution of the test agents were made up in DMSO (dimethylsulfoxide; Merck, Germany) to ensure complete solubilization (Mohammadi et al., 2005; Liang et al., 2008). The fresh culture of aforementioned strains was prepared and antibacterial activity of each test agent against each bacterium was examined as follows: in the test tube containing Mueller Hinton broth (Merck, Germany), a bacterial concentration of \(5 \times 10^6\) colony forming units (CFU)/ml (Forbes et al., 2007) was tested with 375 µg/ml of each test agent. Curcumin was effective against \(S.\) aureus and \(S.\) epidermidis, whereas it did not show antibacterial activity on \(P.\) aeruginosa and \(E.\) coli. Strikingly, \(\text{In(CUR)}_3\) exhibited antibacterial effect against all the four test organisms. \(\text{In(DAC)}_3\) was effective against \(S.\) epidermidis and \(P.\) aeruginosa. DAC was not found to be effective against the four mentioned bacteria. The positive results in the antibacterial activity assay were then examined for the determination of MIC (Table 1). The MIC of \(\text{In(CUR)}_3\) for \(S.\) aureus and \(S.\) epidermidis was lower than the MIC of the curcumin for these bacteria. Furthermore, the MIC of \(\text{In(CUR)}_3\) for \(S.\) epidermidis was lower when compared with \(\text{In(DAC)}_3\). Meanwhile, \(E.\) coli was inhibited only by \(\text{In(CUR)}_3\) (MIC: 93.8 µg/ml).

Curcumin, the main yellow bioactive component of turmeric powder, has been shown to have several biological effects such as antimicrobial activity (Chattopadhyay et al., 2005; Di Mario et al., 2007). Synthetic modification of antibacterial agents in order to improve antibacterial activity or pharmacological properties is an interesting field in studies. Synthesis of mono-carbonyl analogues of curcumin has been reported which some of these compounds exhibited more antibacterial activity than curcumin (Liang et al., 2008). Other researchers attempted to synthesis of some bioactive conjugates of curcumin which showed relatively more antimicrobial activity than curcumin itself due to their increased solubility, reduced metabolism and better cellular uptake (Mishra et al., 2005; Dubey et al., 2007).

Some metals are known for their antibacterial activity and in some cases as effective therapeutic agents against bacterial diseases. Indium is a major interest metal with antibacterial activity (David et al., 2005). Therefore, two new complexes, indium curcumin and indium diacetylcurcumin, were chosen for the present study.

As shown in Table 1, curcumin was effective against \(S.\) aureus and \(S.\) epidermidis, whereas indium curcumin showed antibacterial activity on all the four test organisms. Moreover, the MIC of \(\text{In(CUR)}_3\) for \(S.\) aureus and \(S.\) epidermidis was lower than the MIC of curcumin for the same bacterial strains. Therefore, we found an enhancement in both spectrum and antibacterial activity of indium curcumin complex in comparison with curcumin itself. There is also similar effectiveness in other metal compounds such as silver sulfadiazine, a combination of two antibacterial agents, Ag⁺ and sulfadiazine, which has a broad spectrum of activity; binding to cell components such as DNA may be responsible for its inhibitory properties (Brooks et al., 2007). Furthermore, it has been shown that formation of metal complexes may lead to change in ability of uptake them by bacterial cells and thus enhance the antibacterial activity (David et al., 2005). Therefore, improve in cellular uptake and/or better binding to cell components could be the reason for increasing the antibacterial effect of indium curcumin.

RESULTS AND DISCUSSION

\textit{In vitro} antibacterial activity of \(\text{In(CUR)}_3\), \(\text{In(DAC)}_3\), and DAC in comparison with curcumin were investigated against \(S.\) aureus, \(S.\) epidermidis, \(P.\) aeruginosa, and \(E.\) coli (Table 1). The first step of the work was antibacterial activity assay with 375 µg/ml of each test agent. Curcumin was active against \(S.\) aureus and \(S.\) epidermidis, whereas it did not show antibacterial activity on \(P.\) aeruginosa and \(E.\) coli. Strikingly, \(\text{In(CUR)}_3\) exhibited antibacterial effect against all the four test organisms. \(\text{In(DAC)}_3\) was effective against \(S.\) epidermidis and \(P.\) aeruginosa. DAC was not found to be effective against the four mentioned bacteria.

The positive results in the antibacterial activity assay were then examined for the determination of MIC (Table 1). The MIC of \(\text{In(CUR)}_3\) for \(S.\) aureus and \(S.\) epidermidis was lower than the MIC of the curcumin for these bacteria. Furthermore, the MIC of \(\text{In(CUR)}_3\) for \(S.\) epidermidis was lower when compared with \(\text{In(DAC)}_3\). Meanwhile, \(E.\) coli was inhibited only by \(\text{In(CUR)}_3\) (MIC: 93.8 µg/ml).

Curcumin, the main yellow bioactive component of turmeric powder, has been shown to have several biological effects such as antimicrobial activity (Chattopadhyay et al., 2005; Di Mario et al., 2007). Synthetic modification of antibacterial agents in order to improve antibacterial activity or pharmacological properties is an interesting field in studies. Synthesis of mono-carbonyl analogues of curcumin has been reported which some of these compounds exhibited more antibacterial activity than curcumin (Liang et al., 2008). Other researchers attempted to synthesis of some bioactive conjugates of curcumin which showed relatively more antimicrobial activity than curcumin itself due to their increased solubility, reduced metabolism and better cellular uptake (Mishra et al., 2005; Dubey et al., 2007).

Some metals are known for their antibacterial activity and in some cases as effective therapeutic agents against bacterial diseases. Indium is a major interest metal with antibacterial activity (David et al., 2005). Therefore, two new complexes, indium curcumin and indium diacetylcurcumin, were chosen for the present study.

As shown in Table 1, curcumin was effective against \(S.\) aureus and \(S.\) epidermidis, whereas indium curcumin showed antibacterial activity on all the four test organisms. Moreover, the MIC of \(\text{In(CUR)}_3\) for \(S.\) aureus and \(S.\) epidermidis was lower than the MIC of curcumin for the same bacterial strains. Therefore, we found an enhancement in both spectrum and antibacterial activity of indium curcumin complex in comparison with curcumin itself. There is also similar effectiveness in other metal compounds such as silver sulfadiazine, a combination of two antibacterial agents, Ag⁺ and sulfadiazine, which has a broad spectrum of activity; binding to cell components such as DNA may be responsible for its inhibitory properties (Brooks et al., 2007). Furthermore, it has been shown that formation of metal complexes may lead to change in ability of uptake them by bacterial cells and thus enhance the antibacterial activity (David et al., 2005). Therefore, improve in cellular uptake and/or better binding to cell components could be the reason for increasing the antibacterial effect of indium curcumin.
In(DAC)\textsubscript{3} was found to be active against S. epidermidis and P. aeruginosa, but it did not exhibit antibacterial activity on S. aureus or E. coli. Thus, although In(DAC)\textsubscript{3} did not inhibit S. aureus, its activity against P. aeruginosa is an advantage of this compound over curcumin.

In(CUR)\textsubscript{3} showed more antibacterial activity than In(DAC)\textsubscript{3}. In fact, the reason which suggests that the enhancement in both spectrum and antibacterial activity of In(CUR)\textsubscript{3} were not due to antibacterial effect of indium alone, is that we did not find a similar effect by In(DAC)\textsubscript{3}. Thus, it seems that the roles of both curcumin and indium are essential in the action of In(CUR)\textsubscript{3}.

In conclusion, indium curcumin complex has more antibacterial activity than curcumin and indium diacetylcurcumin, and could be a suitable candidate for further in vivo investigations.

ACKNOWLEDGMENT

We would like to thank the Vice-chancellor of Research of Bushehr University of Medical Sciences for financial support.

REFERENCES

Table 1. Antibacterial activity and MIC of curcumin, indium curcumin (In(CUR)\textsubscript{3}), indium diacetylcurcumin (In(DAC)\textsubscript{3}) and diacetylcurcumin (DAC).

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Agent</th>
<th>Antibacterial activity</th>
<th>MIC (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus ATCC 25923</td>
<td>curcumin</td>
<td>+</td>
<td>187.5</td>
</tr>
<tr>
<td></td>
<td>In(CUR)\textsubscript{3}</td>
<td>+</td>
<td>93.8</td>
</tr>
<tr>
<td></td>
<td>In(DAC)\textsubscript{3}</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>DAC</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>S. epidermidis ATCC 14990</td>
<td>curcumin</td>
<td>+</td>
<td>46.9</td>
</tr>
<tr>
<td></td>
<td>In(CUR)\textsubscript{3}</td>
<td>+</td>
<td>23.4</td>
</tr>
<tr>
<td></td>
<td>In(DAC)\textsubscript{3}</td>
<td>+</td>
<td>46.9</td>
</tr>
<tr>
<td></td>
<td>DAC</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>P. aeruginosa ATCC 27853</td>
<td>curcumin</td>
<td>−</td>
<td>23.4</td>
</tr>
<tr>
<td></td>
<td>In(CUR)\textsubscript{3}</td>
<td>−</td>
<td>23.4</td>
</tr>
<tr>
<td></td>
<td>In(DAC)\textsubscript{3}</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>DAC</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>E. coli ATCC 25922</td>
<td>curcumin</td>
<td>−</td>
<td>93.8</td>
</tr>
<tr>
<td></td>
<td>In(CUR)\textsubscript{3}</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>In(DAC)\textsubscript{3}</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>DAC</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

