Diethylnitrosamine-induced hepatocarcinogenesis in rats: possible chemoprevention by blueberries

*Nermin A.H. Sadik, Shohda A. EL-Maraghy, Manal F. Ismail

Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Accepted 14 March, 2008

Nitrosamine compounds are known hepatic carcinogens. This study was designed to study the efficacy of dietary supplementation with blueberries (BB) on diethylnitrosamine (DEN)-initiated hepatocarcinogenesis in male wistar rats. Rats were divided into three groups. The first group served as normal control group, the second group received DEN at a dose of 10 mg/kg body weight five times a week for 15 weeks. The third one received DEN as in DEN-treated group simultaneously with 4% BB-supplemented diet. The results showed that BB caused significant decrease in the elevated serum levels of α-fetoprotein (AFP), homocysteine (Hcy) along with levels of glutathione(GSH), deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and activity of glutathione reductase (GR) in liver. Normalization of elevated α2-macroglobulin (α2M) and total antioxidant capacity (TAC) levels in serum, hepatic glutathione-S-transferase (GST), glutathione peroxidase (GPx) activities and liver weight was achieved whereas body weight was significantly decreased. Moreover, no significant change was observed in elevated relative liver weight, hepatic glucose-6-P-dehydrogenase (G6PD), lactate dehydrogenase (LDH) along with serum aminotransferases, alkaline phosphatase (ALP) and γ-glutamyltransferase (γ-GT) activities. Significant increase in reduced hepatic activity of xanthine oxidase (XO) was achieved and histopathological damage was minimized in BB-treated group. It is suggested that BB suppress DEN- induced hepatocarcinogenesis and could be developed as a promising chemopreventive natural supplement for liver cancer.

Key words: Blueberries, diethylnitrosamine, hepatocarcinogenesis, α2-macroglobulin, α-fetoprotein, homocysteine, glutathione, rats.

INTRODUCTION

Diethylnitrosamine (DEN), a hepatocarcinogen, is known to cause perturbations in the nuclear enzymes involved in deoxyribonucleic acid (DNA) repair/replication and is normally used as a carcinogen to induce liver cancer in animal models (Bhosale et al., 2002). DEN has been shown to be metabolized to its active ethyl radical metabolite, and the reactive product interacts with DNA causing mutation, which would lead to carcinogenesis (Anis et al., 2001; Chakraborty et al., 2007). Experimental, clinical and epidemiological studies have provided evidences supporting the role of reactive oxygen species in the etiology of cancer. Diethylnitrosamine has been suggested to cause oxidative stress and cellular injury due to the enhanced formation of free radicals (Ramakrishnan et al., 2006; Valko et al., 2006).

Nitrate and nitrite are added to meat and fish for the purpose of preservation, as colour fixatives and as flavouring. Ingestion of nitrite and nitrate can result in the endogenous formation of nitroso compounds, particularly in the presence of nitrosatable precursors, such as primary amines, in the acidic condition of the stomach (Lin et al., 2002). In addition, exposure of man to preformed nitrosamines occurs due to the use of tobacco products, cosmetics, pharmaceutical products and agricultural chemicals (Hecht, 1997). In humans, average intake of nitrosamines from food is approximately 1 mg/day (Scanlan, 1983).

Recent approach of chemoprevention serves as an attractive alternative to control malignancy (Guruswamy et al., 2008). Epidemiologic and clinical studies have shown that dietary intakes of blueberries (BB) may have
potential to reduce various types of cancers (Pan et al., 2007; Wilms et al., 2007), including liver cancer (Yi et al., 2006). Blueberries, nature’s only ‘blue’ food, are a rich source of polyphenols, potent antioxidants that include phenolic acids, tannins, flavonols and anthocyanins. The main anthocyanidins present are delphinidin, cyanidin, petunidin, peonidin and malvidin. Yi et al. (2006) have found that phenolic compounds in blueberries could inhibit HepG2 liver cancer cell population growth and induce apoptosis. Moreover, blueberry constituents are likely to act by mechanisms that counteract oxidative stress, decrease inflammation, and modulate macromolecular interactions and expression of genes associated with disease processes (Neto, 2007).

Several biochemical markers have been suggested for biomonitoring the actions of anticancer agents. Serum α-fetoprotein (AFP) is a useful tumour marker for the detection and monitoring of liver cancer development although the false negative rate with AFP level alone may be as high as 40% for patients with small size tumour (Qin and Tang, 2002; Yao et al., 2006). Recently, α2-macroglobulin (α2M), a homotetrameric major acute-phase glycoprotein has been suggested as a novel cytochemical marker characterizing preneoplastic and neoplastic rat liver lesions negative for hitherto established cytochemical markers (Sukata et al.,2004). It is only recently that homocysteine (Hcy) has been implicated in increased cancer susceptibility and development.

The present study aims to carry out a systematic investigation of the protective influences of blueberries against DEN-induced hepatocarcinogenesis by analyzing serum α-fetoprotein, α2-macroglobulin and homocysteine levels along with the non-enzymatic and enzymatic antioxidant enzymes as biochemical end points of chemoprevention.

MATERIAL AND METHODS

Chemicals

Blueberries were kindly provided as a gift from Dr Jeremy Spencer, School of Food Biosciences, University of Reading, UK. Blueberries are obtained from local market. Whole blueberries (500g) were lyophilized (freeze dried) for 72h using a Vickers accelerated freeze-drier, pilot plant model. HPLC analysis revealed that 1 g of freeze-dried blueberries contained 22 mg of anthocyanins (Spencer et al., unpublished data). Freeze-dried blueberries were kept at -20 °C. Blueberries were mixed with diet daily and presented fresh to rats.

Experimental design

Male Wistar rats weighing (140 – 160 g) were obtained from the animal house of the Faculty of Medicine, Cairo University, Cairo, Egypt and were used after a 1-week acclimatization period. Animals were divided into three groups. The first group (untreated control) received neither DEN nor BB. The second group (DEN) received DEN intragastrically at a dose of 10 mg/kg 5 times a week for 15 weeks (Karimov et al., 2003). The third group (DEN + BB) received DEN as mentioned in second group along with dietary supplementation of blueberries at a dose of 4 g/100g diet (Spencer et al. unpublished data).

Tissue sampling and biochemical assays

At the end of the experimental period, the body weight of each rat was taken before sacrifice. Blood was collected and serum was separated for the estimation of AFP, α2M, Hcy and total antioxidant capacity (TAC) levels and alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and γ-glutamyltransferase (γ-GT) activities.

The abdominal cavity of rats was dissected immediately after decapitation and the liver was rapidly removed, washed by ice-cold saline, weighed and blotted dry. A portion of the liver was homogenized in ice-cold saline using Potter–Elvehjem glass homogenizer and the homogenate was divided into three portions. A portion of the homogenate was mixed with 0.1M Tris buffer pH 8.1, containing 1 mM phenylmethylsulphonyl fluoride (PMSF) and centrifuged at 105000 ×g at 4 °C for 40 min using Dupont Sorvall ultracentrifuge (USA). The resulting cytosolic fraction was used for the determination of glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), glucose-6-P dehydrogenase (G6PD), lactate dehydrogenase (LDH) and xantine oxidase (XO) activities. Another portion was mixed with sucrose/Tris buffer, pH 7.5, for subsequent estimation of DNA and ribonucleic acid (RNA) levels. The remaining portion was precipitated with 7.5% 5-sulfosalicylic acid ,centrifuged at 600xg for 15 min and the resulting protein-free supernatant obtained was used for the estimation of GSH level. Finally, portion of the liver from all the animals was formalin-fixed and paraffin-embedded for subsequent histopathological examination.

Serum level of AFP was estimated using ELISA kit supplied from Anogen (Mississauga, Ontario, Canada). Serum α2M was determined using radial-immuno diffusion kit (Bioanitox, Argentina) whereas serum Hcy level was measured using Axis Homocysteine EIA kit (Axis-Shield AS, Germany). Serum ALT and AST were assayed using commercially available kits provided by ProDia international, Germany, according to the method of Reitman and Frankel (1957). Serum ALP was estimated using kit supplied by Biolabo SA, France according to the method described by Kind and King (1954) whereas serum γ-GT was measured by the method of Orlowski and Meister (1965) using kit supplied by Scavo Diagnostics, Italy. TAC was measured in serum by the ferric reducing antioxidant power (FRAP) assay (Benzie and Strain,1996) which measures the ferric reducing ability of antioxidants in serum.

Measurement of liver cytosolic enzyme activities of GST (Habig et al., 1974), GR (Long and Carson, 1961), GPx (Paglia and Valentine, 1967), G6PD (Kornberg and Horecker, 1955) and XO (Pradja and Weber, 1975) were carried out. LDH activity was measured using commercially available kit provided by Stanbio, San Antonio, TX, USA, according to the method of Buhl and Jackson (1978). GSH was determined according to the method of Beutler et al. (1963). Hepatic levels of DNA and RNA were estimated according to method of Burton (1956) and Blobel and Potter (1968), respectively as modified by Giles and Myers (1965). The protein content was measured by the method of Lowry et al. (1951).

Statistical analysis

Data were expressed as the mean ± S.E.M. Means were compared by one – way analysis of variance (ANOVA) followed by Tukey-Kramer test, which was used to identify differences between groups. A value of P< 0.05 was accepted as significant.

RESULTS

General findings

Significant increase was observed in serum levels of AFP, α2M, Hcy along with activities of ALT, AST, ALP...
Table 1. Effect of blueberries on DEN-induced alteration in serum AFP, α2M, Hcy, liver function tests, body weight, liver weight and relative liver weight.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>DEN</th>
<th>DEN + blueberries</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFP (ng/ml)</td>
<td>0.4 ±0.03</td>
<td>0.96 ±0.06</td>
<td>0.64±0.036</td>
</tr>
<tr>
<td>α2M (mg/dl)</td>
<td>132.9 ± 3.6</td>
<td>225.7 ± 5.3</td>
<td>135.7 ±2</td>
</tr>
<tr>
<td>Hcy (µmol/l)</td>
<td>4.2±0.26</td>
<td>9.6±0.6</td>
<td>6.4±0.25</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td>80 ± 6.9</td>
<td>123.4 ± 6.2</td>
<td>118.3 ± 8.5</td>
</tr>
<tr>
<td>AST (U/l)</td>
<td>90.8 ± 4.4</td>
<td>129.7 ± 9.9</td>
<td>112.4 ± 8.7</td>
</tr>
<tr>
<td>ALP (U/l)</td>
<td>79.4 ± 3.1</td>
<td>121 ± 0.4</td>
<td>113.9 ±2.9</td>
</tr>
<tr>
<td>γ-GT (U/l)</td>
<td>1 ±0.03</td>
<td>5.3 ±0.4</td>
<td>5.9 ±1.1</td>
</tr>
<tr>
<td>Body weight (g)</td>
<td>257.9 ± 11</td>
<td>237 ± 7.2</td>
<td>176.4 ± 10.3</td>
</tr>
<tr>
<td>Liver weight (g)</td>
<td>5.8 ± 0.08</td>
<td>7.3 ± 0.4</td>
<td>4.7 ±0.4</td>
</tr>
<tr>
<td>Relative liver weight (g %)</td>
<td>2.4± 0.06</td>
<td>2.95 ± 0.11</td>
<td>3 ± 0.21</td>
</tr>
</tbody>
</table>

Values represent mean ± S.E.M for seven rats. Comparisons are made as follows: (a) with control group; (b) with DEN group. Values are statistically significant at P < 0.05.

Table 2. Effect of blueberries on DEN-induced alteration in antioxidant status.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>DEN</th>
<th>DEN + blueberries</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST (U/mg protein)</td>
<td>415.6 ± 20.6</td>
<td>847.3 ± 68.7</td>
<td>546 ± 59.2</td>
</tr>
<tr>
<td>GR (U/mg protein)</td>
<td>131 ± 7.1</td>
<td>255.7 ± 15.8</td>
<td>194.1 ± 4.1</td>
</tr>
<tr>
<td>GPx (U/mg protein)</td>
<td>278.2 ± 29.9</td>
<td>436.4 ± 16.2</td>
<td>335.4 ± 17.4</td>
</tr>
<tr>
<td>G6PD (mU/mg protein)</td>
<td>16.2 ± 1.1</td>
<td>44.9 ± 6.1</td>
<td>61 ± 10.9</td>
</tr>
<tr>
<td>GSH (mg/g)</td>
<td>2 ± 0.1</td>
<td>3.3 ± 0.1</td>
<td>2.7 ± 0.16</td>
</tr>
<tr>
<td>TAC (µmol/l)</td>
<td>702.9 ± 13.3</td>
<td>1182 ± 87.8</td>
<td>675.7 ± 56.8</td>
</tr>
</tbody>
</table>

Values represent mean ± S.E.M for seven rats. Comparisons are made as follows: (a) with control group; (b) with DEN group. Values are statistically significant at P < 0.05.

and γ-GT in the DEN group as compared with the control group. No significant change was observed in body weight in the DEN-treated group whereas increased liver weight and relative liver weight was shown as compared with the control group. BB supplementation resulted in normalization of serum α2M and significant decrease of AFP and Hcy levels whereas no significant change in activities of ALT, AST, ALP and γ-GT was observed as compared with DEN group. Significant decrease in body weight was detected in BB-group as compared with either control or DEN-group. Blueberries supplementation was able to restore liver weight whereas no significant change was obtained in relative tissue weight as compared with DEN-group as shown in Table (1).

Antioxidants status

As shown in Table (2), significant increase was observed in the hepatic activity of G6PD as compared with the DEN-treated group.

Hepatic levels of DNA, RNA and activities of XO and LDH

As shown in Table (3), significant increase was observed in levels of DNA and RNA and activity of LDH whereas significant decrease was observed in XO activity in liver as compared with the control group. Blueberries supplementation caused significant decrease in hepatic levels of DNA and RNA and increase in XO activity whereas no change was detected in LDH activity.

Histopathological findings

Histopathological examination of liver sections from control animals revealed normal architecture. DEN group showed appearance of hepatocellular carcinoma with enlarged hyperchromatic nuclei and scattered mitosis. Restoration of most of the normal hepatocytes architecture with regular dark nuclei and dysplasia was shown in BB group (Figure 1a-c).
Table 3. Effect of blueberries on DEN-induced alteration in hepatic levels of DNA and RNA along with activities of LDH and XO.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>DEN</th>
<th>DEN + blueberries</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA (mg/g)</td>
<td>1.77 ± 0.03</td>
<td>2.14 ± 0.06<sup>a</sup></td>
<td>1.4 ± 0.13<sup>ab</sup></td>
</tr>
<tr>
<td>RNA (mg/g)</td>
<td>1.3 ± 0.07</td>
<td>2.1 ± 0.1<sup>a</sup></td>
<td>1.7 ± 0.07<sup>ab</sup></td>
</tr>
<tr>
<td>LDH (U/mg protein)</td>
<td>2 ± 0.09</td>
<td>2.56 ± 0.08<sup>a</sup></td>
<td>2.6 ± 0.19<sup>a</sup></td>
</tr>
<tr>
<td>XO (U/mg protein)</td>
<td>6.3 ± 0.3</td>
<td>4.3 ± 0.1<sup>a</sup></td>
<td>5.2 ± 0.19<sup>ab</sup></td>
</tr>
</tbody>
</table>

Values represent mean ± S.E.M for seven rats. Comparisons are made as follows: (a) with control group; (b) with DEN group. Values are statistically significant at P < 0.05.

DISCUSSION

It is well known that liver cancer is one of the most important cancers in the world, resulting in more than 1 million patients and over 260,000 deaths per year (Liu et al., 2006). Therefore, the chemoprevention and treatment of liver cancer is very important. AFP, α2M, Hcy, ALT, AST, ALP, γ-GT, liver weight and relative liver weight are valuable references, widely used in animal studies to diagnose and observe the development of hepatocarcinogenesis (Thirunavukkarasu et al., 2005). In the present study, the values of previously mentioned parameters showed sharp increase in DEN-group as compared with that of the normal control group (Table1).

AFP, a tumour-associated fetal protein, has long been employed as a serum fetal tumour marker to monitor disease progression (Abelev, 1971; Liu et al., 2006). The observed significant increase of serum α2M in DEN-induced rats is in harmony with Sukata et al. (2004) who stated that α2M might be tightly linked to the rat hepatocarcinogenesis from the initial stage to tumour progression even in conditions, which are undetectable, by established cytochemical markers such as placental glutathione-S-transferase (GST-P) and γ-GT-positive lesions. Sukata et al. (2004) also confirmed that the observed increases in serum α2M concentrations during hepatocarcinogenesis and in animals, bearing hepatic tumours was not a result of secretion by the host liver of α2M as an acute-phase reactant in response to inflammatory injury. α2M functions as a carrier protein and regulator for various growth factors and cytokines such as transforming growth factor-β (known to be involved in the onset of hepatocyte apoptosis) (James, 1990). Furthermore, α2M partially counteracts the inhibitory effects of transforming growth factor-β on proliferation of neoplastic hepatocytes, suggesting that under some conditions, α2M can promote hepatocarcinogenesis by perturbing transforming growth factor-β-induced apoptosis (Wollenberg et al., 1991).

Increased serum Hcy and hepatic DNA and RNA levels along with decreased XO activity seem to be interrelated in the present study. Animal and human studies have increasingly demonstrated associations between folate deficiency, serum Hcy elevations, and a variety of cancers. The observed increase in serum Hcy in our study is suggested to reflect inhibition of homocysteine metabolism due to folate deficiency reported in other studies (Eichholzer et al., 2001; Davis and Uthus, 2004). Folate is important for normal DNA synthesis, repair, and converting homocysteine to methionine (Davis and Uthus, 2004). Therefore, increased demand of folate is postulated to be a result of increased hepatic levels of DNA and RNA (Table 3) and might indicate increased DNA and RNA synthesis and proliferation of cancer cells in response to growth stimulation.

Metabolically active and proliferating tissues require large amounts of purine nucleotides for transmission of metabolic energy and synthesis of nucleic acids. Xanthine oxidoreductase (XOR) catalyzes the final reactions of the purine catabolic pathway, oxidizing hypoxanthine to uric acid.
to xanthine, and xanthine to uric acid. The decrease in \(\text{XO} \) activity which depresses the ability to degrade purines was thus reported to provide purines which can be recycled for nucleic acid biosynthesis in the salvage pathway (Linder et al., 2005). Progressive decrease of \(\text{XOR} \) activity has been shown in all hepatomas irrespective of growth rate or differentiation as compared with the corresponding normal tissues (Prajda and Weber, 1975). The observed decrease in liver cytosolic \(\text{XO} \) activity shown in Table (3) may be attributed to down-regulation of xanthine oxidoreductase which might include loss of heterozygosity at chromosome 2p where \(\text{XOR} \) is located, decreased gene promoter activity, increased XOR mRNA degradation, or posttranslational changes (O’Connell et al., 1998; Linder et al., 2005).

Results of the present study revealed significant increase in liver cytosolic \(\text{GST} \) activity in DEN-received group. This increase in hepatic \(\text{GST} \) activity may be attributed to the fact that induction of GSTs, phase II enzymes that detoxify certain carcinogens, is regarded as a potential mechanism of blockade of the early stages of carcinogenesis. Sato (1989) has found that, of the preneoplastic marker enzymes, rat placental form of glutathione-S-transferase is markedly and specifically inducible in preneoplastic foci. Recently, immunohistochemical studies have revealed significant increase in the number of hepatocellular enzyme altered foci, which stained positive for \(\text{GST-P} \) (Sakata et al., 2004).

The significant increase of hepatic \(\text{GSH} \) level observed in the present study is in harmony with Marinho et al. (1997) who also reported that increased \(\text{GSH} \) concentration in DEN-treated rat liver is probably due to the simultaneous observed two-fold increase in the activities of \(\text{G}-\text{GT} \) and \(\text{G}-\text{glutamylcysteine synthetase (G-GCS)} \), two main enzymes involved in \(\text{GSH} \) formation. The ubiquity of elevated \(\text{G}-\text{GT} \) levels in many rodent and human hepatic and extrahepatic carcinomas (Hanigan and Pitot, 1985) have led to the hypothesis that \(\text{G}-\text{GT} \) provides a growth advantage to focal cells during carcinogenesis. A plausible hypothesis is that the advantage may be due to the role of \(\text{G}-\text{GT} \) in the transport of \(\text{GSH} \) constituents, leading to increase in cellular \(\text{GSH} \). The latter is required for proliferation and resistance (Komlosh et al., 2002). \(\text{G}-\text{GT} \) is reported to act by circumventing the rate-limiting \(\text{G}-\text{GCS} \) and its feedback inhibition by \(\text{GSH} \) and may thus participate in promotion of growth. Previous studies have shown that an increased \(\text{GSH} \) level was associated with an early proliferative response and was essential for the cell to enter the \(\text{S} \) phase. The requirement for increased \(\text{GSH} \) or thiols prior to DNA synthesis may be related to the fact that proliferating cells require increased amounts of pentoses and thiols. DNA synthesis depends absolutely on the formation of pentoses and on their conversion into deoxyribose by ribonucleotide reductase. The activity of this rate-limiting enzyme in DNA synthesis requires reduced glutaredoxin or thioredoxin, which are maintained by \(\text{GSH} \). An increase in the cellular \(\text{GSH} \) content may change the thiol-redox status of the cell that activates genes essential for \(\text{G}_{1} \) to \(\text{S} \) transition (Holmgren, 1981; Lu, 1999).

\(\text{GSH} \) mediates the reduction of oxidized glutathione (\(\text{GSSG} \)) to \(\text{GSH} \). This reduction reaction requires \(\text{NADPH} \), which is supplied by the enzyme \(\text{G6PD} \) in the pentose phosphate pathway. \(\text{G6PD} \) is significantly increased in DEN-treated group, which increases the availability of \(\text{NADPH} \), which in turn enhances the activity of \(\text{GR} \) shown in Table 2. The activity of \(\text{GPx} \), which is another constituent of \(\text{GSH} \) redox cycle, also showed a significant increase in DEN-treated rats as reported previously (Sarkar et al., 1995). All these events eventually lead to increase hepatic level of \(\text{GSH} \) observed in the present study. Increased serum \(\text{TAC} \) level in DEN-group (Table 2) might be regarded as an adaptive response to oxidative stress imposed by DEN. \(\text{TAC} \) depicts the synergistic interaction among different antioxidants present in plasma, thus providing an insight into the delicate in vivo balance between oxidants and non-enzymatic antioxidants (Serafini et al., 2000).

The elevated hepatic activity of \(\text{G6PD} \) and \(\text{LDH} \) in this study may be related to enhanced glucose metabolism. It was discovered in the 1920s that cancer cells constitutively up regulate glucose metabolism (Warburg, 1930). Thus, cancer cells tend to synthesize ATP mainly through ‘glycolysis’, a metabolic state that is linked to high glucose uptake and local acidification owing to lactate production. Gatenby and Gillies (2004) and Zu and Guppy (2004) have reported that when glycolysis prevails, pyruvate is reduced to lactate in order to reoxidize \(\text{NADH} \) to \(\text{NAD} \) that is required for sustained glycolysis. Increased glucose breakdown provides building blocks for the synthesis of nucleotides via the pentose phosphate pathway. In addition, local acidification of the tumour microenvironment may facilitate tumour invasion (Weber, 2001; Kroemer, 2006). Glycolytic enzymes are induced by oncogenes (Plas and Thompson, 2005) or by the hypoxia-inducible transcription factor (Cicare and Huang, 2002; King et al., 2006) or a dysfunctional tricarboxylic acid cycle owing to loss of function of mitochondrial tumour suppressor genes (Eng et al., 2003; Gottlieb and Tomlinson, 2005).

In recent years, considerable attention has been paid to anthocyanins due to their abilities to inhibit oxidative stress and cell proliferation (Joseph et al., 2007). In our study, BB was able to restore serum \(\text{a2M} \) and to reduce \(\text{AFP} \) and \(\text{Hcy} \) levels significantly. The antioxidant potential of blueberries was clarified in the present study from its modifying effect of \(\text{GSH} \) and its related enzymes. Blueberries supplementation was able to restore hepatic activities of \(\text{GST} \) and \(\text{GPx} \) along with serum \(\text{TAC} \) level. Significant decrease was also observed in hepatic \(\text{GR} \) and \(\text{GSH} \) level. The regulations of apoptosis and phase II enzymes such as \(\text{GST} \) are other potential mechanisms through which flavonoids such as anthocyanins may prevent cancer as reported previously (Boateng et al., 2007;
Srivastava et al., 2007). The results of Srivastava et al. (2007) indicated that apoptosis was confirmed in colon cancer cell line (HT-29 cells) when treated with anthocyanins from blueberries at 50 - 150 µg/ml with consequent decrease of GST activity rather than induce it.

Blueberries and other berries, notably raspberries and strawberries, contain a potent anticarcinogenic compound called ellagic acid. Polyphenols exert antiproliferative and an anti-angiogenic effects that are particularly pronounced in tumour cells (Ray, 2005; Larrosa et al., 2006). Interestingly, adding blueberries, red wine and other sources of polyphenols to the diet is thought to be one reason for the greater slenderness of the French compared with other Europeans. Therefore, it is not surprising that our study showed significant decrease in body weight in BB-group and that this decrease counteracted any significant change in relative tissue weight despite of the normalization of liver weight caused by blueberries. The decrease in body weight in BB-supplemented group may be attributed at least partly to the slowing down of digestion by inhibiting enzymes such as amylase, protease and lipase activities at levels, which could affect carbohydrates, protein, and fat digestion and absorption (McDougall and Stewart, 2005).

In our study, BB was observed to decrease levels of DNA and RNA and to increase activity of XO in liver. Pterostilbene, an active constituent of blueberries, was found to induce apoptosis through activating the caspase cascade via the mitochondrial and Fas/FasL pathway, growth arrest DNA damage-inducible gene (GADD) expression, and by modifying cell cycle progress and changes in several cycle-regulating proteins (Pan et al., 2007). In another study, it was demonstrated that anthocyanidins contribute to the inhibition of tumourigenesis by blocking activation of the mitogen-activated protein kinase (MAPK) pathway. These findings provide the first molecular basis for the anticarcinogenic action of anthocyanidins (Hou et al., 2004).

The data provided so far by the current study and from other laboratories warrants further investigation into the chemopreventive and chemotherapeutic effects of blueberries in clinical studies. In sum, our results indicate that dietary intake of blueberries high in antioxidant activity may be an important component of a healthy living strategy designed to increase our resistance to liver cancer.

Acknowledgment

The authors are thankful to Dr Jeremy Spencer and Dr Manal M Abd El-Mohsen, School of Food Biosciences, University of Reading, UK for kindly providing the freeze-dried blueberries used in the current study.

REFERENCES

