Pedagogical process management: A case study by applying the reinforcement learning

Abdellah Bennane*, Theo D’hondt, Bernard Manderick and Ann Nowé

Vrije University of Brussel, Belgium.

Accepted 30 June, 2009

The introduction of the intelligence in teaching software is the object of this paper. In software elaboration process, one uses some learning techniques in order to adapt the teaching software to the characteristics of student. Generally, one uses the artificial intelligence techniques like reinforcement learning, Bayesian network in order to adapt the system to the environment internal and external conditions, and allow this system to interact efficiently with its potentials user. The intention is to automate and manage the pedagogical process of tutoring system, in particular the selection of the content and manner of pedagogic situations. Researchers create a pedagogic learning agent that simplifies the manual logic and supports progress and the management of the teaching process (tutor-learner) through natural interactions.

Key words: Adaptive system, tutoring system, agent, environment, natural interaction, reinforcement learning, pedagogical process.

PROBLEMATIC

The classical conception of intelligent tutoring systems is composed of four elements, the domain model (knowledge), the student model, pedagogic module, and communication module (Wenger, 1987).

The pedagogic module is the manager of the pedagogic action undertaken in a tutoring system. The choice of situations which the system introduces to the learners is the function of the pedagogic module. Traditionally, pedagogic module is a collection of rules elaborated by author or designer of the system. These rules are defined and developed manually by being based on the experience of author or designer of tutoring system. This "manual" logic is more subjective than objective, because it is linked to the author and its pedagogic experiences.

The tendency of research in this field is to replace with statistical approaches the traditional approaches based on rules established manually. It is necessary to develop probabilistic approaches and flexible models, which allow the machine to learn (Aimeur, 2004) by itself from received data. The correlation of the learning performance is based on the engine of the statistical deduction which collects information about the user behaviors for every course of individualized study and creating a distribution of likelihood for the whole of training module (Sonwalkar, 2004). The research in machine learning was interested, for a big part, to develop the algorithms which can label new data, and not in the systems which learn naturally in interaction with people. Authors like to contribute to change this focus and to develop a new type of systems which learn with the users across a natural interaction (Picard et al., 2004).

To solve the underlying problem, is it possible to replace the "manual" logic with a "numerical" logic which can exploit the student learning pathways? Can it assure the adaptability of the teaching environment to learners and be done objectively? The natural interaction between learner and teaching environment can automate the teaching module. The aim is to prove this hypothesis. Several machine learning techniques were used to solve this type of problem. The automation allows to earn effort and time and to surmount the numerous problems of the adaptability of tutoring systems. The pedagogic module can be dynamically generated, only being based on the interaction of learners with its teaching environment. Invested efforts were in two directions, on one hand, the conception of a database which takes into account the significant characteristics of the pedagogic act. Secondly,
to explore and to try among the learning techniques, based on numerical calculations, the one that is more appropriate in the field of study such as the reinforcement learning techniques (RL).

ELABORATION OF SOLUTION

The solution rests on two pillars. The first is pedagogic and concerns the way with which authors structure and organize the teaching environment in order to answer differences which exist between learners. From this perspective, authors find that differentiated pedagogy can be very useful. Second pillar is technical and concerns the use of a learning agent which will occupy the function of tutor (pedagogue) in the system. To this end, the authors will use the reinforcement learning model that has demonstrated its effectiveness as a controller of learning.

DIFFERENTIATED PEDAGOGY: INDIVIDUALIZATION AND VARIETY OF STEP

We (we = authors) linked the modular approach and differentiated pedagogy (Przesmycki, 1991) to structure and organize the teaching environment. Differentiated pedagogy renews the conditions of training by opening a maximum of access for learners.

In this sense, a pedagogic sequence is a succession of learning situations. A situation is no more and no less an encounter of circumstances. A situation poses a problem when it puts subject in front of a task to be fulfilled, all procedures which it does not control (Hoc, 1996). An apprenticeship is a task that poses a cognitive challenge to learner. Then, the development of teaching situation is based on two important parameters, individualization and variety (Bennane et al., 2001). Individualized teaching is a pedagogy that recognizes the student as an individual with its own representations of the teaching act. Individualized teaching or learning is adapting to efficiency levels, the rhythm of work, reactions to failure and success, etc. While a variety of teaching situations is a pedagogy which offers a range of approaches and strategies. This approach can help to solve the problem of school failure where the level of learners in the evaluation process is lacking and ignored. In general, teachers and trainers when they prepare a teaching module or course, they are constructed toward the median learner and there are no individualizations. The design calls for an extra effort from teachers and trainers so that they will take into account the individual characteristics – like study level - when they prepare their teaching module (course). For this reason, a teaching situation will be a package of sub situations. How?

In general the learners of a class form a heterogeneous public. In each class, authors find five groups (subclass): good, relatively good, medium, weak, and very weak. From class decomposition and level learners, authors deduce the value 5. We propose this value (5) in order to move forward, knowing that the choice of this value depends on the domain teaching and the level of public heterogeneity.

Every situation will contain five sub-situations by taking into account two dimensions. The first one concerns the heterogeneity of learners who can be regrouped in five levels. The second dimension concerns different learning strategies.

In developing a course, it is advisable (1) to solicit permanently the learner activity; (2) to treat situations first simple (3) to lead the learner progressively to master the lesson goals by offering situations more and more of increasing complexity. By following an approach that respects the progressiveness, the gradual difficulty, and variety of pedagogical methods, a course will have all chances to drive to the acquisition by learner the solid competences and directly operational.

Example: Figure 1 is a pedagogic sequence of ten situations, with each situation having five sub-situation levels. What is the number of course possibilities (NCP) in this network (sequence)? NCP is the following: $5^{10} = 9,765,625$. This number is very important. With the support of this network that is opened to all possibility, and not frozen, adaptation can come true. The agent learning designed and implemented offers its services to adapt the learning environment for learners and not inverse.

REINFORCEMENT LEARNING

INTRODUCTION

The reinforcement learning (RL) is the study of how animals and artificial systems can learn to optimize their behavior to rewards and punishments. It was developed the RL algorithms that are closely related to the methods of dynamic programming, which is a general approach to optimal control (Sutton et al., 1998). It was
observed phenomena RL in psychological studies of animal behavior, in neurobiological investigations, etc. (Dayan et al, 2001). One way in which animals learn complex behavior is by learning to get rewards and avoid punishments. For this type of learning, RL theory is a model of a formal calculus.

The paradigm of reinforcement learning standard, an agent is connected to an environment (Figure 2) by perception and action. A learning agent (an animal, a robot, etc.) observes on several occasions the state of the environment and then selects and executes an action. The execution of action changes the state of the "world" and the agent acquires an immediate numerical reward. The positive earnings are called "rewards" and negative are called "punishment".

The reinforcement learning consists of a set of concepts and algorithms. RL is not defined by a certain class of algorithms but by the problem which it tries to solve, that is the optimum control. RL is traditionally defined as part of a Markov decision processes (MDP). Bellman founded the theory of MDPs (Bellman, 1957a, 1957b) by the unification of previous work on the sequential analysis, functions statistical decision (Wald, 1950), and models of dynamic games for two persons (Shapley, 1953). An MDP is a quadruplet (S, A, P, R) such as S is a set of states, A is a set of actions, and P and R are the distribution of probabilities and rewards respectively.

At time t, an agent receives situation/state s_t, and chooses an action a_t; the world changes to situation/state s_{t+1}; and agent perceives situation s_{t+1} and gets reward r_{t+1}. Learning is a mapping from situations to actions in order to maximize a scalar reward/reinforcement signal. The general reinforcement learning algorithm may be:

1.) Initialize learner’s internal state
2.) Do for a long time;
 - Observe current state (s);
 - Choose action (a) using the policy;
 - Execute action (a);
 - Let (r) be immediate reward, (s') new state;
 - Update internal state based on (s, a, r, s');
3.) Output a policy based on (Hayes, 2008)

Methods of resolutions

In Reinforcement learning, there are three methods of solving the learning problem, model-based method, model-free method and, planning and learning method (unified method).

The model-based method

Allows finding the environment model P and R, using dynamic programming techniques. Lets say we are given a database with m observations (s_t, a_t, s_{t+1}, r_t) in S x A x R x S generated on some experiences. This method is functioning on two steps:

1.) Extraction of probabilities distribution and reinforcement function. The values estimation of these distributions is based on the occurrences of the (s_t, a_t, s_{t+1}, r_t) in the database:
P (s_{t+1} | s_t, a_t) is the probability that taking action a in state s_t will result in a transition to state s_{t+1}. r(s_t, a_t, s_{t+1}) is the expected reward when transitioning from s_t to s_{t+1} by action a.
2.) Usage of the dynamic programming techniques in the end to determine the optimal policy. This goal is achieved indirectly by computing the Q-values, using the Bellman optimality equation:

\[Q^*(s, a) = \sum_{s'} P(s' | s, a) \left(R(s', a) + \gamma \max_{a'} Q^*(s', a') \right) \quad \forall (s, a) \in S \times A \; \text{and} \; 0 \leq \gamma \leq 1. \]

The model-free method

Allows avoiding the explicit calculus of the environment model, the Monte Carlo and Temporal difference techniques are using. The Q-Learning for example generate a suite of functions: Q: Q1, Q2, Q3... It is an approximation of Q value, online and without model. It’s allows to construct an optimal policy directly.

Planning and learning method (Unified method)

Is a unified view methods that require a model of the environment such as dynamic programming and heuristic search and methods that can be used without a model such as Monte Carlo and temporal difference methods. Within a planning agent, there are at least two roles for real experience: it can be used to improve the model and it can be used to directly improve the value function and policy using the direct reinforcement learning methods (Sutton et al., 1998).
The heart of planning (Figure 3) and learning methods is the estimation of value functions by backup operations. The difference is that whereas planning uses simulated experience generated by model, learning methods use real experience generated by the environment.

Both direct and indirect methods have advantages and disadvantages. Indirect methods often make fuller use of a limited amount of experience and thus achieve a better policy with fewer environmental interactions. On the other hand, direct methods are much simpler and are not affected by biases in the design of the model (Sutton et al., 1998).

Interaction scenario

The choices of RL are due to the nature of the model. It is adapted to human learning as has been done since the work of pioneers such as Watson, Pavlov, Skinner, Bellman, etc.

The choice starts from the following idea: in the teaching environment, one finds two agents. The first one is external to the system. It is a student who wants to learn a teaching module. This natural agent need a tutor who can select situations adapted to the student level. Then the second agent is internal and represents the tutor (the pedagogic agent). The pedagogic agent can not fulfill this function unless it has the ability to learn. The RL theory and model can provide the pedagogic agent to learn through trial and error (experience). In other words, the pedagogic agent learning can be achieved only through student learning (Figure 4).

STUDENT MODEL

How an agent can select sub situations adapted to student level? In order to answer to this question, we must first present the student model function (Vanlehn, 1988). A student model is a qualitative representation of student knowledge for a domain, a particular subject or a competence which can take into account, fully or partially, specific aspects of student behavior (Raymond et al., 1998). In other words, it describes the objects and processes in spatial, temporal or causal relationship (Clancey, 1986). In this sense, the student model may be having two functions. First, it's a memory storing all transactions passing from an object to another and it is organized using the quadruplet (situation, action, next situation, reward). The second function is a method using data resources to manage the student model memory (database).

The pedagogic module selects the teaching course of student based on student behaviors. Whereas the pedagogic agent needs some data and methods in order to answer to goal task requirements. Its goal is to determine an optimal function Q^* (Sutton et al., 1998) that will be the criterion of sub situation selection. It is the engine of the tutoring system adaptability. It uses student model database in order to compute the optimal policy. In our case, we first determine the environment model, and then compute optimal function value.

LOOKING FOR AN OPTIMAL POLICY

Model-based method

In order to determine the optimal function Q^* which represent the selection criterion of student adaptive course, we have adopted the model based method because:

1.) With few environment interactions, one can deduce the optimal policy (Sutton et al., 1998);
2.) State space dimension is modest;

The exploration and exploitation phases will be separated. This separation allows easily compare the two phases according to the criteria given as "transition probabilities distribution", "reduction of time in the student learning process" etc.
The values of optimal function Q^* are computed as follows:

1) Collect m interactions (s_t, a_t, s_{t+1}, r_t);
2) Compute probabilities distribution values;
3) Compute reward function values;
4) Compute an optimal function values.

Probabilities distribution and reward function

According to the organization of a teaching sequence as we have defined, the successors of a given situation (s) are:

1) (s) itself if the action is accomplished by failure;
2) (s') if the action is achieved by success.

The reward function is defined from $S \times A \times S$ to R and noted r. We underline the values R_{a1}^{su}, R_{a1}^{ec}, R_{a2}^{su}, R_{a2}^{ec}, R_{a3}^{su}, R_{a3}^{ec}, R_{a4}^{su}, R_{a4}^{ec}, R_{a5}^{su}, R_{a5}^{ec} used as indicative in Figure 5 are unknowns.

The choice of the reward function is not evident because in several cases, the proposed reward function allowed does not satisfy the given hypothesis (Beck et al., 2000) in order to determine the optimal policy.

The probabilities distribution is defined from $S \times A \times S$ to $[0, 1]$ and is noted P. We underline the values, α, χ, δ, β, and ϕ used as indicative in figure 5 are unknowns. The values of two functions r and P are unknowns. Its will be learned by experience in order to determine the environment model.

The values of the probabilities distribution come as follow:

$P(s, a, s') = \frac{|\{x \in LS / s_t(x) = s, a_t(x) = a, s_{t+1}(x) = s' \text{ et } s \neq s'\}|}{|\{x \in LS / s_t(x) = s, a_t(x) = a\}|}$ si $s \neq s'$.

$P(s, a, s') = \frac{|\{x \in LS / s_t(x) = s, a_t(x) = a, s_{t+1}(x) = s\}|}{|\{x \in LS / s_t(x) = s, a_t(x) = a\}|}$ si $s' = s$.

$P(s, a, s') + p(s, a, s) = 1$

The values of the reward function come as follow:

$fr(s, a, s') = \frac{\sum_{o \in LS / s_t(x) = s, a_t(x) = a, s_{t+1}(x) = s'} r_t(o)}{|\{x \in LS / s_t(x) = s, a_t(x) = a, s_{t+1}(x) = s'\}|}$.
Figure 5. State diagram from a non terminal state (s) to another (s').

Where \(r_t(o) \) is an immediate reward associated to the observation \(o \), at time \(t \). \(r_t(s, a, s') \) is the average of immediate rewards received along the experience (Jodogne, 2007).

Algorithm computing optimal function

Thereafter, we present the algorithm that allows computing the environment model \((P, R)\) and the values of optimal function \(Q^*\).

Notation

- \(C(s, a, s') \): the number of transitions from state \(s \) to state \(s' \) while acting action \(a \);
- \(C(s, a) \): the number of time the agent act action \(a \) at state \(s \);
- \(r(s, a, s') \): the sum of rewards received by agent after acting action \(a \) at state \(s \) in order to transit to next state \(s' \).
- \(q \) is an infinitely small, and \(\gamma \) is a parameter comprise between 0 et 1.
- \(\theta = 0.0000000001 \).
- \(\gamma = 0.9 \).

Algorithm

1. Collect \(M \) interactions \((s_t, a_t, r_{t+1}, s_{t+1})\);
2. Compute \(C(s, a, s') \);
3. Compute \(C(s, a) \);
4. Compute \(r(s, a, s') \);
5. \(P(s, a, s') = C(s, a, s') / C(s, a) \);
6. \(R(s, a, s') = r(s, a, s') / C(s, a, s') \);
7. Initialise \(Q^*(s, a) \) to 0, \(\forall (s, a) \in S \times A \);
8. Repeat
9. \(\Delta = 0 \)
10. For \(s = 1 \) to \(|S| \) do
11. For \(a = 1 \) to \(|A| \) do
12. \(Q^* = Q^*(s, a); \)
13. \(Q^*(s, a) = \sum_{s'} P(s, a, s'). \left[R(s, a, s') + \gamma \cdot \max_{a'} Q^*(s', a') \right]; \)
14. \(\Delta = \max (\Delta, \text{abs}(Q^* - Q^*(s, a))) \);
15. Next \(a \)
16. Next \(s \)
17. Until \((\Delta < \theta) \)

VALIDATION OF SOLUTION

METHODOLOGY

We developed pedagogical software in order to verify the feasibility of our theory. The database of the pedagogical software is developed and produced by a set of teachers. It is endowed with a pedagogical agent that manages the pedagogical process between the learners and the teaching environment. In order to measure the agent learning evolution, we used three assessment criteria.

- The first is the situations success probability in order to measure its evolution from a situation to another. From the learning system database, we calculate the success frequencies for every situation in order to calculate the probabilities distribution. This distribution allows us to see, on the one hand, the tendency of its curve, on the
probability. We practice this approach for two phases (exploration and exploitation) in the goal to compare their results.

- The second criterion is the study time to invest during the pedagogic sequence learning in order to measure the reduction rate of study time. Practically, we calculate the study time for every learning course and we compare the results of two phases and we deduct the reduction rate of study time.

- The third criterion is the relative gain that permits to measure the impact of pedagogical software on the learners (Bennane et al., 2003).

The goal is to learn an optimal sequence of actions that will displace the system from an arbitrary state to a goal state. The quality measure of actions choice of the pedagogic agent is the objective approach in the goal to generate an adaptive pedagogic sequence dynamically. The goal is based solely on natural interactions between the tutoring system and the learners sample size depends on reinforcement learning method used to calculate optimal policy. One underlines that with few environment interactions, one can deduce the optimal function where one uses model-based method.

At the exploitation phase, the pedagogic software is equipped explicitly by an optimal function that is deduced at the end of exploration phase, and implicitly by an optimal pedagogical strategy.

We note that during this exploitation phase, we assessed the level of students before and after learning the pedagogical software to determine the relative gain (Table 1). The aim is to verify the learning impact of the pedagogical software on learners. Between the two phases, we recorded 29.3% as reduction of study time and 72% as reduction of standard deviation.

For success probabilities distribution criteria, we recorded a very clean improvement of 53.5% between the two phases, knowing that the average of the probabilities passed from 0.538 (in the exploration) to 0.826 (in the exploitation).

In the exploitation, the curve tendency is generally upwards knowing that the success probability passed from 0.508 (1st situation) to 0.882 (last situation). This variation represents a rise (increase) of 73.6% (Table 2).

For the third criteria, the global average of the relative gain is 67%. We underline that the difference between the averages of the PRT (pretest) and the PST (post-test) is 8.06. This difference reflects a global improvement of student’s level of 102%. These are good results that give a clear idea on very positive level of the pedagogic software impact on the set of its users.

Conclusion

The recorded statistics represent good results. It is due to the intervention of the pedagogic agent while choosing the actions adapted to student level. The results of our experiences showed that the automation of the pedagogic management tasks of the tutoring system is feasible and insured. The automation permits to minimize the effort and to win the time and to surmount the multiple problems of the tutoring systems adaptability. Our approach would exceed the approaches based on manual logic for writing rules of the teaching module. Then, the teaching module is generated dynamically based solely on the interaction of students with teaching environment.

The efforts invested in this project were in two directions, on the one hand, the conception of a knowledge base that holds in account the meaningful properties of pedagogic act, on the other hand, to look for and to try among the learning techniques based on the numeric calculations, those that are appropriated more to the study domain as the reinforcement learning techniques, etc. Authors underline that, we used an objective approach in the goal to generate an adaptive pedagogic sequence dynamically. The goal is based solely on natural interactions between the tutoring system and its potential users.

REFERENCES