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Proteases, though essentially indispensable to the maintenance and survival of their host organisms, 
can be potentially damaging when overexpressed or present in higher concentrations, and their 
activities need to be correctly regulated. An important means of regulation involves modulation of their 
activities through interaction with substances, mostly proteins, called protease inhibitors. Some insects 
and many of the phytopathogenic microorganisms secrete extracellular enzymes and, in particular, 
enzymes causing proteolytic digestion of proteins, which play important roles in pathogenesis. Plants, 
however, have also developed mechanisms to fight these pathogenic organisms. One important line of 
defense that plants have to fight these pathogens is through various inhibitors that act against these 
proteolytic enzymes. These inhibitors are thus active in endogenous as well as exogenous defense 
systems. Protease inhibitors active against different mechanistic classes of proteases have been 
classified into different families on the basis of significant sequence similarities and structural 
relationships. Specific protease inhibitors are currently being overexpressed in certain transgenic 
plants to protect them against invaders. The current knowledge about plant protease inhibitors, their 
structure and their role in plant defense is briefly reviewed. 
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INTRODUCTION 
 
Proteolytic enzymes, also called proteases, are the enzy- 
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Abreviations: BBI, Bowman-Birk inhibitor; BTI, Barley trypsin 
inhibitor; CPI, Cysteine protease inhibitor; CpTi, Cowpea trypsin 
inhibitor; Cmps, Cucurbita maxima phloem serpin; MSI, Mustard 
trypsin inhibitor; PI, Protease inhibitor; PPI, Plant PI; PI1, Potato 
type1PI; PI2, Potato type2 PI; PVy, Potato virus Y; SFTI, 
Sunflower trypsin inhibitor; TEV, Tobaco etch virus. 

mes that catalyse the hydrolytic cleavage of specific 
peptide bonds in their target proteins. These enzymes 
are widely distributed in nearly all plants, animals and 
microorganisms (Joanitti et al., 2006; Neurath, 1989; 
Valueva and Mosolov, 2004; Christeller, 2005; Haq et al., 
2004; Supuran et al., 2002; Mosolov and Valueva, 2005; 
Mosolov et al., 2001; Lawrence and Koundal, 2002; 
Ryan, 1990). In higher organisms, nearly 2% of the 
genes code for these enzymes (Barrett et al., 2001). 
Being essentially indispensable to the maintenance and  
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Figure 1A. A diagrammatic model for control of enzyme activity at the level of synthesis. 
Enzymes may be synthesized as inactive preproteins and are processed to be activated. 
E represents enzyme, S represents  substrate and P represents the products. 

 
 
      

 
 
Figure 1B. Model showing enzymes activity regulation by virtue of substrate specificity. E,S 
and P have the same meaning as in Figure 1A. 

 
 
 
survival of their host organism, proteases play key roles 
in many biological processes. The proteolytic events 
catalysed by these enzymes serve as mediators of signal  
initiation, transmission and termination in many of the 
cellular events such as inflammation, apoptosis, blood 
clotting and hormone processing pathways (Ivanov et al., 
2006). Despite the fact that these enzymes are indispen-
sable to the cells and organisms that host them, they may 
be potentially damaging when overexpressed or present 
in higher concentrations. For this reason the activities of 
these enzymes need to be strictly regulated and 
controlled (Rawlings et al. 2004a). The synthesis of these 
enzymes as inactive pre-proteins (Figure 1A), and their 
substrate specificity (Figure 1B) keeps a control on their 
activities, but it does not fulfill the desired level of 
regulation, and the fact remains, that cells and organisms 
require additional means of control. One important control 
mechanism involves interaction of the active enzymes 
with proteins that inhibit their activities (Figure 2). These 
inhibitors form less active or fully inactive complexes with 

their cognate enzymes, and are called protease inhibitors 
(PIs). Trypsin can be considered as a prototype of the 
class of enzymes synthesized as inactive precursors. 
Synthesised as trypsinogen, it requires proteolytic pro-
cessing to be activated. Once activated trysin acts 
specifically only on peptide bonds whose carboxyl func-
tions are contributed by lysine or arginine residues. 
Further check on the activity of trypsin is due to its 
interaction with antitrypsin, the protein inhibitor of the 
activated form (Laskowski and Qasim, 1999).    

PIs are of very common occurrence. They have been 
isolated and characterized from a large number of 
organisms, including plants, animals and microorganisms 
(Valueva and Mosolov, 2004; Christeller, 2005; Haq et 
al., 2004; Supuran et al., 2002; Mosolov and Valueva, 
2005; Mosolov et al., 2001). Naturally occurring PIs are 
essential for regulating the activity of their corresponding 
proteases and play key regulatory roles in many biolo-
gical processes. For a few PIs, functions other than 
blocking protease action have also been  found,  such  as  
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Figure 2. Diagrammatic representation of the different modes 
of protease inhibition (A) Direct blockage of the active center 
canonical inhibition of trysin like proteases (B) Indirect 
blockage of the active center (C) Adjacent or and exocite 
binding (D) Allosteric interaction. 

 
 
 
growth factor activities, receptor clearance signaling or 
involvement in carcinogenesis (Qi et al., 2005). A number 
of inherited diseases such as emphysema, and epilepsy 
result from abnormalities in PIs (Lomas et al., 2002; 
Ritchie, 2003; Lehesjoki, 2003; Bitoun et al., 2002) 

PIs are of common occurrence in the plant kingdom. 
Plant PIs (PPIs) are generally small proteins that have 
mainly been described as occurring in storage tissues, 
such as tubers and seeds, but they have also been found 
in the aerial parts of plants (De Leo et al., 2002). They 
are also induced in plants in response to injury or attack 
by insects or pathogens (Ryan, 1990). In plants, these 
PIs act as anti-metabolic proteins, which interfere with the 
digestive process of insects. One of the important 
defense strategies that are found in plants to combat 
predators involves PIs which are in particular effective 
against phytophagous insects and microorganisms. The 
defensive capabilities of PPIs rely on inhibition of 
proteases present in insect guts or secreted by micro-
organisms, causing a reduction in the availability of 
amino acids necessary for their growth and development 
(Lawrence and Koundal, 2002) 

With this background and the attached medical and 
therapeutic significance of PIs, the current review is an 
attempt to give a comprehensive presentation of the diffe-
rent families of PPIs. The structure of each class of PIs is 
briefly given with a description of their role in plant 
defence. The progress in the development of transgenic 
plants carrying PI genes I also reviewed briefly. Having 
enormous potential to intervene in a large number of 
human disorders, the scope for exploration of the natural 
PIs remains wide open.  

 
 
 
 
Families of PIs 
 
PIs have been grouped into families and subfamilies and 
into different clans on the basis of sequence relationship 
and the relationship of protein folds of the inhibitory 
domains or units. An inhibitor domain is defined as the 
segment of the amino acid sequence containing a single 
reactive site after removal of any parts that are not 
directly involved in the inhibitor activity. On the basis of 
sequence homologies of their inhibitor domains, PIs have 
been classified into 48 families (Rawlings et al., 2004b). 
Proteins containing a single inhibitor unit are termed 
simple inhibitors, and those that contain multiple inhibitor 
units are termed complex inhibitors. A total of 11 families 
belong to the latter category and contain between 2 and 
15 inhibitory domains. Most of these are homotypic, 
containing inhibitor units from a single family, some are 
however heterotypic, and contain inhibitor units from 
different families (Richardson et al., 2001; Trexler et al., 
2001, 2002). On the basis of tertiary structure, 31 of the 
48 families have been assigned to 26 clans, indicating 
that a large proportion of families show no relationships in 
their three dimensional structures.  

Peptidases have been classified on the basis of 
structural and evolutionary relationships into different 
families and clans (Rawlings and Barrett, 1993). These 
families have been divided into five groups based on 
chemistry of the catalytic site of enzymes (Barrett, 1986, 
1994; Grudkowska and Zagdanska, 2004). The families 
of PIs could not, however, be grouped on the basis of the 
catalytic type of enzymes inhibited, since a number of 
families contain cross-class inhibitors (Rawlings et al., 
2004b). The proteins in family 13 Kunitz-type PPIs 
generally inhibit serine peptidases, but they also include 
inhibitors of cysteine and aspartate proteases (Heibges et 
al., 2003). Family 14, the serpin family, mostly contain 
inhibitors of serine proteases, but it also contains inhibi-
tors of some cysteine proteases. In the past, however, 
PIs have been classified into serine, cysteine, aspartate 
and metallocarboxy PIs. (De Leo et al., 2002; Laskowski 
et al., 2003; Koiwa et al., 1997). PIs that are active 
against all the mechanistic classes of proteases have 
been described in plants. A database for PPIs, co-
ordinated by Luigi R Ceci at Centro di studio sui 
Mitocondri and Metabolismo Energetico-C.N.K, (via 
Amendola 165/A, Bari, Italy), contains information about 
495 inhibitors with several isoinhibitors identified in 129 
different plants (De Leo et al., 2002). The database 
describes nine families of PPIs based on sequence 
similarities. The families along with some representative 
examples are given in Table 1.  

All these families except those of the cysteine-PI family 
and the metallocarboxypeptidase inhibitor family contain 
PIs of serine proteases. These may, however, also con-
tain inhibitors active against other mechanistic classes of 
proteases. For example the plant Kunitz family (family 13) 
contains inhibitors of serine proteases (family S1), but 
also includes inhibitors  of  cysteine  proteases  (C1)  and  
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Table 1. Families of plant  protease  inhibitors with some type examples. 
 
Common name MEROPS 

Family/subfamily 
Type example Source Target Protease Referencces 

soybean Kunitz  trypsin 
inhibitor  

 Glycine max Trypsin, Chymotrypsin Laskowski and Kato  
 (1980) 

barley subtilisin inhibitor Hordeum vulgare Subtilisin,Alpha-amylase Vallee et al. (1998) 
winged-bean chymotrypsin 
inhibitor 

Psophocarpus 
tetragonolobus 

Alpha-chymotrypsin Habu et al. (1992) 

Kunitz (plant) 13A 

Kunitz cysteine peptidase 
inhibitor 1 

Solanum tuberosum Cysteine proteases Gruden et al. (1997) 

proteinase inhibitor A 
inhibitor unit 

 Sagittaria sagittifolia Trypsin, Chymotrypsin, 
Kallikerin 

 Laskowski and Kato  
(1980) 

Kunitz subtilisin inhibitor Canavalia lineata Subtilisin-type microbial 
serine proteases 

Terada et al. (1994) 

cathepsin D inhibitor Solanum tuberosum Cathepsin D, Trypsin Strukelj et al. (1992) 

Kunitz (plant) I3B 

trypsin inhibitor Acacia confusa Trypsin and alpha-
chymotrypsin 

Lin et al. (1991) 

ragi seed trypsin/�-
amylase inhibitor  

Eleusine coracana Alpha amylase Hojima  et al. (1980) 

barley trypsin/factor XIIa 
inhibitor 

Hordeum vulgare Alpha-amylase, Trypsin  Lazaro et al. (1988) 

wheat trypsin/alpha-
amylase inhibitor 

Triticum aestivum Alpha-amylase, Trypsin Shewry et al. (1984) 

cereal I6 

maize trypsin/factor XIIa 
inhibitor 

Zea mays Mammalian trypsin, 
activated hageman 
factor  

Mahoney et al. (1984) 

trypsin inhibitor MCTI-1 Momordica charantia  Pancreatic elastase Wiezorek et al. (1985) 
trypsin inhibitor MCTI-II Momordica charantia Trypsin Huang et al. (1992) 
macrocyclic squash trypsin 
inhibitor 

Momordica 
cochinchinensis 

Trypsin Hernandez et al. (2000) 

squash  I7 

trypsin inhibitor CSTI-IV Cucumis sativus Trypsin Wieczorek et al. (1985) 
chymotrypsin inhibitor I  Solanum tuberosum Chymotrypsin, Trypsin Richardson (1974) 
glutamyl peptidase II 
inhibitor 

Momordica charantia Glu S.griseus protease , 
Subtilisin 

Ogata et al. (1991) 

subtilisin-chymotrypsin 
inhibitor CI-1A Hordeum vulgare Subtilisin , Chymotrypsin Greagg et al. (1994) 

Potato type I I13 

wheat 
subtilisin/chymotrypsin 
inhibitor 

Triticum aestivum B.lichenoformis 
subtilisin, Alpha-
chymotrypsin 

Poerio et al. (2003) 
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mustard trypsin inhibitor   Sinapis alba Beta-trypsin  Menegatti et al. (1992)   
mustard trypsin inhibitor-2 Brassica hirta Bovine beta-trypsin, 

Alpha-chymotrypsin 
Ceci et al. (1995) 

mustard I18 

rape trypsin inhibitor Brassica napus Trypsin, Chymotrypsin. Ceciliani et al. (1994) 
onchocystatin Onchocerca volvulus Cysteine proteinase Lustigman et al. (1992) 
ovocystatin Gallus gallus Thiol proteases Laber et al. (1989) 

cystatin  I25B 

oryzacystatin II Oryza sativa Cysteine proteinases Ohtsubo et al. (2005) 
metalloprotease inhibitor   Bothrops jararaca Atrolysin C, Jararhagin. Cornwall et al. (2003) Kininogen I25C 
sarcocystatin Sarcophaga peregrina Cysteine proteinase Saito et al. (1989) 
Bowman–Birk plant trypsin 
inhibitor unit 1 

 Glycine max Trypsin, Chymotrypsin Odani and Ikenaka 
(1976) 

Bowman-Birk 
trypsin/chymotrypsin 
inhibitor 

Arachis hypogaea Trypsin, Chymotrypsin Suzuki et al. (1987) 

Bowman-Birk I12 

sunflower cyclic trypsin 
inhibitor 
 

Helianthus annuus Trypsin, Cathepsin G, 
Elastase, Chymotrypsin 
and thrombin 

Mulvenna et al. (2005) 

proteinase inhibitor II   Solanum tuberosum Trypsin, Chymotrypsin. Greenblatt et al. (1989) 
potato peptidase inhibitor 
II inhibitor unit 1 

Solanum tuberosum Trypsin, Chymotrypsin. Keil et al. (1986) 

tomato peptidase inhibitor 
II inhibitor unit 1 

Solanum 
lycopersicum 

Trypsin, Chymotrypsin Graham et al. (1985) 

Potato type II I20 

tomato peptidase inhibitor 
II inhibitor unit 2 

Solanum 
lycopersicum 

Trypsin, Chymotrypsin Barrette-Ng  et al. 
(2003) 

 
 
 



 
 
 
 
the aspartic protease cathepsin D. Similarly, the serpin 
family of PIs active against serine proteases also con-
tains inhibitors of cysteine proteases (Heibges et al., 
2003; Laskowski et al., 2003). Serine PIs belonging to 
arious families have been reported either in storage org-
ans or in the vegetative cells of a wide variety of plants 
(Garcia et al., 1987). The inhibitors from at least four 
families belonging to serine PIs are induced sequentially 
in various plants. These families include potato (Solanum 
tuberosum) and tomato (Lycopersicon esculentum) inhibi-
tors I and II in solanaceous plants (Melville and Ryan, 
1972; Bryant et al., 1976; Plunkett et al., 1982; Valueva 
et al., 2001; Farran et al., 2002), Bowman-Birk inhibitors 
in alfa alfa (Brown and Ryan, 1984) and a Kunitz inhibitor 
in poplar trees (Bradshaw et al., 1989; Ledoigt et al., 
2006).  
 
 
Serpin (Serine PI) family 
 
The serpin family is the largest and the most widespread 
superfamily of PIs. Serpin-like genes have been identified 
in nearly all types of organisms, including viruses, 
bacteria, plants and animals (Irving et al., 2000; Rawlings 
et al., 2004b; Christeller and Liang, 2005; Law et al., 
2006; Gettins, 2002). Whereas prokaryotes generally 
have a single serpin gene (Irving et al., 2002a), large 
multicellular eukaryotic organisms, on the other hand, 
have several to many genes. Analysis of the thale cress 
(Arabidopsis thaliana) genome shows 29 serpin genes 
(Silverman at al., 2001). 

Plant serpins have been purified and characterized 
from cereal seeds (Laskowski and Kato, 1980; Yoo et al., 
2000; Tsybina et al., 2004), pollens and from the phloem 
exudates of Cucurbita maxima (Wieczorek et al., 1985). 
Plant serpins have been shown to inhibit model trypsin 
like proteins (Roberts et al., 2003), but there are no 
obvious targets for these inhibitors in plants, which may, 
apparently be involved in inhibiting proteases of plant 
pathogens (Hejgaard, 2005). Wieczorek and his cowork-
ers have shown an inverse correlation between the up-
regulation of squash phloem serpin-1 (cmps) and aphid 
survival. On the other hand Yoo and his coworkers have 
reported that feeding of purified serpin to aphids had no 
impact on insect survival. These data suggest a more 
complex role for plant serpins in defense (Wieczorek et 
al., 1985; Yoo et al., 2000). 

The serpin 1 of Arabidopsis has been shown to act on 
metacaspase-like proteins in vivo and play a role in the 
plant immune response (Vercammen et al., 2006). It has 
been suggested that rather than directly interacting with 
pathogens, plant serpins may have a role in the complex 
pathways involved in up-regulating the host immune 
response (Law et al., 2006). 

Plant serpins have molecular mass of 39 - 43 kDa, with 
amino acid and nucleotide homology with other well-
characterized  serpins. The majority of serpins inhibit ser- 
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ine proteases, but serpins that inhibit caspases (Ray et 
al., 1992) and papain like cysteine proteases (Schick et 
al., 1998; Irving et al., 2002b, c) have also been reported. 
Plant serpins exhibit differing and mixed specificities 
towards proteases (Al-Khunaizi et al., 2002). Barley 
(Hordeum vulgae) serpin is a potent inhibitor of trypsin 
and chymotrypsin at overlapping reactive sites (Dahl et 
al., 1996a). This inhibitor also inhibits thrombin, plasma 
kallikrein, Factor VIIa and Factor Xa (Dahl et al., 1996b). 
Wheat (Triticum aestivum) serpins inhibit chymotrypsin 
and cathepsin G and have glutamic acid, lysine or 
arginine at P1 site (Roberts et al., 2003). Two oat (Avena 
sativa) serpins show specificity for chymotrypsin and / or 
elastase, and another one has specificity for trypsin and 
chymotrypsin at overlapping loop sites (Irving et al., 
2002b, c). Squash serpin Cmps-1 also inhibits elastase at 
two overlapping sites (Ligoxygakis et al., 2003). 

Serpins are irreversible ‘suicide’ inhibitors. The cleav-
age of an appropriate peptide bond in the reactive centre 
loop of the inhibitor triggers a rapid conformational 
change so that catalysis does not proceed beyond the 
formation of an acyl-enzyme complex (Huntington et al., 
2000).  
 
 
Bowman Birk inhibitors (BBIs) family 
 
On the basis of sequence homology, this forms another 
family of serine PIs. The family is named after D.E. 
Bowman and Y. Birk, who were the first to identify and 
characterise a member of this family from soybean 
(Glycine max) (Bowman 1946; Birk et al., 1963). The 
soybean inhibitor is now the most-well-studied member of 
this family and is often referred as the classic BBI. The 
inhibitors have been found in legumes and cereals (Laing 
and McManus, 2002; Tanaka et al., 1997; Norioka and 
Ikenaka, 1983) and in the grass family Poaceae (Odani et 
al. 1986). The inhibitors of this family are generally found 
in seeds, but are also wound-inducible in leaves 
(Eckelkamp, 1993). A small cyclic inhibitor has been 
identified in sunflower (Helianthus annuus) called sun-
flower trypsin inhibitor 1 (SFTI-1) (Korsinezky, 2001; 
Luckett et al., 1999). 

BBIs have been classified on the basis of their struc-
tural features and inhibitor characteristics. The inhibitors 
from dicotyledonous plants consist of a single polypeptide 
chain with the molecular mass of 8 kDa. These are 
double-headed, with two homologous domains each bea-
ring a separate reactive site for the cognate proteases. 
These inhibitors interact independently, but simultan-
eously, with two proteases, which may be same or 
different (Raj et al., 2002; Birk, 1985). The first reactive 
site in these inhibitors is usually specific for trypsin, 
chymotrypsin and elastase (Qi et al., 2005). The active-
site configuration in these inhibitors is stabilized by the 
presence of seven conserved disulfide bonds (Chen et 
al., 1992; Lin et al., 1993). 
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BBIs from monocotyledonous plants are of two types. 
One group consists of a single polypeptide chain with a 
molecular mass of about 8 kDa.  They have a single re-
active site. Another group has a molecular mass of 16 
kDa with two reactive sites (Tashiro et al., 1987, 1990; 
Prakash et al., 1996). It has been suggested that larger 
inhibitors have arisen from smaller ones by gene dupli-
cation (Odani et al., 1986). 

In the case of double-headed BBIs, it has been found 
that the relative affinity of binding of proteases is altered 
when one site is already occupied. Peanut (Arachis 
hypogoea) inhibitor has been found to exhibit no activity 
against chymotrypsin when preoccupied with trypsin and 
vice versa (Tur et al., 1972). In the same way, the activity 
of soybean BBIs decreases 100-fold when trypsin is 
bound at the other site (Gladysheva et al., 1999). 

The BBI family of protease inhibitors contains a unique 
disulfide-linked nine-residue loop that adopts a character-
ristic canonical conformation (Bode and Hubr, 1992). The 
loop is called protease-binding loop and binds the 
protease in a substrate-like manner (Lee and Lin, 1995). 

SFTI-1 is a very strong naturally occurring BBI. It 
consists of a cyclic 14-amino-acid residue-long peptide 
structure and contains a disulfide-linked loop of nine-
amino-acid residues that shares the sequence homology 
with the first residue loop of BBIs (Korsinezky et al., 
2001; Luckett et al., 1999). Analysis of the three-dimen-
sional structure of SFTI-1 in solution, and that of its 
crystal structure in complex with trypsin, has shown the 
structures are quite similar (Korsinezky et al., 2001). This 
has lead to the suggestion that the structure of SFTI-1 is 
rigid and pre-organized for potent binding, making it a 
stronger and potent inhibitor than other naturally 
occurring BBIs.  

BBIs are cysteine-rich proteins with inhibitory activity 
against proteases that are widely distributed in monocot 
and dicot species (Lin et al., 2006). They have been 
shown to act as anticarcinogenic compounds. The 
soybean derived BBI with a well-characterized ability to 
inhibit trypsin and chymotrypsin is particularly effective in 
suppressing carcinogenesis in a variety of in vivo and in 
vitro systems (Kennedy 1998). BBI has been shown to 
reduce the proliferation of MCF7 breast cancer cells 
through accumulation of MAP kinase phosphatase-1 
(Wen et al., 2005).  
 
 
Kunitz family 
 
On the basis of sequence homologies, Kunitz-type 
inhibitors form a separate family. The members of this 
family are mostly active against serine proteases, but 
may also inhibit other proteases (Laing and McManus, 
2002; Ritonja et al., 1990). The inhibitors in this family are 
widespread in plants and have been described in 
legumes, cereals and in solanaceous species (Ishikawa 
et al., 1994; Laskowski and Kato, 1980). A 20.5 kDa 
Kunitz-type trypsin  inhibitor  with  antifungal  activity  has 

 
 
 
 
been reported from the roots of punce ginseng 
(Pseudostellaria heterophylla)  (Wang and Ng 2006).  

Kunitz-type PIs are also produced under stress, as has 
been found in potato tubers (S. tuberosum) (Park et al., 
2005; Ledoigt et al., 2006; Plunkett et al., 1982). The 
inhibitors usually have molecular mass of 18 - 22 kDa; 
have two disulfide bridges and one reactive site. 

The members of this family are mostly active against 
serine proteases and have been shown to inhibit trypsin, 
chymotrypsin and subtilisin (Laing and McManus, 2002; 
Park et al., 2005), but they also inhibit other proteases, 
including the aspartic protease cathepsin D and the 
cysteine proteinase papain. These inhibitors are cano-
nical and form a tight complex with the target protease, 
which dissociates very slowly (Ritonja et al., 1990).  
 
 
Squash inhibitors 
 
Squash-family inhibitors have been described only in 
plants and form yet another family active against serine 
proteases. The members of this family have been 
described from many cucurbit families (Lee and Lin, 
1995; Hamato et al., 1995; Felizmenio et al., 2001). 
Seven serine PIs belonging to this family have been iso-
lated and characterized from the seeds of wild cucumber 
(Cyclanthera pedata) (Kuroda et al., 2001). Recently two 
different but inter-convertible (cis-trans isomers) inhibitors 
have been isolated and characterized from seeds of wax 
gourd [Benincasa hispida (Thumb) cogn] (Atiwetin et al., 
2006). The members of this family consist of a small 
single peptide chain containing between 28 and 30 amino 
acids with molecular mass of 3.0 - 3.5 kDa (Heitz et al., 
2001; Le Nguyen et al., 1990). These inhibitors have 
three disulfide bridges and fold in a novel knottin struc-
ture (Hara et al., 1989). The small size of these inhibitors, 
combined with potential activity against important 
biological molecules such as Hageman factor, human 
leucocyte elastase and cathepsin G (Hojima et al., 1982; 
McWherter et al., 1989), has made them particularly 
attractive for studying proteinase and inhibitor interac-
tions. Chemical synthesis of these inhibitors has created 
powerful tools for investigating their structure and func-
tion relationships (Kupryszewski et al., 1985, 1986; Rolka 
et al., 1992). The structures of squash inhibitors, and 
inhibitor and proteinase complexes have been deter-
mined by X-ray crystallography and NMR spectroscopy 
(Holak et al., 1989 a, b; Nilges et al., 1991; Thaimattam 
et al., 2002). These inhibitors have been shown to follow 
the standard mechanism for inhibition.  
 
 
Cereal trypsin/�-amylase inhibitors  
  
The members of this family have serine proteinase inhi-
bitory activity and/or �-amylase- inhibitory activity 
(Gourinath et al., 2000). A large number of inhibitors in 
this family have  only  �-amylase-inhibitory  activity;  how- 



 
 
 
 
ever inhibitors from barley (Hordeum vulgare), rye 
(Secale cereale) and tall fescue (Festuca arundinacea) 
are active against trypsin (Odani et al., 1983). Maize (Zea 
mays) and ragi (Elusine coracana) inhibitors show dual 
activities and can inhibit serine proteinases as well as �-
amylase (Mahoney et al., 1984; Shivraj and Pattabira-
man, 1981). The cereal trypsin/�-amylase inhibitors 
consist of a single polypeptide chain containing five 
disulfide bonds with a molecular mass of about 13 kDa 
(Christeller and Liang, 2005). The structure of the ragi 
inhibitor solved by NMR spectroscopy and that of its 
complex with yellow-mealworm (Tenebrio molitor) �-
amylase by x-ray crystallography has shown that the 
proteinase-binding loop adopts a canonical conformation 
(Strobl et al., 1998).  
 
 
Mustard (Sinapis) trypsin inhibitor (MSI) 
 
These are small single polypeptide chain inhibitors with 
the molecular mass of about 7 kDa, found in the family 
Cruciferae and form yet another family of serine PIs 
(Laing and McManus, 2002; Menengatti et al., 1992). 
These inhibitors have been isolated and characterized 
from a number of species including white mustard 
(Sinapis alba) and tape (Brassica napus) (Ascenzi et al., 
1999; Volpicella et al., 2000). These inhibitors are 
expressed in seeds during their development and are 
also wound-inducible (Ceci et al., 1995; De Leo et al., 
2001). The inhibitors form a tight binding complex with 
trypsin and apparently follow the standard mechanism 
(Ceciliani et al., 1994).  
 
 
Potato type I PIs (PI 1) 
 
The inhibitors of this family are widespread in plants and 
have been described in many species, including potato 
tubers (Ryan and Balls, 1962), tomato fruit (Margossian 
et al., 1988, Wingate et al., 1989), squash phloem 
exudates (Murray and Christeller, 1995) and in tomato 
leaves in response to wounding (Lee et al., 1986). These 
inhibitors have the molecular mass of 8 kDa and are 
generally monomeric. While the inhibitors from cucurbit 
and potato tubers contain a single disulphide bond, the 
inhibitors in this family in general lack any disulphide 
bridges (Cai et al., 1995). The inhibitory mechanism in 
this family is considered to fit the standard model.  
 
 
Potato type II PIs (PI 2) 
 
The members of this group have been reportedonly from 
the members of Solanaceae family. Initially characterized 
from potato tubers (Christeller and Liang, 2005), these 
inhibitors have been found in leaves, flowers, fruit and 
phloem of  other  solanaceaous  species  (Iwasaki  et  al., 
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1971; Pearce et al., 1993). A low molecular-mass 
inhibitor of this family has been found to be constitutively 
present in Jasmme tobacco (Nicotiana alata) flowers 
(Atkinson et al., 1993). Six small wound-inducible 
proteinase inhibitors of this family have been reported 
from tobacco leaves (Pearce et al., 1993). An analysis of 
these inhibitors and genes has shown that they are 
composed of multiple repeat units varying between one 
and eight (Antcheva et al., 2001; Miller et al., 2000; Choi 
et al., 2000). Inhibitors in this family have been reported 
to inhibit chymotrypsin, trypsin, elastase, oryzin, Pronase 
E and subtilisin (Antcheva et al., 1996).  
 
 
Cysteine PIs (CYS), the cystatin superfamily 
 
The cystatin superfamily is composed of several families 
and includes proteins that are related in structure and 
function to an inhibitor of cysteine proteinase, first 
described in egg white and referred to as ‘chicken egg-
white cystatin’ (Colella et al., 1989). The members of 
these families inhibit the activity of cysteine proteases 
and are called cysteine PIs or cystatins. They are widely 
distributed in plants, animals and microorganisms 
(Oliveira et al., 2003). These inhibitors are grouped into 
four families based on sequence relationships, molecular 
mass and disulfide-bond numbers and arrangements 
(Turk and Bode, 1991; Barrett, 1987). 
 
 
Family-1 cystatins (stefin family)  
 
The members of this group have a molecular mass of 
about 11 kDa. They are generally present in the cytosol 
and are devoid of any carbohydrate groups and disulfide 
bonds (Stato et al., 1990; Machleidt et al., 1983)  
 
 
Family-2 cystatins (cystatin family) 
 
These inhibitors consist of proteins having 120 – 126 
amino acids and the molecular mass of 13.4 - 14.4 kDa. 
These inhibitors contain two disulphide bonds but are 
devoid of any carbohydrate groups (Grzonka et al., 
2001). They also contain a signal sequence and are 
known to be secreted (Abrahanson et al., 1987). All the 
family-2 cystatin inhibitors contain a conserved tripeptide 
of sequence Phe-Ala-Val near the C-terminus and a 
conserved dipeptide, Phe-Tyr, near the N- terminus. 
These conserved sequences are important in binding to 
the target proteases (Machleidt et al., 1983; Turk et al., 
1997) 
 
 
Family-3 cystatins (kininogen family) 
 

These inhibitors are glycoproteins and are of three differ-
ent types. High Molecular Weight kininogens (HMW) with 
a molecular mass of 120 kDa and Low Molecular Weight 
kininogens (LMW) with molecular mass  ranging between 



076           Biotechnol. Mol. Biol. Rev. 
 
 
 
60 and 80 kDa are known. A third type T kininogens with 
molecular mass of 68 kDa has also been reported. These 
proteins contain tandem domains that result from gene 
duplication of the family–2 cystatins. These proteins are 
also secreted and play key roles in blood coagulation 
(Otto and Schirmeister, 1997; Salvesen et al., 1986).  

Family 1 and 3 cystatins contain a conserved penta-
peptide sequence Gln-Val-Val-Ala-Gly and the family-2 
members have the homologous peptide Gln-X-Val-Y-Gly, 
in which X and Y represent any amino acid.  
 
 
Family–4 cystatins (phytocystatins) 
 
This family includes nearly all the cysteine PIs described 
in plants. They have been identified in rice (Abe et al., 
1987 a, b), maize (Abe et al., 1992), soybean (Hines et 
al., 1991; Botella et al., 1996), apple (Malus) fruit (Ryan 
et al., 1998), carnation (Dianthus caryophyllus) leaves 
(Kim et al., 1999) and several other monocotyledonous 
and dicotyledonous plants (Brown and Dziegielewska, 
1997; Pernas et al., 1998; Sakuta et al., 2001). Celosta-
tin, a cysteine PI from crested cock’s comb (Celosia 
cristata) has recently been cloned and characterized 
(Gholizadeh et al., 2005). 

Phytocystatins have sequence similarity to stefins and 
cystatins, but do not contain free cysteine residues 
(Fernandes et al., 1993; Zhao et al., 1996). The unique 
feature of this superfamily, however, is a highly con-
served region of the G58 residue, the glu-val-val-ala-gly 
(QVVAG) motif and a pro-trp (PW) motif. The studies on 
the papain inhibitory activity of oryzacystatin and its 
various truncated forms have identified the conserved 
QVVAG motif as a primary region of interaction between 
the inhibitor and its cognate enzyme The PW motif is 
believed to act like a cofactor (Arai et al., 1991; Abe et 
al., 1988).  

Phytocystatins, on the basis of protein structure, can be 
divided into two groups. One group consists of single-
domain proteins and includes a majority of these 
inhibitors (Abe et al., 1987 a, b; Pernas et al., 1998). 
Another group contains multiple-domains and includes 
the cysteine PIs isolated from potato tubers and tomato 
leaves (Walsh TA and, Strictland JA 1993; Bolter, 1993). 

Plant cysteine PIs are encoded by gene families 
(Fernandes et al., 1993) and show different expression 
patterns during development and defense response to 
biotic and abiotic environmental stress (Felton and Korth, 
2000). Expression is usually limited to specific organs or 
to specific phases during development, such as 
germination (Botella et al., 1996), early leaf senescence 
(Huang et al., 2001) cold and salt stress (Van der- Vyver 
et al., 2003; Pernas et al., 2000).  
 
 
Aspartyl and metallocarboxypeptidase inhibitors 
 
Plants contain two families of metalloproteinase inhibi-
tors, the metallocarboxypeptidase inhibitor family in  pota- 

 
 
 
 
to and tomato plants (Graham and Ryan, 1997; Rancour 
and Ryan, 1968) and a cathepsin D inhibitor family in 
potatoes (Keilova and Tomasek, 1976).  

The inhibitors that bind to metallocarboxypeptidases 
have been identified in solanaceaous plants, in the 
medicinal leech (Hirudo medicinalis), in the intestinal 
parasite roundworm Ascaris suum, in the blood tick 
Rhipicephalus bursa and in rat and human tissues 
(Arolas et al., 2005; Homandberg et al., 1989; Reverter et 
al., 1998; Normant et al., 1995; Liu et al., 2000). The 
plant inhibitors have been described in tomato and 
potato. These inhibitors are small peptide inhibitors 
consisting of 38 - 39 amino acid residues and have the 
molecular mass of about 4.2 kDa (Hass et al., 1975; 
Hass and Hermodson, 1981). These inhibitors inhibit 
strongly, but competitively, a broad spectrum of carboxy-
peptidases from both animals and microorganisms, but 
do not inhibit serine carboxypeptidases from yeast and 
plants (Havkioja and Neuvonen, 1985). A metallocarbo-
xypeptidase inhibitor is found to accumulate in potato 
tuber tissues during development, along with the potato 
inhibitor I and II families of serine PIs. The inhibitor also 
accumulates in potato leaf tissues, along with the 
inhibitors of other families, as a response to wounding 
(Ryan, 1990). 

Aspartyl PIs have been described in sunflower, barley 
and cardoon (Cynara cardunculus) flowers and in potato 
tubers (Park et al., 2000; Kervinen et al., 1999; Lawrence 
and Koundal, 2002; Marres et al., 1989; Wolfson and 
Murdock, 1987). The cathepsin D inhibitor, an aspartyl PI 
described in potato tubers shares considerable amino 
acid sequence homology with soybean trypsin inhibitor. It 
is a 27 kDa protein and inhibits serine proteases trypsin 
and chymotrypsin in addition to the aspartyl protease 
cathepsin D, but does not inhibit pepsin, cathepsin E and 
rennin, which are all aspartyl proteases (Lawrence and 
Koundal, 2002). Pepstatin, a powerful and strong inhibitor 
of aspartyl proteases has been shown to inhibit proteo-
lysis of the midgut enzymes of Colorado potato beetle 
(Lptinotarsa decemlineata) (Wolfson and Murdock 1987).  
 
 
Plant protection 
 
Plant PIs are small proteins generally present in high 
concentration in storage tissues, contributing upto 10% of 
the total protein content, they are also detectable in 
leaves in response to the attack of insects and patho-
genic microorganisms (Ryan, 1990). PPIs have been 
shown to play a potent defensive role against predators 
and pathogens. Many PIs have been shown to act as 
defensive compounds against pests by direct assay or by 
expression in transgenic crop plants, and a body of 
evidence for their role in plant defense has continued to 
accumulate (Krattiger, 1997). 

The possible role of PIs in plant protection was initially 
noticed when it was observed that the larvae of certain 
insects were unable to develop normally on soybean pro- 



 
 
 
 
ducts. Subsequently the trypsin inhibitors present in 
soybean were shown to be toxic to the larvae of the flour 
beetle (Tribolium confusum) (Lawrence and Koundal, 
2002). Following these early studies, there have been 
many examples of PIs that are active against certain 
insect species. Studies involved both in vitro assays 
against insect gut proteases (Pannetier et al., 1997; 
Koiwa et al., 1998) and in vivo artificial diet bioassays 
(Urwin et al., 1997; Vain et al., 1998). PIs also exhibit a 
very broad spectrum of activity against pathogenic nema-
todes. Cowpea trypsin inhibitor (CpTi) inhibits the growth 
of nematodes, Globodera tabacum, Globodera pallida 
and Meloidogyne incognita (Williamson and Hussey, 
1996). The expression of rice BBI from Oryza sativa is 
upregulated and induced by pathogens or insects during 
germination of rice seeds (Lin et al., 2006). 

The buckwheat (Fagopyrum sculentum) 
trypsin/chymotrypsin inhibitor interferes with spore germi-
nation and mycelium growth of the tobacco brown-spot 
fungus Alternaria alternata (Dunaevskii et al., 1997). 
Cysteine PIs from pearl millet (Pennisetum glaucum) 
inhibit growth of many pathogenic fungi, including Tricho-
derma reesei (Joshi et al., 1998). These advantages 
make protease inhibitors an ideal choice to be used in 
developing transgenic crops resistant to insect pests. 

Expression of the PI genes is usually limited to specific 
organs or to particular phases during plant growth, such 
as germination (Botella et al., 1996), early leaf sene-
scence (Huang et al., 2001) and drought (Van der- Vyver 
et al., 2003; Pernas et al., 2000). Wounding or treatment 
with methyl jasmonate evokes a similar pattern of gene 
expression. Further, the cytosolic localization of the 
inhibitors also suggests that they are involved in plant 
defense against insects (Zhao et al., 1996).  

Kazal-type inhibitors play important roles in mainte-
nance of normal cellular processes in animals (Magert et 
al., 2002; Kreutzmann et al., 2004) and the pathogenesis 
of mammalian parasitic apicomplexan protozoa and plant 
pathogenic oomycete fungi (Pszenny et al., 2002; Tian et 
al., 2004). Typical Kazal domains contain six cysteine 
residues forming a 1-5, 2-4, 3-6-disulfide bond pattern 
(Lee and Lin, 1995). However, a novel class of Kazal 
domains in which the third and sixth cysteine residues 
are missing has been described. These typical Kazal 
domains are ubiquitous in serine PIs of plant pathogenic 
oomycetes. Two of the Kazal like inhibitors namely EP11 
and EP110 of the potato late-blight fungus Phytophora 
infestans target the defense-related protease P69B of the 
host plant tomato (Magert et al., 1999; Tian and Kamoun, 
2005). 

It has been found that potato tubers treated with elicit-
tors, jasmonic, salicylic or arachidonic acids are able to 
excrete potatin and three chymotrypsin inhibitors.  

Wounding and water stress prompts the secretion of 
two kinds of Kunitz-type PIs by potato tubers. These 
inhibitors are closely associated with other secreted poly-
peptides and would protect them against degradation by  
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extracellular chymotrypsin like protease. The secreted 
inhibitors could therefore interact with plant defense 
system (Valueva et al., 2001; Ledoigt et al., 2006). 

Oryzacystatin is found to prevent the growth of rice 
weevil (Sitophilus oryzae) by inhibiting the cysteine 
proteases in the gut of this organism (Hosoyama et al., 
1994).  

Two extracellular cysteine protease inhibitors (ECIP-1 
and ECIP-2) isolated from species of the unicellular 
green alga Chlorella seem to have a role in protecting the 
cells from attacks by viruses and insects (Ishihara et al., 
1999, 2000). 

Phytostatins are involved in the control of endogenous 
cysteine proteinases during maturation and germination 
of seeds (Abe and Arai, 1991) and play a role in the 
apoptosis required in plant development and senescence 
(Solomon et al., 1999). Oryzacystatins have been shown 
to inhibit the �,� and � cysteine proteinases that are 
produced during seed germination (Watanabe et al., 
1991) Zeins and maize proteinases are inhibited by 
maize cystatins, suggesting a role for these inhibitors in 
the endogenous defense mechanism (Steller, 1995; 
Hoorn and Jones, 2004). Phytostatins from various plants 
inhibit the activity of gut cysteine proteinases involed in 
protein digestion in the gut of various members of the 
Coleoptera (beetles) attacking these plants, and thus play 
a role in the exogenous defense system of these plants 
(Oliveira et al., 2003) 

The overexpression of cystatin in soybean cell suspen-
sions blocked programmed cell death (PCD) (Solomon et 
al., 1999). The overexpression of a cystatin that inhibits 
papain activity in Arabidopsis cell cultures blocked cell 
death in response to avirulent bacteria and nitric oxide. 
The overexpression of this inhibitor in tobacco plants 
blocked the hypersensitive response induced by avirulent 
bacteria (Hoorn and Jones, 2004; Belenghi et al., 2003). 

The use of cystatins has served as a specific approach 
to control insect predation and diseases in plants (Sakuta 
et al., 2001). Transgenic rice expressing maize cystatin 
has been shown to exhibit enhanced resistance against 
insect predation (Irie, 1996). The rice cystatins have been 
reported to confer resistance against polyviruses in 
transgenic tobacco and sweet-potato (Ipomoea batatas) 
plants (Campos et al., 1999). 
 
 
Transgenic plants  
 

Several transgenic plants expressing PIs have been 
produced in the last 15 years and tested for enhanced 
defensive capabilities, with particular efforts directed 
against insect pests (Valueva et al., 2001).  Since the 
economically important orders of insect pests namely 
Lepidoptera, Diptera and Coleoptera, use serine and 
cysteine proteinases in their digestive system to degrade 
proteins in the ingested food, efforts have generally been 
directed at genes encoding PIs active against these 
mechanistic classes of proteases for developing  transge- 
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nic plants. The PI genes have been particularly useful in 
developing transgenic plants resistant to insect pests, as 
they require the transfer of a single defensive gene, and 
can be expressed from the wound-inducible or constitu-
tive promoters of the host (Boulter, 1993).  

The first PI gene to be successfully transferred was that 
coding for CpTi and produced transgenic tobacco with 
significant resistance against tobacco hornworm 
(Manduca sexta) (Hilder et al., 1987). The efficiency of 
transgenic tobacco plants expressing CpTi was tested 
against armyworm (Spodoptera litura) in feeding trials 
under laboratory conditions. Reduction to the extent of 
50% was observed in the biomass of army worm larvae 
fed on transgenic leaves expressing 3 - 5 µg of CpTi/g of 
fresh leaves (Sane et al., 1997). 

Potato PI-II gene from potato was introduced into 
several japonica rice varieties to produce transgenic rice 
plants shown to be insect resistant in greenhouse trials. 
Wound-inducible PI-II promoter with the first intron of rice 
actin I gene was able to give high-level expression of PI-II 
gene in transgenic rice plants. These transgenic plants 
were resistant to pink stem borer (Sesamia inferens) 
(Duan et al., 1996). 

The transformation of plant genomes with PI-encoding 
cDNA clones appears attractive not only for the control of 
plant pests and pathogens, but also as a means to 
produce PIs useful in alternative systems, and the use of 
plants as factories for the production of heterologous 
proteins (Sardana et al., 1998). The plant derived PI 
genes have been used for developing insect-resistant 
transgenic crops. Several transgenic plants expressing 
PIs have been produced, and these plants are found to 
be more resistant against insect pests. Recently, pro-
tease inhibitors have also been used to engineer resis-
tance against viruses in transgenic plants (Ussuf et al., 
2001). Bean α-amylase inhibitor 1 in transgenic peas 
(Pisum sativum) provides complete protection from pea 
weevil (Bruchus pisorum) under field conditions (Roger et 
al., 2000). 

When both soybean BBI and Kunitz inhibitors were 
introduced and expressed in sugar-cane (Saccharum 
officinarum), the growth of neonate larvae of sugar-cane 
borer (Diatraea saccharalis) feeding the leaf tissues was 
significantly retarded as compared to larvae feeding on 
leaf tissues from untransformed plants (Falco and Silva, 
2003). 

Transgenic potato expressing two cystatin genes deve-
loped resistance to a nematode, coleopteran insects 
(Cowgill et al., 2002) and transgenic rape plants express-
ing rice cystatin 1 were resistant to aphid (Rahbe et al., 
2003). 

Pearl millet cysteine protease inhibitor (CPI) has been 
found to possess anti-fungal activity in addition to its anti-
feedent (protease inhibitory) activity (Joshi et al., 1998). 
The presence of anti-fungal and anti-feedent activity on a 
single protein opens up a new possibility of raising a tran-
sgenic plant resistant to pathogens, as well  as  pests,  by  

 
 
 
 
transfer of a single CPI gene. 

The transgenic wheat (Triticum aestivum) carrying 
barley trypsin inhibitor gene (BTI) showed a significant 
reduction of infection with Angoumois grain moth 
(Sitotroga cerealella). However, only early-instar larvae 
were inhibited in transgenic seeds, and expression of BTI 
protein in transgenic leaves did not have a significant 
protective effect against leaf-feeding insects (Altpeter et 
al., 1999). Expression of oryzacystatin, the rice cysteine-
proteinase inhibitor, into the tobacco plant induced 
significant resistance against two important polyviruses, 
tobacco etch virus (TEV) and potato virus Y (PVY). A 
good correlation existed between the level of oryzacy-
statin protein and resistance to TEV and PVY at all levels 
tested. These results suggest that plant cystatins can be 
used against different potyviruses and potentially also 
against other viruses whose replication involves cysteine 
proteinase activity (Campos et al., 1999). 
 
 
Resistance to inhibitors 
 
PIs are highly specific for a particular class of digestive 
enzymes. However, insects have shown enough flexibility 
to switch the proteinase composition of their guts to 
overcome the particular PI expressed in the transgenic 
plants (Jongsma et al., 1995). It has been observed that 
insects can adapt to the ingestion of PIs. Insects be-
longing to both the Lepidoptera and Coleoptera can 
overexpress existing gut proteinases or induce the 
production of new types that are insensitive to the 
introduced PIs to overcome the deleterious effect of PI 
ingestion. This might be a contributing factor to the 
decreased effectiveness of the PIs expressed in trans-
genic plants. In a recent study it was shown that high 
level expression of soybean-trypsin-inhibitor gene in 
transgenic tobacco plants failed to confer resistance 
against Helicoverpa armigera. It is known that gut diges-
tive enzymes are not the only targets affected by PI they 
can also affect water balance, molting and enzyme 
regulation of insects (Boulter, 1993). 

A number of phytophagous insects including Helico-
verpa zea a common pest of many solanaceous plants 
such as potato have adapted to the protease inhibitors of 
their host plants. Their survival and larval development is 
not affected by the presence of such molecules in their 
diet. They seem to have the ability to express specific 
proteases that are insensitive to the inhibitors, depending 
upon the specific inhibitor repertoire of the host plant 
(Jongsma et al., 1995).  It   has   been found that trypsin 
that is sensitive to the inhibitor differs only marginally in 
amino acid sequence and substrate specificity from the 
insensitive form. They do, however, differ in their 
response to the trypsin inhibitor. It has been shown in the 
case of the tomato fruitworm that a B-type carboxypep-
tidase developes resistance to the potato carboxypep-
tidase inhibitor as a result of rearrangement of two small  



 
 
 
 
regions that otherwise stabilizes the enzyme-inhibitor 
complex. This leads to a displacement of the active-site 
entrance, which impairs a proper interaction between the 
protease and its inhibitor (Bayes et al., 2005). 
 
 
Conclusion 
 
Proteases play key roles in pathogenesis. A large num-
ber of human disorders result from an imbalance in 
proteolytic activity. In this context, PIs are key players in 
the endogenous defense system, as they help regulate 
and balance protease activities. In plants these inhibitors 
are also important participants in the exogenous defense. 
The importance of PIs has been realized for some time 
now, and many transgenic plants overexpressing 
different PIs have been produced with resistance against 
different pathogenic organisms. This is, however, yet to 
be fully appreciated, and it can have important conse-
quences beyond their recognized scope. PIs have been 
generally thought to counter tumour progression and 
metastasis. They also have the potential to counteract 
many of the inherited disorders such as emphysema and 
epilepsy. These inhibitors can also interfere with the life 
cycle of many viruses and may help prevent many viral 
disorders. Synthetic PIs currently form a part of the 
combinational therapy against AIDS, and have potential 
to be used as drugs against many other diseases. 
Although plant PIs have been isolated and characterized 
from a large number of sources, and that the natural 
inhibitors have been made available by gene therapy and 
through transgenic plants overexpressing specific inhibi-
tors with therapeutic significance, the potential for the 
natural inhibitors in medicine and agriculture is enor-
mous, awaiting full-scale exploration.  
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