Phytochemical constituent and antioxidant activity of extract from the leaves of Ocimum gratissimum

Afolabi C. Akinmoladun*, E. O. Ibukun1, Emmanuel Afor1, E. M. Obuotor2 and E.O. Farombi3

1Biochemistry Department, Federal University of Technology, Akure, Nigeria.
2Department of Biochemistry, Obafemi Awolowo University, Ile-Ife, Nigeria.
3Drug Metabolism and Toxicology Unit, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria.

Accepted 13 April, 2007

Extracts from the leaves of Ocimum gratissimum were investigated for phytochemical constituent and antioxidant activity. Tests for tannins, steroids, terpenoids, flavonoids and cardiac glycosides were positive in both methanolic and aqueous extracts. The methanolic extract of O. gratissimum had a DPPH scavenging activity of 84.6% at 250 µg/ml and a reductive potential of 0.77 at 100 µg/ml. These values were comparable with those of gallic acid, 91.4% at 250 µg/ml and ascorbic acid, 0.79 at 60 µg/ml as standards for DPPH scavenging activity and reductive potential, respectively. These findings suggest that the rich phytochemical content of O. gratissimum and its good antioxidant activity may be responsible for its popular and wide traditional use.

Key words: ocimum gratissimum, phytochemicals, antioxidant activity and reductive potential.

INTRODUCTION

Plants show enormous versatility in synthesizing complex materials which have no immediate obvious growth or metabolic functions. These complex materials are referred to as secondary metabolites. Plants secondary metabolites have recently been referred to as phytochemicals. Phytochemicals are naturally occurring and biologically active plant compounds that have potential disease-inhibiting capabilities. It is believed that phytochemicals may be effective in combating or preventing disease due to their antioxidant effect (Halliwell and Gutteridge, 1992; Farombi et al., 1998). Antioxidants protect other molecules (in vivo) from oxidation when they are exposed to free radicals and reactive oxygen species which have been implicated in the aetiology of many diseases and in food deterioration and spoilage (Halliwell and Gutteridge, 1992; Kasaikina, 1997; Farombi, 2000; Koleva et al., 2000).

Medicinal plants have been used for centuries before the advent of orthodox medicine. Leaves, flowers, stems, roots, seeds, fruit, and bark can all be constituents of herbal medicines. The medicinal values of these plants lie in their component phytochemicals, which produce definite physiological actions on the human body. The most important of these phytochemicals are alkaloids, tannins, flavonoids and phenolic compounds (Hill, 1952). Ocimum gratissimum Linn (Labiatae) is grown for the essential oils in its leaves and stems. Eugenol, thymol, citral, geraniol and linalool have been extracted from the oil (Sulistiarini, 1999). Essential oils from the plant have been reported to possess an interesting spectrum of antifungal properties (Dubey et al., 2000). The antinociceptive property of the essential oil of the plant has been reported (Rabelo et al., 2003). The whole plant and the essential oil are used in traditional medicine especially in Africa and India. The essential oil is also an important insect repellant. Oc. gratissimum is germicidal (Nakamura et al., 1999; Pessoa et al., 2003; Holets et al., 2003) and has found wide use in toothpastes and mouth washes as well as some topical ointments. It is used as an excellent gargle for sore throats and tonsillitis. It is also used as an expectorant and a cough suppressant. The plant extract is used against gastrointestinal helminths of animals and man (Fakae, 2000; Chitwood, 2003). In addition, O. gratissimum carminative properties make it a good choice for upset stomach. It is used as an emetic and for hemorrhoids. The plant is also used for the treatment of rheumatism, paralysis, epilepsy, high fever, diarrhea, sunstroke, influenza, gonorrhea and mental illness (Dhawan et al., 1977; Oliver, 1980; Abdulrahman, 1992; Osifo,
1992; Sofowora, 1993; Sulistiarini, 1999). In addition, the plant is used as a spice and condiment in the southern part of Nigeria.

The present work has been designed to evaluate the antioxidant potential of extracts from the leaves of O. gratissimum and to explore the basis for its traditional use.

MATERIALS AND METHODS

Chemicals

DPPH (2, 2-diphenyl-1-picrylhydrazyl) radical, gallic acid, ascorbic acid and Folin-Ciocalteau reagent were obtained from Sigma-Aldrich, USA. All other chemicals and reagents used were of analytical grade.

Plant materials

Leaves of O. gratissimum were collected from a farmland in Akure, South-Western Nigeria and identified at the department of Crop, Soil and Pest Management, Federal University of Technology, Akure. They were air dried, packed in paper bags and stored. The dried leaves were pulverized and 200 g of the pulverized sample was extracted with 500 ml of 80% methanol by maceration for 72 h. The methanolic extract was concentrated in a rotary evaporator, lyophilized and thereafter preserved for further use. An aqueous extract was also prepared from the pulverized sample for the purpose of comparison of the phytochemical constituents with that of the methanolic extract.

Phytochemical screening

Chemical tests were carried out on the aqueous and methanolic extracts for the qualitative determination of phytochemical constituents as described by Harborne (1973), Trease and Evans (1989) and Sofowora (1993).

Total phenolic content

Total phenolic content was determined using Folin-Ciocalteau reagent as previously described (McDonald et al., 2001). Total phenol value was obtained from the regression equation: y = 0.0055x + 0.1139 and expressed as mg/g gallic acid equivalent using the formula, C = cV/M; where C = total content of phenolic compounds in mg/g GAE, c = the concentration of gallic acid (mg/ml) established from the calibration curve, V = volume of extract and m = the weight of pure plant methanolic extract (g).

DPPH radical scavenging activity

The reductive potential of DPPH radical was determined according to the method of Oyaizu (1986). Different concentrations of the methanolic extract of O. gratissimum (20, 40, 60 and 100 µg/ml) in 1 ml of distilled water was mixed with phosphate buffer (2.5 ml, 0.2 M, pH 6.6) and potassium ferricyanide (2.5 ml, 1%). The mixture was incubated at 50°C for 20 min. Trichloroacetic acid (10%, 2.5 ml) was added to the mixture. A portion of the resulting mixture was mixed with FeCl₃ (0.1%, 0.5 ml) and the absorbance was measured at 700 nm in a spectrophotometer. Higher absorbance of the reaction mixture indicates higher reductive potential.

Statistical analysis

Data were expressed as mean ± SEM. A one-way analysis of variance was used to analyze data. P<0.5 represented significant difference between means (Duncan’s multiple range test).

RESULTS AND DISCUSSION

Table 1 shows the phytochemicals detected in O. gratissimum leaf extract. Tests for tannins, steroids, terpenoids, flavonoids and cardiac glycosides were positive in both methanolic and aqueous extracts. Anthraquinones were detected only in the aqueous extract while alkaloids were detected only in the methanolic extract. Saponins were not detected in both extracts. These phytochemicals may be responsible for the medicinal value of O. gratissimum. The total phenolic content in the methanolic extract was 5.68 ± 0.06 mg/g GAE. Phenolics are the largest group of phytochemicals and have been touted as accounting for most of the antioxidant activity of plants or plant products. The result of the DPPH scavenging activity of O. gratissimum extract compared to that of gallic acid (GA) is shown in Figure 1. Both showed a dose-dependent antioxidant activity. The AA% of GA was remarkably higher than that of O. gratissimum at lower concentrations but significant differences between them seem to be less conspicuous at higher concentrations. The reductive potentials of O. gratissimum extract and ascorbic acid (AA) were also dose-dependent (Figure 2). The reductive potential of AA was clearly higher than that of O. gratissimum at all concentrations except the least (20 µg/ml). However, it should be noted that the reductive potential of O. gratissimum was still appreciable.

Results from the present investigation shows that O. gratissimum is rich in phytochemicals. Specific biologically important compounds have been identified in extracts from the plant by previous workers (Sulistiarini, 1999; Dubey et al., 2000; Holets et al., 2003). The present work also reveals that the extract from the leaves of O. gratissimum possesses good antioxidant potential presumably because of its phytochemical constituents (Thabrew et al., 1998; Halliwell and Gutteridge, 1992). The DPPH scavenging activities of OG showed a good correlation with its reductive potentials. These facts justify the medicinal use of the plant for the treatment of various maladies (Dhawan et al., 1977; Oliver, 1980). However,
Table 1. Phytochemicals in methanolic and aqueous leaf extract of *O. gratissimum*.

<table>
<thead>
<tr>
<th>Phytochemicals</th>
<th>Methanolic extracts</th>
<th>Aqueous extracts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Saponins</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Phlobatannins</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Anthraquinones</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Steroids</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cardiac glycosides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With steroidal ring</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>With deoxy – sugar</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

+ = Present
- = Absent

Figure 1. Dose-dependent DPPH scavenging activity of *O. gratissimum* leaf extract and gallic acid. Values sharing a common symbol are not significantly different (P>0.05). Significantly different at P<0.05: GA₂₅₀ vs GA₅₀; GA₅₀ vs GA₂₅; GA₂₅ vs GA₁₀; GA₂₅ vs OG₅₀. Significantly different at P<0.01: GA₂₅₀ vs OG₁₂₅; GA₁₀ vs OG₂₅; OG₅₀ vs OG₂₅. Other values significantly different at P<0.001.

Further work is necessary to ascertain the clinical safety of extracts from the plant (Effraim et al., 2001) and to determine appropriate concentration for therapy so as to safeguard the health of the teeming mass of traditional
Figure 2. Dose-dependent reductive potential of *O. gratissimum* leaf extract and ascorbic acid. Values sharing a common symbol are not significantly different. OG60 significantly different from AA40 (P<0.05); OG40 significantly different from AA20 (P<0.01). All other values are significantly different (P<0.001).

users who more often that not, do not take these factors into consideration.

REFERENCES

