Host determinants of bovine mastitis in semi-intensive production system of Khartoum state, Sudan

Nuol Aywel Madut¹, Atif Elamin Abdel Gadir²*, Isam Mohamed El Jalii²

¹Department of Medicine, Faculty of Veterinary Medicine, University of Bahr. Elgazal.
²Department of Preventive Medicine and Veterinary Public Health, Faculty of Veterinary Medicine, University of Khartoum, Box 32, Khartoum, Sudan.

Accepted 22 April, 2009

Out of 2283 quarter milk samples, 224 (9.81%) gave positive reactivity to California mastitis test, while 600 (26.28%) and 1459 (63.9%) recorded as doubtful and negative respectively. In this study isolated Corynebacterium were Corynebacterium striatum 9 (33.3%), Arcanobacterium pyogene 4 (14.8%), Corynebacterium Pseudotuberculosis 2 (7.4%), Corynebacterium ulcerans 5 (18.5%), Corynebacterium bovis 7 (25.9%). The result showed that age, stage of lactation, teat lesion could be a risk factors for presence of bovine mastitis (OR = 1.34, 1.59 and 7.31 respectively).

Key words: Corynebacterium spp., California mastitis test, host determinant, semi-intensive production, Sudan.

INTRODUCTION

Livestock production systems in Africa are classified into intensive and semi-intensive systems according to husbandry practice and distribution of pasture that varies with the rainfall, season or cultivated crop (Pyne, 1976; Rutherberg, 1976; DeBoer, 1977; Jahnke, 1977). In Sudan, 92% of livestock population is possessed by nomads that follow extensive system of husbandry in eastern, western and southern part of the Sudan (Kamal, 1983). Among the Sudanese breeds of cattle, 2 breeds namely Kenana and Butana are known to show high potentiality for milk production (Alim, 1960; Osman, 1970; Osman and El Amin, 1971). Recently Friesian crosses with local breeds were raised.

Mastitis remains the most common and the ambiguity disease of dairy cattle through out most of the world. It probably has been observed since man first domesticated the cow in the thousands of years since and in spite of all kinds of scientific progress, it remains prevalent in most dairy herds. It is estimated that one third of all dairy cows are infected with some form of mastitis in one or more quarters (Philpot and Nickerson, 1999). Mastitis is often the end result of the interaction of several factors such as man, cow, environment, microorganisms and management (Blood et al., 1989).

Quarters infected with Arcanobacterium pyogenes always exhibit clinical symptoms and secrete a thick, foul-smelling, greenish fluid. Infections result in a persistent form of mastitis and invariably lead to loss of the quarter and culling of the cow because treatment is ineffective. (Philpot and Nickerson, 1999). In lactating cows, infection may occur as a result of teat injuries or improper treatment procedure. Therefore, the objective of the study to investigate presence of the factors that affected its occurrence of bovine mastitis.

MATERIALS AND METHODS

Study area

The study was conducted in east Nile locality - Khartoum north (Hillat Kuku dairy farms), which is considered to be the largest milk producing and marketing area in Khartoum state and regarded as semi-intensive system (small holder) of milk production. Those farms previously belonged to Hillat Kuku dairy project, which consist of 3 barns distributed in vast space each barn composed of small units contain cattle range between few number of cows to large which may reach hundreds of them. The scheme had agricultural field, factory to process the pooled milk that collected from the farms, artificial insemination center, veterinary service unite, animal production institute and banking services.

Sampling Methods

The study animals that were sampled are dairy cows mostly Frisian
cross (cross between Frisian and local breeds namely Kenana and Butana). Concerning sampling, one-stage sampling method was employed as described by Thursfield (1995). Data on individual cow mainly breed, age, stage and number of lactations, previous history of mastitis, abnormalities of the udder and milk and other data related to mastitis were recorded using a special form.

Questionnaire design

Farm data on knowledge related to level of education and occupation of the owner, breed, management, animal health, hygiene status were recorded. The questionnaire survey was done in the study area based on the willingness of the owners. (Non probability sampling method, Thursfield, 1995).

Collection of milk samples

Before the collection of quarter milk samples from the tested cows, the udder was thoroughly cleaned with soap and water, rubbed dried and the teats were disinfected with cotton wool moistened with 70% ethyl alcohol, which is been allowed to be air dried. The first few squirts of milk were discarded. 5 - 20 ml of milk was collected in a sterile universal bottle. The quarter milk samples were kept in ice container and transported as soon as possible to the laboratory at the faculty of veterinary medicine, Khartoum university, (Shambat).

California mastitis test (CMT)

All collected milk samples were examined for mastitis using California mastitis test. (CMT) was carried out using the method described by (Quinn et al., 1994). Briefly, equal volumes (5 ml) of commercial CMT reagent (avatar rapid mastitis test Kit-Alvetera Gmbh-Germany) and quarter milk were mixed and the changes in milk fluidity and viscosity were observed. The interpretation of the result was done according to the method described by Quinn et al. (1994). Negative (0) and trace (+/-) were considered as negative and different intensities of positive (1, 2 and 3) were considered as positive (Table 1).

Table 1. Interpretation of the (C.M.T) results (Quinn et al., 1994).

<table>
<thead>
<tr>
<th>CMT score</th>
<th>Interpretation</th>
<th>Visible reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Negative</td>
<td>Milk fluid and normal</td>
</tr>
<tr>
<td>±</td>
<td>Trace</td>
<td>Slight precipitation</td>
</tr>
<tr>
<td>1</td>
<td>Weak positive</td>
<td>Distinct precipitation but no gel formation</td>
</tr>
<tr>
<td>2</td>
<td>Distinct positive</td>
<td>Mixture thickness with a gel formation</td>
</tr>
<tr>
<td>3</td>
<td>Strong positive</td>
<td>Viscosity greatly increased strong gel That is cohesive with a convex surface</td>
</tr>
</tbody>
</table>

Determination of clinical and sub-clinical mastitis

Clinical mastitis was recognized by abnormal milk and signs of udder infection (abnormalities of the udder). While sub-clinical mastitis refers to the existence of inflammation of the udder in the absence of gross signs, this was established by California mastitis test and bacteriological examinations.

Statistical analysis

Microsoft excel, 2003 and Stata 6.0 for windows 98/95/NT were used for data analysis. Descriptive statistics were used for all the variables. Chi-square (x 2) was used for assessing the statistical associations of various factors with mastitis. The logistic regression model was employed to obtain the odds ratio (OR) only for those factors which gave statistical significant (P < 0.05) with regard to mastitis for instance, the factor could be a risk factor when the OR > 1.

RESULTS

Questionnaire survey

The results showed that mastitis is regarded as one of the common diseases in dairy farms in Kuku area (33.3%, n = 10). However, most of the dairy farms have access to veterinary services as (100%, n = 30). Generally, the house condition was mostly bad (63.3 %, n = 19) although in some of them was good (36.7%, n = 11). Concerning hygienic status in the dairy farms in the study site, 30 owners did not clean the udder or wash their hands before and between milking or practiced teat disinfection (100%). All the responses to the questionnaire survey are summarized in (Table 2).
Table 2. Summary of the questionnaire survey responses by thirty owners of the diary farms in Kuku area.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common disease</td>
<td></td>
</tr>
<tr>
<td>mastitis</td>
<td>10 (33.3)</td>
</tr>
<tr>
<td>tick borne diseases</td>
<td>5 (16.7)</td>
</tr>
<tr>
<td>other diseases</td>
<td>15 (50.0)</td>
</tr>
<tr>
<td>Veterinary services</td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>30 (100)</td>
</tr>
<tr>
<td>no</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Clean teat and udder</td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>no</td>
<td>30 (100)</td>
</tr>
<tr>
<td>Water hands before milking</td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>no</td>
<td>30 (100)</td>
</tr>
<tr>
<td>Level of hygiene</td>
<td></td>
</tr>
<tr>
<td>excellent</td>
<td>1 (3.3)</td>
</tr>
<tr>
<td>good</td>
<td>14 (46.7)</td>
</tr>
<tr>
<td>poor</td>
<td>15 (50)</td>
</tr>
<tr>
<td>Housing condition</td>
<td></td>
</tr>
<tr>
<td>excellent</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>good</td>
<td>11 (36.7)</td>
</tr>
<tr>
<td>poor</td>
<td>19 (63.3)</td>
</tr>
</tbody>
</table>

Table 3. The prevalence of clinical and sub-clinical mastitis based on CMT in examined farms at cow level.

<table>
<thead>
<tr>
<th>Total number of animal examined</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clinical</td>
</tr>
<tr>
<td>585</td>
<td>(21)3.58</td>
</tr>
</tbody>
</table>

Clinical mastitis test

Out of 2283 quarter milk samples, 224 (9.81%) gave positive reactivity to California mastitis test, while 600 (26.28%) and 1459 (63.9%) recorded as doubtful and negative respectively.

Clinical and sub-clinical mastitis

Prevalence (9.81%) of sub-clinical mastitis according to CMT was obtained from farms examined while low prevalence (3.58%) of clinical mastitis was reported (Table 3).

Bacteriological examination

205 bacterial isolates were recovered from milk samples examined. The isolated bacteria were _Staphylococcus spp._ 107 (52.5%), _Streptococcus spp._ 25 (12.3%), _Enterobacterium spp._ 4 (2%), _Lactobacillus spp._ 4 (2%), _Coryneform bacteria_ 27 (13.2%), _Micrococcus spp._ 10 (4.9%), _Pseudomonas spp._ 11 (5.9%), _Bacillus spp._ 10 (4.9%) and _Aerococcus spp._ (Table 4). In this study isolated _Corynebacterium were Corynebacterium striatum_ 9 (33.3%), _Arcanobacterium pyogene_ 4 (14.8%), _Corynebacterium pseudotuberculosis_ 2 (7.4%), _Corynebacterium ulcerans_ 5 (18.5%), _Corynebacterium bovis_ 7 (25.9%).

Risk factors analysis

Factors such age, stage of lactation, tick infestation, confirmation of udder, teat lesion and previous history of mastitis were found statistically significance with regard to occurrence of bovine mastitis in Kuku area (Table 5). To quantify these relationships, the logistic regression model was adopted. The result showed that age, stage of lactation, teat lesion could be a risk factors for presence of bovine mastitis (OR = 1.34, 1.59 and 7.31 respectively) (Table 6). On the other hand, strong relationship was found between milk production and occurrence of bovine mastitis. (t - test = 51.32, P < 0.01).

DISCUSSION

Mastitis can be defined as an inflammation of the mammary glands caused by physical or chemical agent, but the majority of the infections are usually caused by bacteria (Quinn et al., 1994). Bovine mastitis is of great economic importance to dairy industry world wide (Miller et al., 1984). Those farms previously belonged to Hillat kuku dairy project. The area was chosen in accordance to the result that obtain from the Khartoum state ministry of agriculture and animal resources (2003) which conducted survey on milk hygiene in Kuku area at the farm level, bulk milk and vendes. The survey proved that Kuku area is the mostly bad in this concern.

According to our findings, mastitis is one of the common diseases in dairy farms (33%), although most of the owners were poorly managed their farms because they didn’t know the basic of farm production management and also they have not consulted professionals to help them on managing their farms. This resulted in a poor performance of dairy production. (Saluemi, 1980) stated that current knowledge on the impact of the production environment on udder health is considerable. Moreover, practical experience of mastitis control has confirmed the importance of the stand structures, ventilation, milking machine, management practices, milking technique in particular and hygiene on udder health. Also Abdullah (2002) claimed that good management is the key factor on controlling the environment for protection and hence mastitis occurrence.

According to our findings, mastitis is one of the common diseases in dairy farms (33%), although most of the farmers had access to veterinary services. (Miller et al., 1984) reported that mastitis is the most common disease...
that affects adult dairy cows.

In the farms surveyed, the housing condition were mostly bad (63.3%), this means that they do not even adopt to minimal standard in hygiene and all of the farms ground surface were clay (100%) that reflects on the hygiene status. Also ventilation, the space allows for the cows and wetness in the farm reflected in poor production. Saluiemi (1980) reported that in loose house the cause is often poor milking hygiene or a faulty milking machine. Muddy outside pen or faulty ventilation, often combined with wet cubicles, which lead to mastitis problem caused by environmental pathogens (Radostits et al., 2000).

60% of the owners explained the absence of recording system in their farms, although records are an important part in monitoring the incidence of any disease. Mastitis is one of the few diseases where detailed analysis of the data can be used to help in the control of infection, that according to (Philpot et al., 1991). At the same time, they did not adopt culling chronically infected cows; Culling is used in mastitis control because infected udders are sources of new infection (Radostits et al., 2000).

Milk hygiene could also be evaluated by bacterial isolation from the milk samples. In the present study, the bacteria isolated from the milk were predominated by *Staphylococcus* species and *Streptococcus* species, these bacteria may originate from udder infection or contamination due to mismanagement practices such as poor milk system (hand milking). Earlier studies showed that this method does not only reflect infection but also the possible contamination of milk in its passage through the milking process. (Nyaga et al., 1982 and Gonzalez et al., 1988). Comparable results were reported by (Elliot et al., 1976; El Tayeb and Habiballa, 1978; Hinckely et al., 1988; Gonzalez et al., 1988; Zingeser et al., 1991).

The predominant bacteria isolated in the present study were *Staphylococcus* and *Streptococcus*. *Staphylococcus* species are known to cause sub clinical mastitis among dairy cattle (Shalalli et al., 1982; Zingeser et al., 1991; Aydin et al., 1995). *Staphylococcus* species may cause high incidence of sub clinical mastitis as well as out breaks of clinical mastitis among dairy cows (Keskuntepe et al., 1992). However the frequent isolation of this organism may be due to surface contamination of milk.

usually contaminated with ample layer bedding and is therefore soft. In all farms surveyed, milkers didn’t clean udders and teats before and after milking which may lead to milk contamination and udder infection. Saluiemi (1980) reported that if there is mastitis problem with cows in a loose house the cause is often poor milking hygiene or a faulty milking machine. Muddy outside pen or faulty ventilation, often combined with wet cubicles, which lead to mastitis problem caused by environmental pathogens (Radostits et al., 2000).
On the California mastitis test. Retained, where as 3.58% were clinical mastitis, this based on the relationship between isolation of bacteria from mastitic milk and bacteriological results? Reported a strong positive correlation between the CMT scores and bacteriological results, it could be most reliable for confirmation and aid for proper treatment (Sharma and Rajani, 1969; Adlan et al., 1980; Radostits et al., 2000). A survey of bovine mastitis in four dairy farms in the Sudan. Sud. J. Vet. Res. 2:37-38. The relationship between occurrence of mastitis and milk production was found significant (P-value 0.00) when the milk production increase the risk of the infection increase and the animal been very susceptible to the disease, similar result were found by Gröhn (2000) contracted the disease, compared to their health and general lower yield herd. In contrast to our findings, Eberhart and Guss, (1970) reported that the rate of new intra mammary infections is significantly high in the dry period than during lactation period, also Bush and Oliver (1987) mentioned that the greatest increase in susceptibility is during the first 3 weeks of the dry period in which the new infection rate is higher than the preceding lactation and the second period of heightened susceptibility occurs just prior to calving and in the immediate post partum period.

Conclusions

i) The prevalence of mastitis found to be high (20.17%) for the sub-clinical mastitis while low prevalence (3.58%) for clinical mastitis in farms examined.

ii) Poor farms management affect occurrence of mastitis in the study farms.

iii) California mastitis test is a good for epidemiological survey of sub-clinical mastitis.

iv) Different Corynebacterium species were isolated from the clinical cases of mastitis.

REFERENCES

Bagadi HO (1970b). The incidence of mastitis organisms in relation to...

Philpot WN, Stephen C, Nickerson (1999). In mastitis counter attack a strategy to combat mastitis. Published by Westphalia pp. 60-65.
