Effect of *Astragalus mongholicus* injection liquid on the immunity function in children with congenital heart disease (CHD) after undergoing cardiopulmonary bypass surgery

Li Tong¹, She Shaoyi², Zhang Ge³, and Huang Weizhe⁴*

¹Department of Paediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, PR China.
²Department of Urology, The First Affiliated Hospital of Shantou University Medical College, Shantou, PR China.
³Departments of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
⁴Department of Cardiac Pulmonary Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, PR China.

The effect of the administration of *Astragalus mongholicus* (AM) injection liquid on the immunity function in children with congenital heart disease (CHD) after undergoing cardiopulmonary bypass surgery was examined. Sixty-two children with congenital heart disease were randomly assigned to group B (untreated control, n=21) or C (n=19) and D (n=22) (2, or 4 mg/kg daily astragalus membranaceus injection liquid intravenously for 6 days after anesthesia induction after undergoing cardiopulmonary bypass surgery). Another 23 patients (group A) served as pre-operational control. Results showed that *Astragalus mongholicus* injection liquid can enhance serum immunoglobulin A (IgA), immunoglobulin G (IgG), immunoglobulin M (IgM), tumor necrosis factor alpha (TNF-α), soluble vascular cellular adhesion molecules (sVCAM-1) and soluble intercellular adhesion molecule 1 (sICAM). It can be concluded that astragalus membranaceus injection liquid can improve the immunity function in children with CHD after undergoing cardiopulmonary bypass surgery.

Key words: *Astragalus mongholicus* injection liquid, cardiopulmonary bypass surgery, CHD, sVCAM-1.

INTRODUCTION

The traditional Chinese herb can be categorized by different functions and *Astragalus mongholicus* belongs to the kind which can reinforce the functions of organisms. Both pharmacology and clinical practices have demonstrated that Astragalus membranaceus exhibited hepatoprotective, immunostimulating, cardiotonic and antiaging activities (Zee-Cheng, 1992; Sinclair, 1998; Cui et al., 2003; Cho and Leung, 2007a, b). The main constituents of the root of Astragalus membranaceus include flavonoids, polysaccharides, saponins, amino acids, and trace elements (Shao et al., 2004; Cho, 2010). There is no recent clinical evidence to guide dosages of *Astragalus* products. However, typical recommendations are 2–6 g of the powdered root (Monograph, 2003). In traditional medicine, AM has been used for the treatment of general weakness, chronic illness, and to increase overall vitality. Different peripheral effects such as improved sensitivity to insulin (Lin et al., 2000), immune modulation, antiviral activity, antineoplastic activity, and enhancement of cardiovascular functions have been described (Monograph, 2003). The protection of cardiovascular function might be explained in terms of protection against membrane lipid peroxidation (Chen et al., 1995; Wang et al., 1996; Toda and Shirataki, 1999). Bioactive components isolated from *Astragalus mongholicus* are processed into a new drug, *Astragalus mongholicus* injection liquid, by modern technology in china.
Table 1. Effect of Astragalus membranac injection liquid on IgA, IgG and IgM in children with CHD.

<table>
<thead>
<tr>
<th>Group</th>
<th>IgA (g/L)</th>
<th>IgG (g/L)</th>
<th>IgM (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10.65±0.96</td>
<td>3.86±0.33</td>
<td>2.11±0.17</td>
</tr>
<tr>
<td>B</td>
<td>6.06±0.57</td>
<td>1.43±0.12</td>
<td>1.08±0.11</td>
</tr>
<tr>
<td>C</td>
<td>8.57±0.93</td>
<td>2.98±0.19</td>
<td>1.79±0.19</td>
</tr>
<tr>
<td>D</td>
<td>9.96±0.79</td>
<td>3.64±0.25</td>
<td>2.12±0.32</td>
</tr>
</tbody>
</table>

*b P<0.01, compared with group A; *c P<0.05, *d P<0.01, compared with group B.

Subject and experiment design

Astragalus mongholicus injection liquid was purchased from a local drug shop (Shantou, China). In September 2010, Eighty-three children, ages 8 to 14 years, who were diagnosed as congenital heart disease, liver, kidney and heart failure, tumor, severe generalized infection, and autoimmune diseases were excluded. Sixty-two children with congenital heart disease were randomly assigned to group B (untreated control, n=21) or C (n=19) and D (n=22) (2, or 4 mg/kg daily Astragalus membranac injection liquid intravenously for 6 days after anesthetization induction after undergoing cardiopulmonary bypass surgery). We have obtained consent from the patients involved in this study. The Cardiopulmonary bypass machine used in the study was a Sarns 8000 nonpulsatile roller occlusive pump (Terumo, Belgium). The same Cardiopulmonary bypass circuit set-up was used for all patients. This consisted of a closed system with a soft shell reservoir and a Hiliite 1000 oxygenator (Medos, Germany), which is used for flows up to 1 l/min. Patients received cold crystalloid cardioplegia (St Thomas’ Solution with a K+ concentration of 20 mmol/l) administered by the anaesthetist at a dose of 30 ml/kg after cross clamping, which then passed through the pump. All patients received one dose of cardioplegia except for four patients undergoing cavo-pulmonary shunts that did not receive any. Another 23 patients (group A) served as preoperation control. After the 7th day, central venous blood samples were taken. Plasma immunoglobulin, TNF-α, sICAM-1, and sVCAM-1 were measured.

Biochemical analysis

IgA, IgG, IgM, TNF-α, sICAM-1, and sVCAM-1 were measured using ELISA kits.

Statistical analysis

Data were analyzed by SPSS (version 11) software. Continuous variables are presented as mean ± standard deviation and comparisons were made by means of analysis of variance. Statistical significance was assumed if p < 0.05.

RESULTS AND DISCUSSION

A congenital heart defect (CHD) is a defect in the structure of the heart and great vessels which is present at birth. Many types of heart defects exist, most of which either obstruct blood flow in the heart or vessels near it, or cause blood to flow through the heart in an abnormal pattern (Miller et al., 2011). Other defects, such as long QT syndrome, affect the heart’s rhythm. Heart defects are among the most common birth defects and are the leading cause of birth defect-related deaths. The success of cardiac surgery in childhood has produced a large population of adults with congenital heart disease. These adults present a unique challenge for the cardiology community. With more than 30 different forms of congenital heart disease, it can be difficult for adult patients to find cardiologists familiar with their particular anatomy and problems (Verheugt et al., 2008).

It is now recognised that many children with recurrent chest infections have abnormalities in their ability to produce specific antibodies to common respiratory pathogens such as the Strep. pneumoniae or H. influenzae which is commonly isolated from their sputum. If an antibody deficiency is suspected, total serum levels of IgG, IgM, IgA and IgE should be measured. As the normal ranges of these proteins change during childhood, the measured values must be compared to the age-appropriate normal values, ideally from the same laboratory (Couriel, 2002).

In the present experiment, Table 1 shows the effect of Astragalus membranac injection liquid on immunity function in children with CHD. Plasma IgA, IgG and IgM levels in children with CHD (group B) were markedly lower than those in preoperation group (A). The Astragalus membranac injection liquid had considerable elevating effect on the decreased IgA, IgG and IgM levels (group C and D) when compared with the group B (Figure 1).

Tumor necrosis factor (TNF or TNF-α/cachectin) is a proinflammatory cytokine that acts as a mediator of host
defense against both neoplasia and infection and is principally expressed in macrophages (Beutler and Cerami, 1988; Ziegler, 1988; Waage et al., 1987; Old, 1987), where its secretion may be increased 10,000-fold after exposure to bacterial endotoxin (LPS) (Beutler et al., 1986). Along with numerous beneficial roles in immune regulation, TNF has been implicated in the pathogenesis of both acute and chronic inflammatory disease (Beutler and Cerami, 1986), and therefore it is of great interest to dissect the molecular mechanisms of TNF gene expression. The observation that TNF-α is elevated in individuals with advanced heart failure (HF) prompted several high-profile clinical trials investigating whether TNF inhibitors could be used to treat HF.

Table 2 shows the effect of astragalus membranac injection liquid on TNF-α in children with CHD. Plasma TNF-α level in children with CHD (group B) was markedly lower than that in preoperation group (A). The astragalus membranac injection liquid had considerable elevating effect on the decreased TNF-α level (group C and D) when compared with the group B (Figure 2).

Soluble cell adhesion molecules (sCAMs) are a class of cell adhesion molecule (CAMs - cell surface binding proteins) that may represent important biomarkers for inflammatory processes involving activation or damage to cells such as platelets and the endothelium (Hwang et al., 2005). In the present study, sICAM-1 in blood of children with CHD was investigated. Plasma sICAM-1 in children with CHD (group B) were found to be significantly lower than the preoperation group (A). Treatment of the astragalus membranac injection liquid after cardiopulmonary bypass surgery increased the plasma sICAM-1 in group C and D as compared to the children with CHD (group B) (Table 3 and Figure 3).
Figure 2. Effect of astragalus membranaceus injection liquid on TNF-α in children with CHD. \(b \) \(P<0.01 \), compared with group A; \(d \) \(P<0.01 \), compared with group B.

Table 3. Effect of astragalus membranaceus injection liquid on sICAM-1 in children with CHD.

<table>
<thead>
<tr>
<th>Group</th>
<th>sICAM-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>395.1±36.9</td>
</tr>
<tr>
<td>B</td>
<td>254.3±27.7</td>
</tr>
<tr>
<td>C</td>
<td>298.4±22.7</td>
</tr>
<tr>
<td>D</td>
<td>376.3±40.5</td>
</tr>
</tbody>
</table>

\(b \) \(P<0.01 \), compared with group A; \(d \) \(P<0.01 \), compared with group B.

Figure 3. Effect of astragalus membranaceus injection liquid on sICAM-1 in children with CHD. \(b \) \(P<0.01 \), compared with group A; \(d \) \(P<0.01 \), compared with group B.
Table 4. Effect of astragalus membranac injection liquid on sVCAM-1 in children with CHD.

<table>
<thead>
<tr>
<th>Group</th>
<th>sVCAM-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>984.9±100.8</td>
</tr>
<tr>
<td>B</td>
<td>684.2±57.85 b</td>
</tr>
<tr>
<td>C</td>
<td>842.7±94.2 d</td>
</tr>
<tr>
<td>D</td>
<td>965.4±103.7 d</td>
</tr>
</tbody>
</table>

b P<0.01, compared with group A; d P<0.01, compared with group B.

Figure 4. Effect of astragalus membranac injection liquid on sVCAM-1 in children with CHD. b P<0.01, compared with group A; d P<0.01, compared with group B

Endothelial cells release multiple inflammatory mediators and express various adhesion molecules such as intercellular and vascular cellular adhesion molecules (ICAM-1, VCAM-1), P- and E-selectins (Khan and Chakrabarti, 2007). Endothelial vascular adhesion molecule-1 (VCAM-1) is a critical component of the leukocyte–endothelial adhesion cascade, and its strict temporal and spatial regulation makes it an ideal target for imaging and therapy. The counter-receptors VCAM-1 are overexpressed on the activated endothelial cell surface. They undergo shedding and their soluble forms, sVCAM-1 are detectable in the serum and considered to be markers of endothelial cell activity or injury (Springer, 1990; Kuryliszyn Moskal et al., 2005). Thus, endothelial cell injury and activation participate in the pathogenesis of both PHT (via obliterative vasculopathy) (Seibold et al., 2001) and ILD (via direct and indirect roles in inducing fibroblast activation that leads ultimately to fibrosis) (Cerinic et al., 2003).

sVCAM-1 in blood of children with CHD was investigated. Plasma sVCAM-1 in children with CHD (group B) were found to be significantly lower than the preoperation group (A). Treatment of the astragalus membranac injection liquid after cardiopulmonary bypass surgery increased the plasma sVCAM-1 in group C and D as compared to the children with CHD (group B) (Table 4 and Figure 4).

Conclusion

Astragalus membranac injection liquid can improve the immunity function in children with CHD after undergoing cardiopulmonary bypass surgery.

REFERENCES

Cerinic MM, Valentini G, Sorano GG, D’Angelo S, Cuomo G, Fenu L,

