Full Length Research Paper

Quasi-radical operation on the submodules in a module

Esra Şengelen Sevim¹* and Ünsal Tekir²

¹Department of Mathematics, Istanbul Bilgi University, Dolapdere, Istanbul, Turkey.
²Department of Mathematics, Marmara University, Göztepe-Ziverbey, Istanbul, Turkey.

Accepted 04 April, 2011

All rings are commutative with identity and all modules are unital. The purpose of this paper is to introduce interesting and useful properties of quasi-radical operation on the submodules in a module.

Key words: Prime submodules, quasi-radical operation.

INTRODUCTION

Throughout this paper all rings will be commutative with identity and all modules will be unitary. Let R be a ring and M be a unital R-module. For any submodule N of M, we define $(N: M) = \{ r \in R : rM \subseteq N \}$. A submodule N of M is called prime if $N \neq M$ and whenever $r \in R$, $m \in M$ and $rm \in N$, $m \in N$ or $r \in (N: M)$. Let $PSpec(M)$ denote the collection of all prime submodules. Note that some modules have no prime submodules (that is, $PSpec(M) = \emptyset$). In recent years, prime submodules have attracted a good deal of attention (Lu, 1984; John, 1978; James and Patrick, 1992; Shahabaddin, 2004). An R-module M is called a multiplication module provided for each submodule N of M there exists an ideal I of M such that $N = IM$. We say that I is a presentation ideal of N. We say that N is a presentation ideal of M. Let N be a submodule of a multiplication R-module M with $N = I_1M$ and $K = I_2M$ for some ideals I_1 and I_2 of R. The product N and K denoted by NK is defined by $NK = I_1I_2M$. Then, the product of N and K is independent of presentation of N and K (Reza, 2003, Theorem 3.13).

In this paper, we generalize some properties of quasi-radical operation on the ideals in a ring to quasi-radical operation on the submodules in a module (Magnus, 2004).

Definition 1

Let M be an R-module. An operation F on the submodules of M is a correspondence that to every submodule N of M associates a submodule $F(N)$ in M.

Definition 2

(i) Let M be an R-module. Let F be an operation on the submodules of M, and let N be a submodule in M. We say that $F(N)$ is the F-radical of N.

(ii) Let M be an R-module. We say that N is F-radical if $F(N) = N$. A prime submodule N is called F-prime if it is F-radical.

Definition 3

Let M be an R-module and F an operation on the submodules of M. We define F-prime spectrum of M as:

$$Spec(M) = \{ F - prime submodules N \subseteq M \}.$$
Definition 4

Let M be an R-module. Let F be an operation on the submodules in M. We say that M satisfies the ascending chain condition (acc) for F-radical submodules if for every chain $\{N_i\}_{i \in I}$ of F-radical submodules we have that $N_0 \subseteq N_1 \subseteq N_2 \subseteq \cdots$ stabilizes.

Relations 1

Let M be an R-module and F be an operation on the submodules of M. It is natural to ask if F satisfies the following relations for any submodules N, K and $\{N_i\}_{i \in I}$ in M:

(a) $N \subseteq F(N)$,
(b) $F(F(N)) = F(N)$,
(c) $F(N \cap K) = F(N) \cap F(K)$,
(c') if M is a multiplication R-module then $F(N \cap K) = F(N) \cap F(K) = F(NK)$,
(d) $F(\bigcup_{i \in I} N_i) = F(\bigcup_{i \in I} F(N_i))$,
(e) $\sqrt{N} \subseteq F(N)$ if M is a multiplication R-module,
(f) $N \subseteq K$ implies $F(N) \subseteq F(K)$,
(g) $F(\bigcup_{i \in I} N_i) = F(\bigcup_{i \in I} F(N_i))$ if $\{N_i\}_{i \in I}$ is ordered family.

Proposition 1

Let M be an R-module. Let F be an operation on the submodules in M. The following assertions hold for (a) - (g) of Relations 1.

1. If F satisfies (a), (b) and (f) then F satisfies (d).
2. If F satisfies (c) then F satisfies (f).
3. Let M be a multiplication R-module. If F satisfies (a) and (c') then F satisfies (e).
4. If F satisfies (d) then F satisfies (b).
5. If F satisfies (a) and (d) then F satisfies (f) and (g).

Proof

1. We have from (a) that $N_i \subseteq F(N_i)$ for each $i \in I$. It follows that $\bigcup_{i \in I} N_i \subseteq \bigcup_{i \in I} F(N_i)$. Consequently, we see by (f) that $F(\bigcup_{i \in I} N_i) \subseteq F(\bigcup_{i \in I} F(N_i))$. Conversely, since $N_i \subseteq \bigcup_{i \in I} N_i$ for each $i \in I$, we have by (f) that $F(\bigcup_{i \in I} N_i) \subseteq F(\bigcup_{i \in I} F(N_i))$. Thus since $F(\bigcup_{i \in I} N_i)$ is an submodule we see that $\bigcup_{i \in I} F(N_i) \subseteq F(\bigcup_{i \in I} N_i)$. This implies, again by (f), that $F(\bigcup_{i \in I} F(N_i)) \subseteq F(F(\bigcup_{i \in I} N_i))$. Now since from (b) $F(F(N)) = F(N)$ for any submodule N in M we get that $F(\bigcup_{i \in I} F(N_i)) \subseteq F(\bigcup_{i \in I} N_i)$. This shows that $F(\bigcup_{i \in I} N_i) = F(\bigcup_{i \in I} F(N_i))$, that is (d) holds.
2. Assume (f) is not true. There exist N, K such that $N \subseteq K$ but $F(N) \not\subseteq F(K)$. This implies $F(N \cap K) = F(N) \cap F(K)$ which contradicts (c). Thus $N \subseteq K$ implies $F(N) \subseteq F(K)$ for any submodules $N, K \subseteq M$, that is (f) holds.
3. From the relation (c') we get $F(t^2) = F((t)^n) = F((t))$ for every $t \in M$. By induction on n, we obtain $F(t^n) = F((t))$ for all positive integer n. Let N be a submodule of M and $t \in \sqrt{N}$. Then $t^n \subseteq N$ for some positive integer n. We have that and from relation (a) that $t \in F((t))$. Hence $t \in F(N)$ and we have proved that $\sqrt{N} \subseteq F(N)$, that is (e) holds.
4. If $F(N) \neq F(F(N))$ then $F(\bigcup_{i \in I} N_i) \neq F(\bigcup_{i \in I} F(N_i))$ for $I = 1$ and $N_i = N$ that is we get a contradiction of (f). Thus (b) is satisfied.
5. If $N \subseteq K$ does not imply that $F(N) \subseteq F(K)$ then there exist submodules $N \subseteq K$ in M such that $F(N) \not\subseteq F(K)$. Then $F(K) \nsubseteq F(N) + F(K)$ so we have by (a) that $F(N + K) = F(K) \neq F(N) + F(K)$, which contradicts (d). Thus (f) satisfied. If $\{N_i\}_{i \in I}$ is an ordered family then it is clear that $\bigcup_{i \in I} N_i = \bigcup_{i \in I} F(N_i)$ since from (f) we have that $N \subseteq K$ implies $F(N) \subseteq F(K)$; it follows that $F(\{\bigcup_{i \in I} N_i\}_{i \in I})$ is an ordered family of submodules as well. Then that $\bigcup_{i \in I} F(N_i) = \bigcup_{i \in I} F(N_i)$. Thus (d), that is $F(\bigcup_{i \in I} N_i) = F(\bigcup_{i \in I} F(N_i))$, implies $F(\bigcup_{i \in I} N_i) = F(\bigcup_{i \in I} F(N_i))$, that is (g) holds.

Lemma 1

Let M be an R-module. Let F be a prime submodule in M and let F be an operation on the submodules in M satisfying (a) and (f) of Relations 1. The following two conditions are equivalent:

1. $F(N) = N$
2. $A \subseteq N$ implies $F(A) \subseteq N$ for each submodule A in M.

Proof

Assume (1) does not hold, that is by (a) we have that $N \not\subseteq F(N)$ then condition (2) with $A = N$ does not hold. Thus (2) implies (1). Conversely, assume that (2) does not hold. Then there is a submodule A in M such that $A \subseteq N$ but $F(A) \not\subseteq N$. From (f) we get that $F(A) \subseteq F(N)$. Thus by (a) we see that $N \subseteq F(N)$ that is condition (1) does not hold. This shows that (1) implies (2).

Definition 5

Let M be a multiplication R-module. A quasi-radical operation F on the submodules in M is defined as an operation on the submodules in M such that for all submodules A and B in M the following conditions hold:

(a) $A \subseteq F(A)$
(b) \(F(F(A)) = F(A) \)
(c) \(F(A \cap B) = F(A) \cap F(B) = F(AB) \)

Remark 1

From Proposition 1 we see that any quasi-radical operation satisfies \((a) – (g)\) of Relations 1.

Proposition 2

Let \(M \) be a multiplication \(R \)-module. A quasi-radical operation \(F \) on the submodules in \(M \) satisfies \(F(N) = \sqrt{F(N)} = F(\sqrt{N}) \) for any submodules \(N \subseteq M \).

Proof

It is clear that \(F(N) \subseteq \sqrt{F(N)} \). Conversely, let \(m \in \sqrt{F(N)} \). Then \(m^n \in F(N) \) for some positive integer \(n \). Therefore \(F(m^n) \subseteq F(F(N)) \) and so \(m \in F((m)) \subseteq F(N) \). Hence, \(\sqrt{F(N)} \subseteq F(N) \). Thus we have that \(F(N) = \sqrt{F(N)} \). Since \(F \) is quasi-radical it satisfies Relations 1 \((b), (e) \) and \((f)\). This implies that \(F(N) \subseteq F(\sqrt{N}) \subseteq F(F(N)) = F(N) \). Thus \(F(N) = F(\sqrt{N}) \) and we have proved the proposition.

Proposition 3

Let \(M \) be a multiplication \(R \)-module. Let \(F \) be a quasi-radical operation on the submodules in \(M \). Then for each submodule \(A \) in \(M \) the following holds:

\[
F(A) = \bigcap_{F(A) \subseteq N, \ N \text{ a prime submodule}} N
\]

Proof

We have that:

\[
F(A) = \sqrt{F(A)} = \bigcap_{F(A) \subseteq N, \ N \text{ a prime submodule}} N
\]

By Proposition 2, we get first equality. The second equality is clear.

Theorem 1

Let \(M \) be a multiplication \(R \)-module. Let \(F \) be a quasi-radical operation on the submodules in \(M \). If \(M \) satisfies the acc for \(F \)-radical submodules, then any \(F \)-radical submodule is the intersection of a finite number of \(F \)-prime submodules.

Proof

Let \(T \) be the set of \(F \)-radical submodules which are not intersection of a finite number of \(F \)-prime submodules. Assume that \(T \neq \emptyset \). Then \(T \) admits a maximal element \(N \), because the acc for \(F \)-radical submodules holds. Then \(N \) is \(F \)-radical and can not be prime. Take \(m \in N \) and \(r \notin (N:M) \) such that \(rm \in N \), then \(N \subset N + rm \) and \(N \subset N + rM \). Since \(N \) is maximal in \(T \) these two new modules are not in \(T \). From \((a)\) we get \(N \subset N + rm \subseteq F(N + rm) \) and \(N \subset N + rM \subseteq F(N + rM) \). Thus the submodules \(F(N + rm) \) and \(F(N + rM) \) are \(F \)-radical by \((b)\) but are not in \(T \) and therefore expressible as a finite intersection of \(F \)-prime submodules. By \((c)\) we have:

\[
N \subseteq F(N + rm) \cap F(N + rM) = F((N + rm)(N + rM)) = F(N^2 + rN + mN + rmM) \subseteq F(N) = N
\]

So, \(N = F(N + rm) \cap F(N + rM) \) and thus, a finite intersection of \(F \)-prime submodules, which contradicts the assumption that \(N \) is in \(T \). Thus \(T = \emptyset \).

REFERENCES