Review

Vernonia amygdalina, an ethnoveterinary and ethnomedical used green vegetable with multiple bioactivities

Swee Keong Yeap\(^3\), Wan Yong Ho\(^1\), Boon Kee Beh\(^2\), Woon San Liang\(^4\), Huynh Ky\(^1\), Abdul Hadi Noaman Yousr\(^1\) and Noorjahan Banu Alitheen\(^1\)*

\(^1\)Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.

\(^2\)Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.

\(^3\)Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.

\(^4\)Spektra Biotek Sdn Bhd, Kampung Melayu Subang, 40150 Shah Alam, Selangor, Malaysia.

Accepted 22 October, 2010

Today, researches are focusing on the discovery of new therapeutic substances of natural origin with possible low or no toxicity to human, animal and environment, based on ethnomedical and ethnoveterinary practices. *Vernonia amygdalina* is a shrub that has been commonly known as bitter leaf due the bitter taste of the leaves. It is widely used as a daily green vegetable or herb to treat malaria and diabetes. The potential of *V. amygdalina* was first noted when scientists observed chimpanzees use the pith of this shrub for self-deparasitization. Since that discovery, subsequent researches had unveiled more and more bioactivities possessed by different extracts of this plant such as antidiabetic, antibacterial, antimalaria, antifungal, antioxidant, liver protection and cytotoxic effects which are beneficial to health. Compounds including steroid glucosides, sesquiterpene lactones and flavonoids which contributed to its bitter taste and bioactivites have also been isolated from this plant. Toxicology studies documented on this plant shows that *V. amygdalina* has low or no toxicity thereby supporting the safe use of this plant for the benefits of health.

Keywords: Vernonia amygdalina, bioactivities, antidiabetic, antioxidant, liver protection

INTRODUCTION

Vernonia amygdalina Del is a multipurpose and rapid regenerating soft wooded shrub of 2 to 10 m tall with petiolate leaves of around 6 mm in diameter (Figure 1). This plant has been named differently by different ethnics around the world (Table 1). It is a species under the genus Vernonia Schreb (Family: Compositae; Order: Asterales; S/C: Asteridae; Classes: Dicotyledons) which contains about 1000 species. More than 500 of these Vernonia plants are distributed in Africa and Asia, approximately 300 in Mexico, Central and South America and around 16 can be found in the United States.

However, the taxonomic ranking of this genus at all levels: ranging from its species up to the generic term can be a real challenge. Austin (2000) has found that even taxonomy of *V. amygdalina* from different geographical area (Ethiopia and Cameroon) could be different. One of the proposed solutions is through classification of the active chemical compounds, isolated from each species (Mabry et al., 1975). *V. amygdalina* produces a variety of flavonoids and bitter sesquiterpene lactones which contribute to the bioactivities of this plant (Nangendo et al., 2002; Favi et al., 2008). On the other hand, *V. amygdalina* is also commonly mis-identified as *V. colorata*. However, these two plants can be easily distinguished from each other by the hairy leaves of the
Figure 1. Photos of V. amygdalina. 1a. V. amygdalina shrub. 1b. 1c. Flower of V. amygdalina. 1d. Leaves of V. amygdalina. Geographical localisation: V. amygdalina nursery, Spektra Biotek Sdn Bhd, Kuala Selangor, Malaysia. 6-3-2010 by Mr. Liang Woon San.

latter (Iwu, 1993). Unlike other species under Vernonia family, V. amygdalina and V. ambigua are the only two species with diploid sets of chromosomes (2n = 40 and n= 20) (Ayodele, 1999).

V.amygdalina can be commonly found along drainage lines and in natural forests or at home and commercial plantations (Alem and Woldemariam, 2009). V. amygdalina is a common homestead farming vegetable and fodder tree in Nigeria (Ndaeyo, 2007) and has been used as an ingredient to prepare Nigerian (Ogbono soup) or Cameroon (Ndole) dish after removal of its bitter taste through soaking in several changes of water or by boiling (Koshimizu et al., 1993; Abosi and Raseroka, 2003; Onabanjo and Oguntona, 2003). In Ethiopian highland, V. amygdalina has been classified by the farmer as a multipurpose fodder tree with high biomass yield, easy propagation, high adaptability and high compatibility with other crops which do not compete with them for soil nutrients or moisture but instead help to improve the soil fertility and growth of perennial crops (Mekoya et al., 2008). V. amygdalina does not produce seeds in normal circumstances and is usually propagated by cuttings (Arene, 1972).

However, studies found that some white, fragrant and bee-infested flowers growing on copious corymbose panicles would be formed under drastic growth environment and the seeds from these flowers could then be thrived well in slightly acidic soil with low organic matter and high water holding capacity. Water is the key factor for the growth of its leaves. Thus, high yield can be obtained during rainy season. V. amygdalina is a short cycle crop which can be harvested twice per month for up to seven years. Planting V. amygdalina can be easy because it is compatible with
Table 1. Different local names of *V. amygdalina* in various countries.

<table>
<thead>
<tr>
<th>Nation</th>
<th>Local name</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Bitter leaf</td>
</tr>
<tr>
<td>Africa</td>
<td>Akpa gbo, Kossa fina, Mponasere, Ndumburghai, Njenyani, Oriwo</td>
</tr>
<tr>
<td>Cameroon</td>
<td>Ated nikol, Suwaaka</td>
</tr>
<tr>
<td>China</td>
<td>Ikaruga chrysanthemum tonsils, non-tree south</td>
</tr>
<tr>
<td>Democratic Republic of São Tomé and Príncipe</td>
<td>Libo Mucambu, Libo Que</td>
</tr>
<tr>
<td>Democratic Republic of Congo</td>
<td>Mpasi nyioso</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>Buzut, Giraw, Grawa, Ibicha</td>
</tr>
<tr>
<td>Gabon</td>
<td>Ndoki</td>
</tr>
<tr>
<td>Ghana</td>
<td>Awonoo, Awonwene, Jankpantire</td>
</tr>
<tr>
<td>Kenya</td>
<td>Olulusia, South Africa leaf</td>
</tr>
<tr>
<td>Malaysia</td>
<td>South Africa leaf</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Etidod, Ewuro, e jije, Onugbu, Olugbu, Shiwaka</td>
</tr>
<tr>
<td>Rwanda</td>
<td>Umubilizi</td>
</tr>
<tr>
<td>Swaziland</td>
<td>iNyatselo</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Mtugutu</td>
</tr>
<tr>
<td>Uganda</td>
<td>Ekibirizi, Labwori, Lubilili, Lubirizi, Omubirizi</td>
</tr>
<tr>
<td>Zimababwe</td>
<td>Musikavakadzi</td>
</tr>
</tbody>
</table>

(Abebe, 1984; Ajibesin et al., 2008; Akendengue and Louis, 1994; Appiah-Opoku, 1999; Asase and Oppong-Mensah, 2009; Boily and Puyvelde, 1986; Bukenya-Ziraba and Kamoga, 2007; Chhabra et al., 1989; Etkin, 2002; Geissler et al., 2002; Giday et al., 2003; Giday et al., 2009; Igile et al., 1994; Iwu, 1993; Kambizi and Afolayan, 2001; Katuura et al., 2007; Langloise-Klassen et al., 2007; Madureira et al., 2002; Nfi et al., 2001; Noumi and Yomi, 2001; Okoli et al., 2003b; Otshudi and Foriers, 2000; RGL enterprise, 2010; Stave et al., 2007; Tabuti et al., 2003a,b; Taiwo et al., 1999; Teklehaimanot, 2009).

any type of crop and can be planted in a variety of arrangements (Biggelaar and Gold, 1996).

Furthermore, the presence of bitter principles also protects *V. amygdalina* from most of the animals, insects and microbes where it only suffers from the attack by Coleoptera curculionidae, weevil *Lixus camerunus* and *Zonocerus variegates* (which utilized it as a source of protein) (Eluwa, 1979; Idowu and Idowu, 2001). The total area of leaf that is susceptible to insect attack ranges from 0.2 to 12% (Akachuku, 2001). Thus, this plant is suitable to be planted in either small or large scale as a source of income to farmers. The processed *V. amygdalina* was even exported to Europe and North America restaurants for preparation of African dishes (Fontem et al., 2003). *V. amygdalina* with just a little amount of processing can be classified as healthy food because it promotes the healthy development of the body. It contains not only the active drug molecules but also other substances that are necessary for maintaining health and physiological functions of the body without manifestation of toxicity (Iwu, 2002). As a result, *V. amygdalina* serves well as a low cost and readily available source of important nutrients to humans (Ojiako and Nwanjo, 2006).

Besides, this plant has also been widely used as fuelwood, stakes, fodder, construction poles, fencing of agroforestry buffer zone and as ingredient for compost. Due to its bitterness, it also can be used as a bittering agent, a hop substitute and for the control of microbial contamination in beer brewing without affecting the quality of malt. In Ethiopia, it is used to make honey wine called Tei (Babalola and Okoh, 1996; Biggelaar and Gold, 1996; Eleyinmi et al., 2004; Kasolo and Temu, 2008; Okoh et al., 1995; Uraih and Anetekhai, 1991).

The objective of this review paper is to equip researchers and the public who are making use of *V. amygdalina* with knowledge on the bioactivities, efficiency, efficacy and more importantly the safety of this herb.

BACKGROUND AND TRADITIONAL APPLICATION OF V. amygdalina

The usage of *V. amygdalina* as medicinal herb started when zoopharmacologists found that sick chimpanzees with empty stomach sucked pith and juice from the unsavoury *Vernonia* plant stalk (which was not their common diet) for self-deparasitization, enhanced body fitness, increased strength or appetite and reduced constipation or diarrhoea especially during rainy season (Clayton and Wolfe, 1993; Huffman and Seifu, 1989; Huffman et al., 2004; Kasolo and Temu, 2008; Okoh et al., 1995; Uraih and Anetekhai, 1991).
cultural and economic reasons (Amira and Okubadejo, 2007). The traditional practices of *V. amygdalina* are summarized in Table 2. Besides its use as a single herbal ingredient, *V. amygdalina* has also been incorporated as an important ingredient in traditional polyherbal formulations to treat various diseases (Table 3).

BIOACTIVITIES OF V. amygdalina

Antibacterial

Many experimental studies of *V. amygdalina*, have reported that this plant possesses antibacterial activity. Newbold et al. (1997) showed that this plant has mild antimicrobial effect on rumen bacteria and protozoa while Kambizi and Afolayan (2001) proved that acetone extract of *V. amygdalina* possesses antibacterial activity towards *Bacillus cereus*, *Bacillus pumilus*, *Bacillus subtilis*, *Micrococcus kristinae*, *Staphylococcus aureus*, *Enterobacter cloacae* and *Escherichia coli* growth with minimum inhibition concentration (MIC) of 5 mg/ml. Although, Cos et al. (2002) concluded that *V. amygdalina* was more sensitive towards the gram positive bacteria than gram negative bacteria; some researchers found that the activity of *V. amygdalina* against gram-negative bacteria was comparable to that towards the gram-positive species.

For instance, methanol extract of *V. amygdalina* did not only inhibit growth of the gram positive bacteria such as *B. cereus*, *B. pumilus*, *B. subtilis*, *E. cloacae*, *S. aureus* and *M. kristinae* but was also effective against gram-negative bacteria including *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, *Proteus vulgaris*, *Shigella dysenteriae* and *E. coli* (Akinpelu, 1999; Kambizi and Afolayan, 2001). Ethanolic extract from the plant also showed antibacterial effect against both gram-negative (*E. coli* and *Salmonella typhi*) and gram-positive (*Clostridium sporogenes*, *Staphylococcus pyogenes* and *S. aureus*) bacteria (Ogbulie et al., 2007; Kola, 2007). However, there were contradicting findings concerning the activity of *V. amygdalina* ethanol extract. Ogbulie et al. (2007) claimed that ethanol and Soxhlet extractions are the best solvent and the best method to give optimum antibacterial effect of this plant. Conversely, despite its inhibitory effect towards *S. aureus*, Pesewu et al. (2008) found that this extract could not inhibit the methicillin-resistant (MRSA UELSHB 102; UELSHB) and methicillin-sensitive (MRSA NCTC 6571) strains of the bacteria while chloroform, water and blender extract of *V. amygdalina* leaves showed low inhibitory effect towards its growth. Among all, only water and blender extract showed effect on *Streptococcus pyogenes*, *E. coli* and *P. vulgaris* with MICand minimum bactericidal concentration (MBC) higher than 50 mg/ml. On the other hand, *V. amygdalina* root water extract also showed antibacterial activity on *Streptococcus gordonii*, *Porphyromonas gingivalis*, *Porphyromonas nigrescens*, *Prevotella intermedia*, *Fusobacterium nucleatum* and *P. aeruginosa* with MIC at 100 mg/ml (Taiwo et al., 1999). Although not showing strong antimicrobial activities, its water extract still remain as the most common practice in traditional medicine and has demonstrated success in treating patients with sexually transmitted diseases (Kambizi and Afolayan, 2001). This may be due to the absence of upper limit in concentration of *V. amygdalina* consumption which contributes to the increased efficacy of this extract in traditional practices.

The antibacterial property of *V. amygdalina* was proved to be beneficial in a few applications. For example, Babalola and Okoh (1996) proposed that this plant may be suitable for use in beer industry, since it was able to inhibit the growth of *Bacillus circulans*, *Aerococcus viridans*, *Clostridium perfringens* and *Micrococcus sp* bacteria but promote alcohol production of brewer’s yeast while Kola (2007) claimed that the antibacterial activity of its ethanolic leaf extract against *C. sporogenes* was able to revert the blood, protein and bilirubin urinary to basal level and increase neutrophil and white blood cell count as well as packed cell volume (PCV) in blood, thereby reducing haemolysis caused by infection.

Besides, this plant has also been suggested for use as chewing stick to maintain oral health by dislodging cariogenic micro-organisms (Etkin, 2002), in line with the traditional use of this plant for mouth cleaning. Saliva extracted from *V. amygdalina* chewing stick can maintain oral cleanliness by contributing to gum healing, agalgesia, anti-sickling, haemostasis and antimicrobial activity and plaque inhibiting effect. This was supported by the finding that cold aqueous extract of *V. amygdalina* whole stem, bark and pulp extract showed bactericidal activity against the oral anaerobic bacteria: *Bacteroides gingivalis*, *B. asaccharolyticus*, *M. melaninogenicus* and *B. oralis* (Rotimi and Mosadomi, 1987).

Plants that are frequently used as medicine in traditional practices may not always portray high activity in the corresponding *in vitro* studies. This could be due to contribution from other therapeutic activities of the plant which eventually leads to healing of patients (Madureira et al., 2002). In some cases, the plant can also aid in augmenting the bioactivities possessed by other elements through an indirect way. A good example of this would be the application of *V. amygdalina* as a host to grow *Tapinanthus sessilifolius* which possesses antimicrobial effect and low LD50 on mice (692 mg/kg body weight) (Tarfa et al., 2004).

Antifungal

Most of the researches on antifungal activity of *V. amygdalina* focused on its water extracts. The water extract of *V. amygdalina* leaves can inhibit the growth of *Fusarium moniliforme* on seeds of maize (*Zea mays*) as well as mycelial and conidial growths of *Colletotrichum gloeosporioides* in rubber tree (Ogbebor et al., 2007;
Table 2. Ethnomedicinal usage of *V. amygdalina*.

<table>
<thead>
<tr>
<th>Country</th>
<th>Preparation</th>
<th>Aliments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethiopia</td>
<td>Leaves (not root)</td>
<td>Stomach disorder, skin wound, diarrhea, scabies, hepatitis, ascarasisis, tonsillitis, fever, mastitis, tapeworm and worms infection.</td>
</tr>
<tr>
<td></td>
<td>Leaves and root</td>
<td>Stomach ache (worm expulsion)</td>
</tr>
<tr>
<td>Democratic Republic of Congo</td>
<td>Leaves and root bark</td>
<td>Diarrhea, dysentery, gastroenteritis, malaria, hepatitis, worms infection</td>
</tr>
<tr>
<td>Ghana</td>
<td>Leaves decoction</td>
<td>Malaria, fever, constipation, abortifacient, stomach sores, ulcer, pain, upper respiratory tract infections and dermatitis.</td>
</tr>
<tr>
<td>Gabon</td>
<td>Leaves juice</td>
<td>Tinea</td>
</tr>
<tr>
<td></td>
<td>Leaves decoction</td>
<td>Cough</td>
</tr>
<tr>
<td>Guinea</td>
<td>Leaves decoction</td>
<td>Stomachache, gastrointestinal troubles, oral hygiene, itches, parasitic infection, ringworm, typhoid fever, headache, diabetes, constipation, pile (haemorrhoids) and reduces aflatoxin contamination of storage cobs.</td>
</tr>
<tr>
<td>Nigeria (Hausa tribe of northern)</td>
<td>Leaves, Root and twig</td>
<td>Malaria, helminthosis</td>
</tr>
<tr>
<td></td>
<td>Leaves Maceration of leaves drink many times for 1 day.</td>
<td>Intestinal diseases</td>
</tr>
<tr>
<td>Cameroon</td>
<td>Root</td>
<td>Schistosomiasis, infertility, amenorrhoea.</td>
</tr>
<tr>
<td>South Africa</td>
<td>Tea</td>
<td>Diuretic, skin infection, constipation, diabetes, metabolic diseases associated with liver Female infertility</td>
</tr>
<tr>
<td>West Africa</td>
<td>Stem, Root</td>
<td>“Wuoyo”, “Mbaha”, diarrhoea, “Sihoho” stomachache, bloat, east coast fever, footrot, trematode</td>
</tr>
<tr>
<td>Senegal</td>
<td>Leaves</td>
<td>“Wuoyo”, “Mbaha”, diarrhoea, “Sihoho” stomachache, bloat, east coast fever, footrot, trematode</td>
</tr>
<tr>
<td>Guruve, Zimbabwe</td>
<td>Root</td>
<td>Sexually transmitted disease</td>
</tr>
<tr>
<td>India</td>
<td>Leaves</td>
<td>Diabetes</td>
</tr>
<tr>
<td></td>
<td>Stem, Root</td>
<td>HIV (reduce fever, rash, pain, cough, stomachache) Measles, amoebiasis, influenza and mastitis infection.</td>
</tr>
<tr>
<td>Uganda</td>
<td>Leaves</td>
<td>Convulsions, cough, painful uterus, inducing uterine contraction, management of retained placenta and post partum bleeding, induced abortion, irregular or painful menstruation, infertility, colic pains bacterial and fungal infections</td>
</tr>
<tr>
<td></td>
<td>Root/Leaves</td>
<td></td>
</tr>
<tr>
<td>Rwanda</td>
<td>Leaves, Fruit</td>
<td>Diarrhea, gastroenteritis, hepatitis, dysentery, malaria, worms infection.</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Leaves</td>
<td>Snake bite (chew), fever, stomachache, as appetizer</td>
</tr>
<tr>
<td></td>
<td>Root</td>
<td>Trematode</td>
</tr>
</tbody>
</table>

(Abebe, 1984; Abo et al., 2008; Adjanohoun, 1993; Agyare et al., 2009; Ajaiyeoba et al., 2003; Ajibesin et al., 2008; Akendengue et al., 1994; Akinpelu, 1999; Arno et al., 2006; Appiah-Opoku, 1999; Asase et al., 2005; Aucha et al., 2005; Chhabra et al., 1989; Geissler et al., 2002; Giday et al., 2003; Innocent and Deogracious, 2006; Kamatene-Mugisha, 2005; Kambizi and Afolayan, 2001; Osbome and Yomi, 2001; Otshudi and Foriers, 2000; Pesewu et al., 2008; Ssegawa and Kasenene, 2007; Steenkamp, 2003; Teklehaymanot et al, 2007; Tabuti et al., 2003b; Teklehaymanot, 2009; Udoh et al., 2000; Vlietinck et al., 1995; Wondimu et al., 2007; Yineger et al., 2007).
Table 3. Polyherbal formulation of *V. amygdalina* in traditional practice.

<table>
<thead>
<tr>
<th>Medicinal use</th>
<th>Polyherbal</th>
<th>Preparation</th>
<th>Practice</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria</td>
<td>Roots of V. amygdalina, stem bark of Sapium ellipticum, leaves of Dalbergia nitidula, Desmodium salicifolium and Eriosema psoraleoides</td>
<td>Boiling</td>
<td>Drinking</td>
<td>Tanzania</td>
</tr>
<tr>
<td></td>
<td>V. amygdalina, Momordica foetida, Cannabis sp., Chenopodium opulifolium, Mangifera indica and Tamarindus indica</td>
<td>Boiling</td>
<td>Adult: 100 to 500 ml, children above 5 years: 100 to 250 ml and children younger than 5 years: 1 to 3 tablespoons) 1 to 3 times daily for 1 to 3 days</td>
<td>Uganda</td>
</tr>
<tr>
<td></td>
<td>V. amygdalina and Citrus limon, leaves of Markhamia lutea, tetradenia riparia and Vernonia amygdalina</td>
<td>Boiling or squeezing in cold water</td>
<td>Drinking or hot bath</td>
<td>Uganda</td>
</tr>
<tr>
<td>Antrax infection</td>
<td>Leaves of V. amygdalina, bark of K. senegalensis A. Juss, and S. incanum Linn</td>
<td>Grind with water</td>
<td>Drinking (35 ml) 3 times daily</td>
<td>Nigeria</td>
</tr>
<tr>
<td>Worm infection in cattle and chicken</td>
<td>V. amygdalina and Anona senegalensis</td>
<td>Water extract (1.17g/100ml water)</td>
<td>Drinking</td>
<td>Nigeria</td>
</tr>
<tr>
<td></td>
<td>Leaves of V. amygdalina, Elytraria marginata, whole plant of peperomia pellucida and seed of Piper guineensis</td>
<td>Soup</td>
<td>Three tablespoonfuls twice daily</td>
<td>Nigeria</td>
</tr>
<tr>
<td></td>
<td>V. amygdalina and Ocimum gratissimum fresh leaves and Butyrosperum paradoxum</td>
<td>Topical application on skin twice daily after bath</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measles</td>
<td>Leaves of Newbouldia laevis, Momordica charantia, Vernonia amygdalina and Ocimum gratissimum</td>
<td>Boiling</td>
<td>Drinking three times daily</td>
<td>Nigeria</td>
</tr>
<tr>
<td></td>
<td>Leaves of V. amygdalina and Ocimum gratissimum</td>
<td>Soak into palm wine (24h)</td>
<td>One teacupful twice daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leaves of V. amygdalina</td>
<td>Soaked in alcohol</td>
<td>One teaspoonful once daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td>leaves of Chenopodium opulifolium, Cannabis sativa and V. amygdalina</td>
<td>Infusion with salt</td>
<td>Soup</td>
<td>Uganda</td>
</tr>
<tr>
<td></td>
<td>Leaves of V. amygdalina</td>
<td>Infusion with salt</td>
<td>Drinking</td>
<td>Uganda</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>Preparation</td>
<td>Dosage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaves of V. amygdalina</td>
<td>Squeezed to produce juice and mixed with salt</td>
<td>Drinking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaves of V. amygdalina</td>
<td>Squeezed with water</td>
<td>Drink twice daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaves of Peperomia pellucida, Ocimum gratissimum and V. amygdalina</td>
<td>Squeezed with water</td>
<td>Drinking with glass cup thrice daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits of Bidens pilosa fruits and leaves of Vernonia amygdalina</td>
<td>Soaked in water</td>
<td>One glass cup three times daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernonia amygdalina mixed with potash salt and honey</td>
<td>Juice</td>
<td>One cup every morning and night</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaves and roots of Vernonia amygdalina, Momordica charantia, Carica papaya, Bidens pilosa and Ocimum gratissimum.</td>
<td>Soaked in alcohol</td>
<td>One glass cup of essence thrice daily.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaves of Macaranga barteri, Ageratum conyzoides and Vernonia amygdalina</td>
<td>Squeezed with water</td>
<td>Drinking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaves of Vernonia amygdalina and bulb of Allium cepa</td>
<td>Soaked in water for 5 days</td>
<td>One glass cup daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeds of Bidens pilosa seeds, leaves of Vernonia amygdalina, fruits of Momordica charantia, leaves of Ocimum gratissimum and bark of Alstonia congensis.</td>
<td>Soaked in local alcohol</td>
<td>Drinking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaves of Vernonia amygdalina, seeds of Bidens pilosa and roots of Uvaria afzelii</td>
<td>Soaked in water</td>
<td>One cup of macerate three times daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stem and bark of Bridelia micrantha, leaves of Vernonia amygdalina and Ocimum gratissimum</td>
<td>Squeezed with water</td>
<td>Drinking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaves of Vernonia amygdalina and Ocimum gratissimum.</td>
<td>Squeezed with water</td>
<td>Drinking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaves of Vernonia amygdalina, fruits of Croton lobatus and leaves of Macaranga barteri</td>
<td>Boiled with water</td>
<td>One glass cup daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaves of Vernonia amygdalina and Glyphphaea brevis</td>
<td>Boiled with water for 20 min (decoction)</td>
<td>Drinking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaves of Allium sativum, Vernonia amygdalina, Ocimum gratissimum, and potash</td>
<td>Boiled with water</td>
<td>One glass cup daily</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. contd

Aprophylaxis	Leaves of V. amygdalina and Talinum cuneifolia (Vahl) wild	Cold water extract	Drinking
Diarrhea on animal	Roots of Kalimi kambwa, Harrisonia abyssinica and V. amygdalina	Infusion added with salt	Drinking
Cough	Leaves of Chenopodium opulifolium, Senna occidentalis and V. amygdalina	Infusion	Drinking
Bronchitis	Leaves of V. amygdalina, Cannabis sativa L., fruit of Capsicum frutescens L., and fruit peelings of Citrus limon (L) Burm. F	Decoction	Drinking
Bacillary white diarrhoea, Fowl pox, Coccidiosis and Newcastle diseases	Leaves of V. amygdalina, Aloe sp and Moringa oleifera Lam.	Cold water extract	Drinking
	Leaves of V. amygdalina, Aloe sp, Jatropha carcus L. and bark of Allium sp	Decoction	Drinking
	V. amygdalina, Moringa oleifera Lam., root of Kalanchoe densiflora Rolfe, root and bark of Mangifera indica L.	Decoction	Drinking
Wound healing	Leaves of V. amygdalina, Aspillia pluriseta	Pounded	Drinking
Schistosomiasis	V. amygdalina, root of Vigna sinensis	Cold infusion	Drinking

(Alawa et al., 2002; Bukenya-Ziraba and Kamoga, 2007; Gbolade, 2009; Hakizamungu et al., 1992; Moshi et al., 2009; Sonibare et al., 2009; Tabuti et al., 2003a).

Cold water extract of stem bark and root bark (but not leaves) was able to inhibit Colletotrichum capsici (Synd) isolated from pepper (Nduagu et al., 2008). On the other hand, the juice of V. amygdalina showed stronger effect than its cold water extract where its juice could more effectively inhibited seed borne fungi (F. moniliforme, Botryodiplodia theobromae, Aspergillus niger and Aspergillus flavus in vitro and in vivo (Nwachukwu and Umehuruba, 2001).

In crop industry, hot water extract of V. amygdalina was able to help to control the infection of Sclerotium rolfsii and increased the plant height, shelf life, relative water content, chlorophyll content, leaf area index, number of branches, total dry matter, number of pod per plant, weight and also grain yield on cowpea. However, it induced phytotoxic effect where it reduced the recoverable of photosynthethates and transpiration rate of the treated plant. This feature can be used to maintain high water content in cowpea seedlings through antitranspirants during dry seasons for its survival (Alabi et al., 2005b).

Aside of water extract, only methanol extract of V. amygdalina was reported to show strong antifungal activity on Pseudoperonospora cubensis and mild activity on Rhizoctonia solani (O-Oigashi et al., 1991b). Interestingly, the ash from V. amygdalina also possesses antifungal property where it was shown to inhibit the growth of Sclerotium rolfsii Sacc. mycelial growth on wheat and protected seedlings against post-emergence infection through inhibition of fungal growth within the root and crown zones. This effect was contributed by the high nitrogen level in the ash of V. amygdalina which could directly inhibite sclerotal germination and retarding mycelial growth of S. rolfsii (Enikuomehin et al., 1998).

In contrary to antifungal property, Okigbo and Emoghene (2003) have found that leaves extract of V. amygdalina can be metabolized by Mycospharella fijiensis for growth and induction of sporulation.
Antiparasite activity

From literature, it can be noted that V. amygdalina is a powerful plant which shows apparent inhibitory activity against a wide range of parasites. The methanolic extract of this plant possessed antitrichomoniasis activity with 100% of inhibition against Trichomonas vaginalis (Hakizamungu et al., 1992). The methanolic and aqueous leaves extract also possessed antimicrobial activity at 10 to 500 µg/ml with 20 to 80% inhibition against Entamoeba histolytica after 3 to 4 days incubation (Otshudi and Foriers, 2000; Moundipa et al., 2005). On the other hand, its chloroform and methanol extracts showed antileishmanial effect towards amastigotes and promastigotes (Leishmania aethiopica) (Tadesse et al., 1993; Carvalho and Ferreira, 2001). Five consecutive days i.p. injection of 1mg/kg petroleum ether and ethanolic leaf extracts V. amygdalina possessed antischistosomiasis effect (72.3 and 83.61% reduction of parasite load) on mice infected with Schistosoma mansoni type cercariae. In addition, single prophylactic (1 mg/kg) dose of petroleum ether or ethanolic leaf extracts of V. amygdalina also reduced 34.06% and 44.57% of parasite load respectively (Ogboli et al., 2000).

Leaves extract of V. amygdalina was also able to reduce nematode populations and thus enhanced the growth of cacao seedling in nursery (Orisajo and Dongo, 2005). Powder and water extracts of V. amygdalina were able to inhibit root knot nematode (Meloidogyne incognita) on sesame Ceratotheca sesamoides Endl (Oyedunmade and Olabiyi, 2006; Oyedunmade and Chukwu, 2007). Decomposition in the root and soil of the V. amygdalina plants were found to significantly reduce population density of root-knot nematodes. Thus, this plant is suitable to be co-planted with other crops in order to manage nematode population in plantations (Afouda et al., 2008).

The ethanolic extract of V. amygdalina was mild toxic towards the intestinal threadworm Strongyloides papillosus with LC50 0.49 and 0.2% (weight/volume) at 24 and 48 h respectively (Musongong et al., 2004). Its aqueous extract on the other hand, was able to reduce faecal egg count of ascarids (Toxocara canis) and hookworm (Ancylostoma caninum) in treated puppies (Adedapo et al., 2007). This effect was contributed by the major active constituents’ vernoldalin (bitter tasting constituent) and vernonioside B1 (non-bitter principle) (Koshimizu et al., 1994). Furthermore, its water extract (1 mg/ml) was able to depress faecal egg output and reduce adult worm population of Ascaridia galli in the host (Siamba et al., 2007). On top of these, V. amygdalina also showed a few other major antiparasitic activities which will be discussed in more detail in the following sections.

Antihelmintic activity

The antihelmintic property of V. amygdalina was observed when the juice from its pith was found to reduce the number of Oesophagostomum stephanostomum eggs in the dung of chimpanzee (Huffman et al., 1997). Anthelmintic efficacy of V. amygdalina in ethnobotanical study was found to be 52.4% (Nfi et al., 1999). Alawa et al. (2000; 2003) had previously reported that the hot water extract of V. amygdalina did not possess antihelminthic effect against Haemonchus contortus and Trichostrongylus colubriformis. They hypothesised that the traditional antihelminthic claim of this plant extract maybe contributed by the cleansing of gastric and intestines through increase of smooth muscle motility.

However, the high extraction temperature and pressure may degrade all the active compounds which further lead to activity against the larvae. In another research carried out by Molgaard et al. (2001), the leaves including stem, root and root bark of V. amygdalina water extract effectively killed cestodes of Hymenolepis diminuta after 24 h of treatment. Abdul et al. (2000) suggested that dissolving V. amygdalina water extract in potash (potassium carbonate) is needed in the case of worm treatment. Besides, methanolic extract of V. amygdalina possessed median effective dose (ED50) at 3.5 mg/ml against Ascaris suum. This extract killed 50% of Ascaris after 12 h at 6 mg/ml (Innocent and Deogracious, 2006).

Antimalaria/ antiplasmodial activity

The ethanol, petroleum ether, dichloromethane, ethyl acetate, acetone-water and isooamyl alcohol extracts of V. amygdalina, showed antimalarial activity against Plasmodium falciparum (Dd2) in vitro (Madureira et al., 2002; Masaba, 2000; Tona et al., 2004). The root extract of V. amygdalina displayed mild activity against chloroquine-sensitive P. falciparum with IC50 of 19 µg/ml but no activity against the chloroquine-resistant strain (Froelich et al., 2006). P. falciparum is a parasite that can lead to the most pathogenic form of human malarial which is one of the most dangerous infectious diseases endangering human lives (Anderson et al., 2000).

This antimalarial effect of V. amygdalina is contributed by its active compounds, or more specifically sesquiterpene lactones such as vernolepin, vernolin, vernolide, vernoldalin and hydroxyvernoldalin which exhibited antiplasmodial activity of IC50 value lower than 4 µg/ml (Tona et al., 2004). Besides, Masaba (2000) discovered that acetone-water extract from V. amygdalina leaves showed lower IC50 value (25.5 µg/ml) against P. falciparum than water extract (76.7 µg/ml) after 48 h. The relatively lower bioactivity of water extract as compared to solvent extraction explains why larger quantity (100 to 200 ml) of V. amygdalina decoction is used in traditional practices for defeating the disease. Besides P. falciparum, V. amygdalina is also effective against another species of Plasmodium protozoa which serves as the causative agent of malaria. Ethanolic
leaves and root extract of *V. amygdalina* exerted *in vivo* suppressing effect against *P. berghei* at early stage of infection with ED50 125 mg/kg body weight for leaves and 250 mg/kg for root extract after 3 days treatment. However, the extracts failed to remove the infection completely (Abosi and Raseroka, 2003). Besides, aqueous extract from its leaves also inhibited 73% of *P. berghei* on mice when administrated at 200 mg/kg i.p. daily for 4 days (Njjan et al., 2008).

Furthermore, Iwalokun (2008) showed that this aqueous leaves extract (62.5, 125 mg/kg) was able to work synergistically with chloroquine (5 and 30 mg/kg) against both chloroquine-sensitive and resistant *P. berghei* to shorten the parasite clearance time, prolong the recrudescence times and improve curing rate. The study has also suggested that administration of *V. amygdalina* ethanol extract 1 h prior to chloroquine intake can avoid the the reduction in chloroquine bioavailability (Igboasoijia et al., 2008).

Antiviral activity

Ethanol extract of the fruit (which is rarely found on most of the *V. amygdalina* shrub) possessed antiviral effect on polio virus (Vlietinck et al., 1995).

Pesticidal or Insecticidal activity

Methanol extract of *V. amygdalina* leaf induced 50% of mortality on *Spodoptera litura* through deterrent of feeding activity at 2 mg/ml and induced 50% of mortality on *Culex pipiense* pallense at 10 µg/ml (Ohigashi et al., 1991b). *V. amygdalina* powder possessed pecticidal activity against *Sitophilus zeamais* (LC50 = 0.3 g) and *Callosobruchus maculates* (LC50 = 0.39 g).

The principle of this effect may be due to the presence of hydrocyanic acid and oxalic acid. However, concentrated extract was recommended to give better response (Kabeh and Jalingo, 2007). One to five grams of *V. amygdalina* dry leaf powder was able to control the growth of *S. zeamais* and *Sitophilus oryzae* on stored maize grains and rice (Enobakhare and Law-Ogboro, 2002; Law-Ogboro and Enobakhare, 2007).

Anticancer and cytotoxic effect

Cold water extract of *V. amygdalina* leaf extract exhibited cytostatic action on MCF-7 cell growth and DNA synthesis (Izevbegie, 2003; Izevbegie et al., 2003; Izevbegie et al., 2004) through down regulation of extracellular signal-regulated protein kinase (ERK) signaling (Izevbegie et al., 2003; Izevbegie et al., 2004), induction of cytochrome P450 3A4 (CYP3A4) and microsomal epoxide hydrolase expression (Howard et al., 2003) and alteration of cell membrane permeability and efflux (Opata and Izevbegie, 2006). The aqueous extract when combined with tamoxifen was able to reduce 10-fold less concentration of tamoxifen to inhibit 50% of cell growth (Izevbegie et al., 2005). In addition, exposure of aqueous extract of *V. amygdalina* at 100 to 300 µg/ml was also able to reverse the ethanol-induced stimulatory response in paclitaxel-sensitive and resistant human breast cancer cell MCF-7 (Howard et al., 2006). These results suggest that *V. amygdalina* may prevent or delay the onset of breast cancer.

However, other researches also reported that cold water extract of the plant possessed moderate cytotoxicity effect with IC50 at 218 µg/ml (Opata and Izevbegie, 2006) or even without IC50 at 1 ~ 2 mg/ml (Yedjou et al., 2008) against MCF-7 cell. This was believed to be attributed by batch variation of the extracts (Opata and Izevbegie, 2006). Liquid chromatography separation indicated that the active constituents of the various solvent fractionated extract showed similar retention times of approximately 2 min. This suggested that HPLC peaks of approximately 2 min may serve as a predictive tool for monitoring the activities of *V. amygdalina* extract (Oyugi et al., 2009).

Aqueous extract of *V. amygdalina* also showed increasing effect against the growth of estrogen receptor negative ductal carcinoma (BT-549) cell line in a concentration dependent fashion with IC50 at 1000 µg/ml through inhibition of DNA synthesis. Although the inhibition concentration was high, *V. amygdalina* has been consumed in large quantities without reported cases of toxicity and thus may be suitable for incorporation into the diet of cancer patients to improve their prognosis or quality of life (Gresham et al., 2008; Robinson et al., 2009). Cold water, hot water and ethanol extract were found to induce apoptosis against acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) from the patients with IC50 ranging between 5 to 10 µg/ml. Ethanol extract was found to be most effective against both ALL and AML when compared to cold and hot water extract (Khalafalla et al., 2009). Petroleum ether/ethyl acetate leaf extract also possessed cytotoxic effect towards human hepatoblastoma (HepG2) and urinary bladder carcinoma (ECV-304) cell lines (Froelich et al., 2006).

Moreover, four-week exposure of *V. amygdalina* water extract (10 to 100 µg/ml/day of mice) was chemoprotective against exposure to alcohol through reduction of CYP1A2 expression (Howard and Samuel, 2005). Chloroform and methanol extract were also active against human leukaemia monocyte THP-1 cell line with IC50 19.1 and 243.4 µg/ml, respectively (Carvalho and Ferreira, 2001; Tadesse et al., 1993).

Antimutagenic acitivity

Organic solvent extracts of *V. amygdalina* had inhibitory effect (higher than 60%) towards His- to His+ reverse-
mutations on \textit{Salmonella typhimurium} TA100 induced by ethyl methanesulfonate. The most effective extract was petroleum ether followed by methanol and ethyl acetate extracts. However, all the extracts induced toxicity against \textit{S. typhimurium} when high concentrations were applied (Obaseiki-Ebor et al., 1993).

Antifertility activity

Ethanol extract of its leaves possessed uterotonic (2%) and anti-implantation (1.54 g/kg) effect (Desta, 1994).

Anticoagulant and antithrombic activities

\textit{V. amygdalina} caused reduction of blood pressure and Vernolepin isolated from this plant was identified to cause antiplatelet activity. Methanolic extract of \textit{V. amygdalina} at 100 and 200 mg/kg induced 40 and 50% inhibition against thrombosis in mice. This may be due to the inhibition of platelet aggregation but the mode of action such as the effect on thromboxane A2 formation and on the level of cyclic AMP in platelets is still unknown (Awe et al., 1998; Igboechi et al., 1984).

Analgesic (reduce pain) and antipyretic (lowering body temperature) effect

Aqueous leaves extract and ethanol root extract of \textit{V. amygdalina} exhibited antipyretic effect, central and peripheral analgesic effect against acetic acid induced writhing, as well as protective effect on formalin and pentyleneetetrazole-induced lethality (Iroanya et al., 2010; Njan et al., 2008; Onah and Okokon, 2004; Tekobo et al., 2002).

Anti-inflammatory activity

Leaf aqueous extract of \textit{V. amygdalina} was able to inhibit carrageenan induced rat paw oedema and xylene induced ear oedema in treated rats (Iroanya et al., 2010). Ethanol extract (25 to 100 µg/ml) of \textit{V. amygdalina} was also able to inhibit polymorphonuclear cell and mononuclear cell activity without affecting the cell viability (Koko et al., 2008).

Antioxidant

\textit{V. amygdalina} ethanol extract was shown to possess antioxidant activity from DPPH radical scavenging test (Ayoa et al., 2008). Total flavonoid and phenolic contents was found to be correlated positively with total antioxidant activity of the plant. At 250 µg/ml, ethanol extract of \textit{V. amygdalina} showed highest reducing capacity and DPPH radical scavenging activity effect as compared to the same concentrations of its isolated compounds vernodalol and vernolide. This result suggested that the comparatively higher antioxidant activity of \textit{V. amygdalina} ethanol extract may be the result of synergistic effect brought about by both the compounds (Erasto et al., 2007a).

Comparing DPPH radical scavenging activity of different extracts from the root of \textit{V. amygdalina}, ethanol was found to be the best extraction which can inhibit 77% of scavenging activity followed by hot water (63%) and cold water (49%) at 1 µg/ml. Also, all the extracts were able to inhibit bleaching of B-carotene, oxidation of linoleic acid and lipid peroxidation induced by Fe$^{2+}$/ascorbate in a rat liver microsomal preparation (Owolabi et al., 2008; Khalafalla et al., 2009). On the other hand, another study showed that methanol exhibited highest antioxidant activity followed by acetone and water extract (Erasto et al., 2007b). The antioxidant capacity of the methanolic extract was able to protect membrane stability in hemagglutination test (Iwalewa et al., 2005).

This plant contains natural antioxidants against aqueous radicals and reactive species ions (Erasto et al., 2007b). Boiling, sun-drying and blanching processes were found to reduce ascorbic acid content of the plant (Oboh and Akindahunsi, 2004; Oboh, 2005; Odukoya et al., 2007). Blanching of the plant also reduced its reducing capacity and free radical scavenging property but enhanced the taste and reduced toxicity of \textit{V. amygdalina} (Oboh, 2005). In spite of the reduction in ascorbic acid content, the total phenolic content, reducing power and free radical scavenging ability of the plant was significantly increased. Thus, it can be concluded that vitamin C does not play the role as an important antioxidant agent in this plant.

Liver protective

Oral administration of the aqueous extract from \textit{V. amygdalina} leaves could accelerate the reversion of liver damage through reduction of liver marker enzymes, including aspartate aminotransferase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP), glutamate-oxaloacetate transaminase, glutamate-pyruvate transaminase, lactate dehydrogenase and bilirubin indices in liver biochemical tests (Arhoghro et al., 2009; Iwalokun et al., 2006). Histopathological examination showed that as low as 15% of extract could even completely revert liver change to normal in the treated animals (Arhoghro et al., 2009). Adesanoye and Farombi (2009) reported that oral administration of methanolic extract (at 250 to 750 mg/kg body weight) on mice with or without carbon tetrachloride (CCL4) increased the level of liver marker enzyme ALT, AST, SALPO but reduced the γ-GT, cholesterol and TG content of the CCL4 treated rat. In another research, higher concentration of the extract was administered (800
mg/kg body weight) for nine weeks (four weeks pre-radiation and five weeks post-radiation). This study however showed decrease of AST, ALT, ALP, conjugated or non-conjugated bilirubin, serum or liver lipid peroxidation level in the treated mice. The methanol extract was claimed to protect the liver against damage of reactive oxygen species (ROS) with increase in the protein and glutathione content of animals radiated by 400 rads of γ radiation (Adaramoye et al., 2008b).

All of the above studies agreed that both methanolic and aqueous extract of *V. amygdalina* was able to enhance the liver antioxidant level (Adaramoye et al., 2008b; Adesanoye and Farombi, 2009; Iwalokun et al., 2006). Sesquiterpene lactones extracted from *V. amygdalina* were found to be the major contributor to the liver-protective effect of this plant, against CCL4 induced toxicity (Babalola et al., 2001).

Antidiabetic effect

Diabetes mellitus is a chronic disease which affects millions of people worldwide and the prevalence of this disease was projected to reach 300 million before year 2025 (Erasto et al., 2009). *V. amygdalina* was the most popular antidiabetic traditional herbal remedy in Nigeria (Gbolade, 2009). Water and n-hexane/isopropanol extract of the plant had been reported to enhance the glucose utilization of muscle and liver cell cultures but not on adipose cells (Erasto et al., 2009). Scientific studies have confirmed the antidiabetic potential of *V. amygdalina* where oral intake of hot water *V. amygdalina* leaves extract (500 mg/kg) reduced blood glucose concentration of both normoglycaemic and hyperglycaemic rats induced by alloxan (Osinubi, 2007). Consumption of *V. amygdalina* through means of squeeze-wash-drink and raw chewing by normal human subjects were found to control postprandial blood glucose without inducing severe hypoglycemic effect (Okolie et al., 2008). Besides, oral administration of *V. amygdalina* aqueous extract also did not induce severe hypoglycemic effect on non-diabetic rats (Taiwo et al., 2009).

However, its cold water leaf extract was also able to trigger hypoglycaemic, hypolipidaemic and antioxidant effect by reducing fasting blood glucose and triglyceride level in diabetic rats induced by glucose, streptozotocin and alloxan monohydrate (Akah et al., 2004; Nwanjo, 2005; Taiwo et al., 2009). Besides, this extract could also lower plasma oxidation stress (plasma malondialdehyde level) and LDL-cholesterol but not total cholesterol and HDL-cholesterol level of streptozotocin induced diabetic rats (Nwanjo, 2005). Furthermore, one week oral administration of *V. amygdalina* root water extract can ameliorate plasma glucose, triacylglycerol, cholesterol and β-hydroxybutyrate level of diabetic rat induced by alloxan monohydrate while longer feeding period (7 weeks) of its ethanolic root extract brought about hypoglycaemic, hypoproteinaemic, hypcholesterolaemic and hypolipidaemic properties, against the alloxan induced diabetic rats (Nimenibo-Uadia, 2003; Igbakin and Oloyede, 2009).

On the other hand, ethanol leaf extract of *V. amygdalina* also showed kidney protection and liver protection activities, on top of its hypoglycemic property. This extract was proved to reduce glucose, urea, creatinine, potassium, sodium, chloride and aminotransferase activity in serum and regenerated glomerular tuft, endothelial cells, glomerular capsule and juxtaglomerular of kidney when administered to alloxan induced diabetic rats. The antioxidant activity of *V. amygdalina* was proposed to augment the protective effect on kidney, pancreatic β cell and liver regeneration. Pancreatic β cell regeneration may further help to reduce serum glucose level thereby overcoming hyperglycemia (Atangwho et al., 2007a; b).

Oral administration of 100 mg/kg of *V. amygdalina* methanol extract reduced fasting blood glucose after 2 h but it did not cause hypoglycemic effect on the mice (Ogundipe et al., 2003). However, methanol extract (200 and 400 mg/kg b.w.) of its fermented black tea was shown to possess better antihyperglycemic effect than the unfermented green tea on rats and this effect was further enhanced when flavored with *Ocimum basilicum* and *Ocimum gratissimum* (Okafor et al., 2009).

V. amygdalina reduced the plasma glucose of normal and streptozotocin induced diabetic rats. This may be due to high content of non-starch polysaccharides, that can reduce postprandial blood glucose adsorption or interaction between its secondary metabolites which may contribute to both the enhancement in pancreatic insulin production and in mechanism similar to that of insulin on glucose metabolism (Okolie et al., 2008; Taiwo et al., 2009).

Osinubi (2007) proposed that sesquiterpene lactones and the bitter principle of the plant may be responsible for insulin production, stimulation and release of pancreatic islets from the beta-cells. Moreover, extracts from this plant may also work well with some other type of herbs or even antidiabetic drugs, to bring about improved efficacy. Ebong et al. (2008) had reported that *V. amygdalina* worked synergistically with *Azadirachta indica* to reduce blood sugar and protect the liver more effectively. Besides, the aqueous extract (250 mg/kg b.w.) also enhanced the hypoglycemic effect by tolbutamide (25 mg/kg b.w.) on both diabetic and non-diabetic rats (Taiwo et al., 2009).

On the other hand, tannin, flavonoids glycosides and phytoestrogens of the plant may also act as alpha glucosidase inhibitor which contributed to the hypoglycemic effect of the plant. However, the significant reduction of serum sodium and potassium in diabetic rats, fed with its ethanol extract indicated a possible induction of dilutional hyponatraemia as a side effect (Atangwho et al., 2007a; b).
Hypolipidemia effect

Methanolic extract of *V. amygdalina* leaves also exerted hypolipidemic effect through interference with the lipid metabolic pathway which successfully reduced the plasma and post-mitochondrial fraction cholesterol, low-density lipoprotein (LDL), triglyceride and lipid peroxidation (LPO) level and increased the plasma HDL level (Adaramoye et al., 2007; 2008a; 2009). Ethanol extract of the plant was also able to reduce body weight by decreasing triglyceride level (Ekpo et al., 2007).

Other activities

Despite the wide range of bioactivities depicted by *V. amygdalina*, the plant also showed no activity in certain studies. In a clinical survey carried out in Nigeria, *V. amygdalina* was found not helpful to the hypertensive patients (Amira and Okubadejo, 2007). Juices from its leaves also did not show anti-tick effect against *Boophilus decoloratus* (Regassa, 2000). Besides, *V. amygdalina* was found not affecting the rumen micro-organism activity but was then suitable to be used as animal feed (Osuji and Odenyo, 1997). For example, powder of *V. amygdalina* leaf was able to increase feed conversion efficiency of cockerels without affecting their haematological profile (Olobatoke and Oloniruha, 2009). Nevertheless, the usefulness of *V. amygdalina* was not only beneficial for medical and healthcare purposes but it also serves as a low cost, environmental friendly, readily available and non-toxic natural inhibitor for the corrosion of mild steel in HCL and H$_2$SO$_4$, as well as aluminium alloy in HCL and HNO$_3$ (Abdel-Gaber, 2006; Avwiri and Igbo, 2003; Loto, 1998; Odiongenvi et al., 2009).

CHEMICAL COMPOSITION OF *V. AMYGDALINA*

V. amygdalina was found to contain 21 to 23% of dry matter (Fafunso and Bassir, 1976; Iton and Bassir, 1980). Out of the dry matter, it contained 6.5 to 29.2% of crude fibre content (Alabi et al., 2005a; Antia et al., 2006; Iton and Bassir, 1979; 1980; Oboh, 2006; Okoli et al., 2003a) and 0.137% of chlorophyll content with 75% of chlorophyll-a (Faboya, 1985). Higher hemicellulose was found in the dry than the fresh leaves of *V. amygdalina* (Bonsi et al., 1995a; b; Okoli et al., 2003a). *V. amygdalina* contains crude protein (17 to 33 g/100g DW) (Iton and Bassir, 1980; Mekoya et al., 2008; Oboh, 2006; Okoli et al., 2003a) and fat (2 to 15 g/100g DW with 24.54% saturated and 65.45% polyunsaturated. oleic acid was the major monounsaturated fatty acids) (Alabi et al., 2005a; Eleyinmi et al., 2008; Iton and Bassir, 1980; Oboh, 2006). Due to its high content of crude protein, it was found to be a good source of protein. High amount of protein is essential for animal growth and increased milk production (Oke, 1965; Tangka, 2003). It was found that *V. amygdalina* leaves, when added to soybean meal was the best infant weaning food which helps to gain weight (Agbede et al., 2007).

High ash content (10 to 13 g/100g DW) (Alabi et al., 2005a; Faboya, 1983; Iton and Bassir, 1979; Iton and Bassir, 1980; Mekoya et al., 2008; Oboh, 2006; Okoli et al., 2003a) reflected the useful mineral contents (calcium, chlorine, chromium, copper, ferum, potassium, iron, magnesium, manganese, nickel, phosphorus, potassium, sodium, sulphur and zinc) that are present in this plant (Alabi et al., 2005a; Faboya, 1983; Gbaruko and Friday, 2007; Iton and Bassir, 1979; 1980; Oboh, 2006). Ash of *V. amygdalina* contained high content of nitrogen, phosphorus and other types of exchangeable bases (Calcium, Magnesium, Sodium and potassium) (Enikoumehin et al., 1998). High concentration of sulphur is important for detoxification of cyanide while low sodium content is suitable for obese patients (Iton and Bassir, 1979). The nutritive values of young and mature leaves did not differ significantly (Akachuku, 2001). Abrasion of the leaf caused a significant decrease, in both the nutrient and antinutrient content of the leaf except in carbohydrate (Oboh, 2006).

On the other hand, high sugar (raffinose, lactose, sucrose, glucose, galactose, fructose, maltose and arabinose) (Alabi et al., 2005a; Iton and Bassir, 1980), vitamin (thiamine, nicotinamide, thiamine, riboflavin, pyridoxine and ascorbic acid), casein hydrolysate, amino acids (non-essential amino acid: cysteine, glycine and essential amino acid: leucine, valine and phenylalanine), less acid value (10 mg/100g DW) and high iodine (35 mg/100g) value have promoted it as a popular vegetable in Africa and propose its potential in treating goiter. The moisture content of *V. amygdalina* ranged between 79.1 to 82.1%. Fresh leaves contained 280 to 354 mg/100g of vitamin C (Fafunso and Bassir, 1976). However, vitamin C concentration was affected by the soil properties (regular use of fertilizers). Loss of 60% of vitamin C was observed after 8 h and this loss was more drastic when the plant was exposed under sunlight. Keeping in the refrigerator can effectively prevent the loss. Thus, photodegradation was identified as the major contributor for the loss of vitamin C (Faboya, 1990). Washing and cooking was found to further reduce 40 to 77% of vitamin C content (Ejoh et al., 2003; Fafunso and Bassir, 1976).

These suggest that *V. amygdalina* should be consumed immediately after harvesting or must be kept in a refrigerator before processing. Most of the active ingredients from this plant were thermostable (Alabi et al., 2005a; Iton and Bassir, 1979). Other than the common metabolites and minerals, *V. amygdalina* also contain several active secondary metabolites which contribute to its bioactivity.

Stigmaskastype steroid glucoside compounds

One of the major steroid glucoside compounds that has
been identified from *V. amygdalina* is the vernoniosides. These glucoside compounds can be isolated from the leaf, stem, pith and root parts of the plant (Huffman, 2001).

Among all, Vernonioside B1 was found in higher concentrations in the leaves than in the stem and much more abundant in the pith of the plant (Huffman et al., 1993; Koshimizu et al., 1994; Ohigashi et al., 1994). Besides, this compound was also identified to be responsible for the removal of parasites in primates who sucked the young pith of *V. amygdalina*, for the control of gastrointestinal illnesses (Huffman et al., 1993; Igile, 1995b; Koshimizu et al., 1994).

V. amygdalina is well known for its bitter taste. Vernoniosides A1, A2, A3 and A4, were found to be part of the constituents in contributing to this characteristic while vernosides B1, B2 and B3, did not show any bitter taste (Jisaka et al., 1992, 1993a, 1993b). The vernosides B were found to lack a free hydroxyl end at their C-16, as was present in vernosides A. Hydroxylation at C-16 of these steroid glucosides (Figure 2) was therefore hypothesized to play an important role in causing bitterness to this plant (Jisaka et al., 1992, 1993a, 1993b; Ohigashi et al., 1991a).

Sesquiterpene lactones

Another major group of bioactive compounds that has been isolated from *V. amygdalina* are the sesquiterpene lactones, consisting of vernodalin, vernolide, vernolepin, vernomenin, vernomygdin, vernolic, vernodalol, hydroxyvernolide, 11,13-dihydrovernoladin, 11,13-dihydrovernorodeline, 4,15-dihydrovernoladin, 7,24(28)-stigmasteradien-3β-ol and 1,2,3,15,11,13,2',3'-octahydrovernoladin (Figure 3).

Vernodalin

Sesquiterpene lactones can be isolated from the leaf stem, pith and root of *V. amygdalina* with the exception of vernodalin which could not be isolated from the pith of the plant. Vernodalin was also found to be more concentrated in young leaves than young stems (Huffman et al., 1993; Ohigashi et al., 1994).

Previous studies showed that vernodalin possess antitumor activity against human nasopharynx carcinoma KB and mouse leukemia P-388 and L-1210 cancer cell lines (Jisaka et al., 1993b; Kupchan et al., 1969). This compound also showed in vitro insecticidal activity against African armyworm (Ganjian et al., 1983), antibacterial effect towards *B. subtilis* (Jisaka et al., 1993b) and Micrococcus luteus as well as antileishmanial activity on *Leishmania infantum* (Koshimizu et al., 1994).

Vernolide

Vernolide is mono-hydroxylated as compared to vernodalol which has 2 hydroxyl groups. Vernolide is therefore less polar and more lipophilic than vernodalol. Lipophilicity was found to be the major influence affecting fungicidal activities of these two compounds. This was confirmed by Erasto et al. (2006) whereby vernolide possessed stronger inhibition against *A. flavus*, *Mucor hiemalis*, *Fusarium oxysporum*, *Penicillium notatum* and *A. niger* than vernodalol at concentrations ranging from 0.05 to 0.5 mg/ml. Vernolide also possess antibacterial activity against the gram positive bacteria *B. cereus*, *B. subtilis*, *Staphylococcus epidermidis*, *S. aureus*, *M. kristinae*, *M. Luteas* and *Streptococcus pyrogens* and the gram negative bacterium *Salmonella pooni* (Erasto et al., 2006; Jisaka et al., 1993b).

Besides, Vernolide has been shown to exert cytotoxic effect towards human nasopharynx carcinoma KB and mouse leukemia (P-388 and L-1210) cancer cell lines and slight activity against Ehrlich’s ascites carcinoma cells in vitro (Jisaka et al., 1993b; Kupchan et al., 1969; Sayed et al., 1982). This compound also possesses antileishmanial or antiprotozoa effect against *L. infantum* (Koshimizu et al., 1994).

Vernodalol

Vernodalol had been reported to possess antileishmanial activity, in vitro insecticidal activity against African armyworm and antimicrobial effect against both bacteria and fungus. This compound was active against the gram positive bacteria (*B. cereus*, *S. epidermidis*, *S. aureus*, *M. kristinae* and *S. pyrogens*) but was inactive against gram negative bacteria with the exception of *S. pooni* which was inhibited at 0.5 mg/ml (Erasto et al., 2006; Ganjian et al., 1983; Koshimizu et al., 1994).

Vernolepin

Vernolepin showed antiplatelet effect in rabbits through the inhibition of arachidonic acid, ADP and collagen-induced platelet aggregation, as well as by interference with ATP-release without the inhibition of cyclooxygenase or lipoxygenase. In addition, vernolepin also demonstrated a time dependent biphasic enhancement/inhibition feature of coaxial stimulation and antagonism against histamine in guinea pig ileum (Laekeman et al., 1983; 1985). On the other hand, vernolepin also showed cytotoxic activity against P-388 and L-1210 mouse leukemic cancer cell lines and antibacterial effect against *B. subtilis* and *M. lutea* (Jisaka et al., 1993b).

Vernomenin

Similar to some other compounds in *V. amygdalina*,
Figure 2. Steroid glucosides isolated from *V. amygdalina*. 2a. Vernonioside A1 (C_{35}H_{52}O_{10}) MW: 632. 2b. Vernonioside A2 (C_{35}H_{52}O_{10}) MW: 632. 2c. Vernonioside A3 (C_{35}H_{50}O_{10}) MW: 630. 2d. Vernonioside A4 (C_{35}H_{52}O_{11}) MW: 648. 2e. Vernonioside B1 (C_{35}H_{52}O_{10}) MW: 632. 2f. Vernonioside B2 (C_{35}H_{52}O_{12}) MW: 680. 2g. Vernonioside B3 (C_{37}H_{54}O_{11}) MW: 674. 2h. Vernonioside D (C_{35}H_{52}O_{12}) MW: 664. 2i. Vernonioside D2 (C_{35}H_{50}O_{10}) MW: 630. 2j. Vernonioside E (C_{37}H_{58}O_{11}) MW: 678 (Igile et al., 1995b; Jisaka et al., 1992; 1993a; Ohigashi et al., 1991a; Schmittmann et al., 1994).

Vernomenin also showed inhibitory activity against P-388 and L-1210 mouse leukemic cancer cell lines and the bacteria *B. subtilis* and *M. lutea* (Jisaka et al., 1993b).

1,2,3,15,11,13,2',3'-octahydrovernodalin

1,2,3,15,11,13,2',3'-octahydrovernodalin is the most bitter compound of *V. amygdalina*. The bitter taste of the compounds in the plant was related to either α-methyl- or α-methylene-γ-lactone. On the other hand, α-methylene-γ-lactone was also found to be correlated to the strong antitumoral effect on the P-388 and L-1210 mouse leukemic cancer cell lines.

However, the correlation of α-methylene-γ-lactone to these characteristics did not conclude for the association of the bitterness of sesquiterpene lactones, to their antimicrobial and antitumoral activities. This was shown...
when octahydrovernodalin showed least activity in both antitumoral and antibacterial activities whilst compounds like vernodalin, vernolide, vernolepin and vernomenin which are less bitter in taste acted much more effectively against both the cancer cell lines and on *B. subtilis* and *M. lutea* (Jisaka et al., 1993b).

11,13-dihydrovernorodeline

This compound has been shown to possess antifeedant activity which can prevent insects from feeding but does not lead to lethality (Van Beek and Groot, 1986).

4,15-dihydrovernodalin

4,15-dihydrovernodalin exerted the highest activity against P-388 and L-1210 mouse leukemia cancer cell lines and the microbes *B. subtilis* and *Micrococcus lutea* among vernodalin, vernolide, vernolepin and vernomenin (Koshimizu et al., 1994).

Vernomygdin

Vernomygdin showed inhibitory effect against the human nasopharynx carcinoma (KB) cell line (Kupchan et al., 1969).

11,13-dihydrovernodalin

11,13-dihydrovernodalin which is lack of exocyclic conjugated double bond on the γ-lactone moiety also exhibited *in vitro* insecticidal activity against African armyworm comparable to vernodalin and vernodalol (Ganjian et al., 1983).

Hydroxylvernolide

Hydroxylvernolide also showed antileishmanial
(antiprotozoa) on L. infantum (Koshimizu et al., 1994).

Vernolic and 7, 24 (28)-Stigmastadien-3β-ol

Seed fat of *V. amygdalina* was found to contain as much as 58% of Vernolic (12, 13-Epoxyoctadec-9-enoic) (Badami and Patil, 1981) and 7,24(28)-Stigmastadien-3β-ol, was successfully isolated from light petroleum extract, from the stem of *V. amygdalina* was able to isolate (Arene, 1972).

Other secondary metabolites

The variety of secondary metabolites extracted from *V. amygdalina*, explains well the diversity of the biological activities of this plant extract. Leaf extract of *V. amygdalina* was found to contain reducing sugar, polyphenolics, terpenoids, saponins, alkaloids, cardiac glycosides, steroids or triterpenes, anthraquinone and coumarins without cyanogenic glycoside (Ayoola et al., 2008; Nwanjo, 2005; Otshudi and Foriers, 2000; Ogundipe et al., 2003; Tona et al., 2004).

However, only tannins, glycosides and saponins without flavanoids could be obtained from its root and stem bark extracts (Nduagu et al., 2008). All of these phytochemicals contributed to anticorrosion (Odiogenyi et al., 2009) and antifungal effect (Nduagu et al., 2008) of *V. amygdalina* while its bitter taste was reported to be due to the presence of antinutritional factors such as alkaloids, saponins, tannins and glycosides (Arhogho et al., 2009).

Phenolic compounds identified in *V. amygdalina* can be grouped into flavonoids, tannins and caffeoyl quinic acid (Salawu and Akindahunsi, 2007). Flavonoids protect the cell as antioxidant against free radicals and reactive oxygen species. Antioxidant activity of *V. amygdalina* was contributed by the flavonoids which can be extracted from the leaves by using methanol extraction. Luteolin possessed the strongest antioxidant as comparable to the synthetic butylated hydroxytoluene (BHT) at 15 mg/l. Besides, luteolin 7-O-β-glucuronoside (the most abundant compound) and luteolin 7-O-β-glucoside also possess similar antioxidant activity but significantly lower as compared to luteolin. This effect may be due to the blockage of glycosides with glucose or uronic acid linked at the 7-O position compared with the unsubstituted 5,7-OH of luteolin (Igile et al., 1994). Ethanol was found to be more effective in extracting luteolin than hot water (Ola et al., 2009). This may contribute to the higher antioxidant activity of ethanol extract compared to water extract. Caffeoyl quinic acid was the dominant cinnamoyl derivative followed by dicafeoyl quinic acid and dicafeoyl quinic acid (Ola et al., 2009).

Essential oil

Essential oil extracted through hydro-distillation of the leaves of *V. amygdalina* contained eucalyptol (1, 8 cineole, 25%), beta pinene (14.5%), myrtenal (6.5%) (Figure 4) and other minority constituents while essential oil from its aerial part contained mainly alpha-muurolol (45.7%) (Asawalam and Hassanani, 2006; Ogunbiwu et al., 2009). The essential oil of *V. amygdalina* (0.3%) was able to protect maize from the maize weevil *S. zeamae* by reducing the number of weevil progeny production and by evoking a high repellant action against weevil without damaging the grain (Asawalam and Hassanani, 2006).

Besides, Hexane/isopropanol extract of *V. amygdalina* leaves also yielded 0.31% (w/w) of oil. Palmitic acid (22%) appeared to be the most abundant lipid in the extract and two other essential fatty acids, namely α-linolenic (omega-3, 21.5%) and linoleic acid (omega-6, 15.8%) were also found in high amount in the extract (Erasto et al., 2007b).

TOXICITY AND SAFETY OF *V. amygdalina*

Traditionally, Temma people of Sierra Leone called bitter leaf as “goat killer”. It warned the animal to stay away through its extreme bitterness (Engel, 2003). This phenomenon confers a clear sign for the need of careful scientific assessments in order to identify the safe dosage and the possible adverse effect of using this plant.

Toxicology studies had been carried out via both in vitro and in vivo systems on various subjects to confirm the toxicity of *V. amygdalina* (Table 4). As indicated in Table 4, *V. amygdalina* only induced mild toxic side effect when administrated at very high concentration. More
Table 4. *In vitro* and *in vivo* toxicity of *V. amygdalina*.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Extract</th>
<th>Mode</th>
<th>LD(_{50}) (mg/kgb.w.)</th>
<th>Remark and References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mice</td>
<td>Aqueous (500-2000 mg/kg/day for 14 consecutive days)</td>
<td>Oral</td>
<td>-</td>
<td>No signs of toxicity or adverse toxicological effects at all doses except for decrease of red blood cell count and dose dependent increase of serum bilirubin (Njan et al., 2008).</td>
</tr>
<tr>
<td></td>
<td>25% of V. amygdalina dry powder (or equivalent amount of ethanol extract or crude/purified saponins) for 2 weeks</td>
<td>Oral</td>
<td>-</td>
<td>Reduction of body and liver weights and increase of urinary and fecal output associated with stomach and small intestines enlargement (Igile et al., 1995a).</td>
</tr>
<tr>
<td></td>
<td>Aqueous (62.5 and 125 mg/kg)</td>
<td>Oral</td>
<td>-</td>
<td>Serum glutamate oxaloacetate transaminase (sGOT), serum glutamate pyruvate transaminase (sGPT) and lactate dehydrogenase (LDH) level rise around 6-33%. Increase of serum enzyme markers level was more severe when it was consumed with antimalarial drug chloroquine (Iwalokun, 2008).</td>
</tr>
<tr>
<td></td>
<td>Aqueous (87.53 to 92.57g/kg)</td>
<td>Oral</td>
<td>-</td>
<td>No change in organ damage, blood count and liver enzyme profile (AST and ALT) (Amoela et al., 2006).</td>
</tr>
<tr>
<td></td>
<td>Aqueous (50 and 100 mg/kg)</td>
<td>i.p.</td>
<td>-</td>
<td>No change of liver function diagnostic enzymes level (total bilirubin, conjugated bilirubin, unconjugated bilirubin, alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase) (Ojiako and Nwanjo, 2006)</td>
</tr>
<tr>
<td></td>
<td>Ethanol (up to 1000 mg/kg for 1 month)</td>
<td>Oral</td>
<td>-</td>
<td>No change in liver (ALT, AST, ALP, total and conjugated bilirubin) and kidney (creatinine) enzymes marker level (Ekpo et al., 2007)</td>
</tr>
<tr>
<td></td>
<td>Cold water (for 24 h)</td>
<td>i.p.</td>
<td>500 to 1265.22</td>
<td>(Nwanjo, 2005; Ojiako and Nwanjo, 2006)</td>
</tr>
<tr>
<td>Rat</td>
<td>Aqueous (250 and 500 mg/kg/day for 5 consecutive days)</td>
<td>Oral</td>
<td>-</td>
<td>Reduction of spermatozoa mobility and viability in dosage dependent mode. Hypoplasia of the seminiferous tubules was also observed in the treated rats. (Oyeyemi et al., 2008)</td>
</tr>
<tr>
<td></td>
<td>Aqueous extract of V. amygdalina, Ocimum gratissimum and Gongronema latifolia (ratio 1:1:1 at 16 g/kg b.w. (p.o) and 2.5 g/kg b.w. (i.p.))</td>
<td>Oral</td>
<td>-</td>
<td>No significant change in general behaviour (Iroanya et al., 2010).</td>
</tr>
<tr>
<td></td>
<td>Methanol (50, 100 and 200 mg/kg)</td>
<td>Oral</td>
<td>-</td>
<td>Diarrhea and abortion (Awe et al., 1999) due to cathartic effect through weak contractile effect on smooth muscle.</td>
</tr>
<tr>
<td></td>
<td>Powder in standard food (25-75%)</td>
<td>Oral</td>
<td>-</td>
<td>Skin of the rat turned lighter without alteration of tissues architecture and cellular morphology. (Ibrahim et al., 2001).</td>
</tr>
</tbody>
</table>
 Yeap et al. 2805

Table 4. contd.

<table>
<thead>
<tr>
<th>Rabbit</th>
<th>Aqueous</th>
<th>i.p.</th>
<th>1112</th>
<th>(Akah and Okafor, 2006) Increase of uterine, intestine and jejunum contraction which sustained for 30 minutes with elevated concentrations used (Caiment-Leblond, 1957; Kamatenesi-Mugisha et al., 2005; Kerharo and Bouquet, 1950)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guinea pig</td>
<td>Aqueous (0.3 mg/ml) injection</td>
<td>Increase of uterine and mammary gland contraction amplitudes and thus increase milk production and help in infant's delivery (Ijeh et al., 2008). This supports the traditional use of V. amygdalina as an oxytocic plant in assistance of child birth traditionally.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murine macrophages J774</td>
<td>Lipophilic extract</td>
<td>In vitro IC<sub>50</sub> 6.48 µg/ml (Ganfon et al., 2008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allium cepa root tip</td>
<td>Cold water extract</td>
<td>In vitro 1% after 8 h of incubation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

i.p.: intra-peritoneal injection; b.w.: body weight

importantly, safe consumption dosage needs to be identified for women at different stages or vitality of pregnancy, to avoid abortion since it may induce uterine contraction.

Plenty of antinutrient elements were found in different extracts of *V. amygdalina* (Table 5). Saponins, glycosides and tannins were found to contribute to the purgative effect through direct stimulation, astringence and surface emulsification of these compounds (Awe et al., 1999). Thus, water extract of *V. amygdalina* induced a cumulative dose-dependent (1 to 66 mg/ml) contraction of ileum and this result has supported the traditional use of the plant in stomach upset and constipation (Owu et al., 2008) but it has also been reported to cause vomiting, diarrhea and even abortion, if being used during first month of pregnancy (Giday et al., 2003; Kamatenesi-Mugisha and Oryem-Origa, 2007).

Generally, *V. amygdalina* is safe to consume and is good for health unless it is consumed in very large quantities and the potential danger of taking this plant is much lower than that of other common vegetables (Ojiako and Nwanjo, 2006). *V. amygdalina* may cause adverse effect over the male reproductive system without controlled regimen.

CULTIVATION AND PROCESS OF *V. amygdalina*

Although *V. amygdalina* is normally propagated by cutting, hairy root of *V. amygdalina* can also be generated *in vitro* using explant cultures in the presence of auxin. IBA (with concentration ranging between 0.25 to 2 mg/l) was found to be the best growth regulator for its adventitious root induction (Khalafalla et al., 2009).

The herb can be subjected to further processing when harvested but some procedures may alter its nutrient content. The best temperature for drying was 45°C as reported by Ejob et al., (2005). Blanching and extraction at 100°C can cause at least 56% of total chlorophyll loss but this can be reduced by adjusting the pH to 6 (Faboya, 1983).

Studies showed that squeeze-washing, rinsing and freezing were able to preserve carotenoid, iron, crude protein, total reducing sugar and dietary fibers in the plant (Ejob et al., 2003; 2005). Increase of washing time from 0 to 20 min too did not significantly change the nitrogen, calcium and magnesium level of the herb but this could increase its potassium, sodium and fibre content which then resulted in the reduction of its fat, phosphorus and ash level (Tangka and Penda, 2007).

COMMERCIALIZATION APPLICATION AND MARKET DEMAND OF *V. amygdalina*

V. amygdalina is an important vegetable in Cameroon, where out of 93,600 tons of leafy vegetables harvested in 1998, 23% (21,549 tons) was bitter leaf (Smith and Eyzaguirre, 2007). Currently, AfriProducts is selling a kilogram of fresh/frozen *V. amygdalina* leaves at USD
Table 5. Anti-nutrient elements potentially identified in *V. amygdalina*.

<table>
<thead>
<tr>
<th>Anti-nutrient element</th>
<th>Concentration</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxalate</td>
<td>95.5 mg/100 g</td>
<td>may contribute to potent human poisons. Fortunately, proper cooking and process can significantly reduce the total oxalate content of the plant.</td>
</tr>
<tr>
<td>Piperidine</td>
<td>0.19 µg N/kg</td>
<td>may induce esophagus tumor</td>
</tr>
<tr>
<td>n-propylamine</td>
<td>0.26 µg N/kg</td>
<td></td>
</tr>
<tr>
<td>Proline</td>
<td>0.21 µg N/kg</td>
<td>may be converted to high carcinogenic nitrosopyrrolidine in stomach</td>
</tr>
<tr>
<td>N-Nitrosamine</td>
<td>0.4 µg/ml (low level)</td>
<td>carcinogenic, immunotoxic and embryotoxic. The presence of N-nitrosamine may be due to use of nitrogen-containing fertilizers and pesticides</td>
</tr>
<tr>
<td>Phytate</td>
<td>1466.7 mg/kg</td>
<td>Soaking with salt was found to be able to reduce phytate concentration</td>
</tr>
<tr>
<td>Cyanide</td>
<td>1.1 mg/kg</td>
<td>Blanching was found to be able to reduce cyanide concentration</td>
</tr>
<tr>
<td>Nitrosodimethylamine</td>
<td>0.4 ppb (low level)</td>
<td>Present only in minute amount</td>
</tr>
<tr>
<td>Heavy metal (Hg & Pb)</td>
<td>0.01-0.48 µg/ml</td>
<td>Environmental pollution has been identified as one of the major reasons that contribute to heavy metal accumulation in vegetables. Thus, plantation of V. amygdalina should be away from heavy industrial activity such as oil refinery and petrochemical industry to avoid heavy metal (lead, cadmium, copper, nickel etc.) contamination. Gradual accumulation of these toxins may lead to adverse health effects.</td>
</tr>
<tr>
<td>Aflatoxin (B1, B2, G1) and ochratoxin A</td>
<td></td>
<td>Produced by Aspergillus flavus after prolonged storage of V. amygdalina herbal leaf or fresh crude water extract. Can be removed by initial surface decontamination (using alcohol or sodium hypochlorite followed by distilled water) or by converting the crude herbal extract into a more stable powder (using freeze dry or spray dry processes).</td>
</tr>
<tr>
<td>Tannins</td>
<td>380-600 mg/100 g</td>
<td></td>
</tr>
<tr>
<td>Hydrocyanic acid (HCN)</td>
<td>6.40-46 mg/g</td>
<td>Plants that produce more than 20mg HCN/100g fresh weight are considered deleterious. V. amygdalina only contains moderate amount of hydrocyanic acid.</td>
</tr>
</tbody>
</table>

(Alabi et al., 2005a; Antia et al., 2006; Atawodi et al., 1993; Efuntoye, 1999; Eriyamremu et al., 2005; Gbaruko and Friday, 2007; Oboh et al., 2005; Oboh, 2006; Okoli et al., 2003a; Uhegbu, 1997; Yusuf et al., 2003)

4.55 and its powder at USD 7.5 (AfriProduct, 2010) while RGL enterprise sells a kilogram of powder at USD 10 (RGL enterprises, 2010).

The processing of leaves prior to sale for consumer’s convenience, especially for those living in the cities, depicts great potential in marketing of plants. Plenty health products formulated with *V. amygdalina* have been commercialized. For instance, EdoBotanics under the Jackson State University is selling processed *V. amygdalina* under the name of EdoTide Plus (which contains 600 mg of leaf extract with the suggestion of 600 to 1200 mg oral intake per day) (60 capsules at USD 42) (EdoBotanics, 2010). In Nigeria, “Diabetes 5” (contains 50 to 50% mixture of *V. amygdalina* leaves and *Anisopus manii* leaves) has been sold as an unofficial herb to treat diabetes mellitus. Studies have found that methanol (100 mg/kg) and chloroform (200 mg/kg) extract of “Diabetes 5” possessed similar hypoglycemic activity as Glibenclamide (3 mg/kg) after 24 h of oral administration. However, both extracts and Glibenclamide exerted adverse effects on spleen and kidney of tested animals (Agunu et al., 2008). Thus, more suitable processing and concentrations should be inspected and optimized in the formulation of better health products from *V. amygdalina*, to minimize or eliminate adverse effect to the consumers. *V. amygdalina* was used to prepare feed for rumen traditionally. However, the palatability of this herb was comparatively lower than other plants due to its bitterness which is contributed by alkaloids and saponins. Although the suggestion of adding molasses to *V. amygdalina* (ratio 5:12) may improve the acceptance of the rumen, this would further increase the dependency on
molasses and the cost of commercial supplement. Thus, *V. amygdalina* may not be viable to be used as a single dietary supplement in modern medicine (Bonsi et al., 1995a, b; Hindrichsen et al., 2004).

CONCLUSION

In conclusion, *V. amygdalina* possesses various bioactivities with low or absence of side effects. With its great health promoting effect, it may be more adv antageous to incorporate *V. amygdalina* into health supplement for human benefits rather than using it solely as feed for the poultry industry.

REFERENCES

5:166-168.

