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stress life tests are developed. For illustration, a simulation study is provided. 
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INTRODUCTION 
 
With today's high technology, some life tests result in 
none or very few failures by the end of the test. In such 
cases, an approach is to do life test at higher-than-usual 
stress conditions in order to obtain failures quickly. Such 
an approach can be represented by accelerated life test 
(ALT) or partially accelerated life test (PALT). ALT is 
often used for reliability analysis. In ALT, test units are 
run at higher-than-usual stress conditions. It can be 
applied only when a model relating life length to stress is 
known. If such a model is unknown or cannot be 
assumed, another approach can be used which is PALT. 
In PALT, test units are run at both usual and higher-than-
usual stress conditions. The stress loading in a PALT can 
be applied by various ways. They include step stress, 
constant stress and random stress. Nelson (1990) 
discussed their advantages and disadvantages. One way 
to accelerate failure is step-stress which increases the 
stress applied to test product in a specified discrete 
sequence. Generally, as indicated by Xiong and Ji 
(2004), a test unit starts at a specified low stress. If the 
unit does not fail at a specified time, stress on it is raised 
and held at a specified time. Stress is repeatedly 
increased and held, until the test unit fails or a censoring 
point is reached. In this paper, a simple time-step stress 
PALT that uses only two stress levels is considered. 
Under step-stress PALT, a test unit is first run at normal 

use condition and, if it does not fail for a specified time τ, 

then it is run at accelerated use condition until failure 
occurs or the observation is censored. The objective of 
such experiment is to collect more failure-times data in a 
limited time without necessarily using a high stress to all 
test units. In the literature, there are some studies on 
such partially accelerated life tests. Goel (1971) 
considered the estimation problem of the acceleration 
factor using both maximum likelihood and Bayesian 
methods for items having exponential distribution and 
uniform distribution. The estimates of the parameters of 
the lifetime distributions were obtained in the case of 
step-stress PALT under complete sampling. DeGroot and 
Goel (1979) used the Bayesian approach with different 
loss functions to estimate the parameters of the 
exponential distribution and the acceleration factor for 
step-stress PALT in the case of complete sampling. Also, 
PALT was studied with type-I censored data. For 
example, Bai and Chung (1992) used the maximum 
likelihood method to estimate the scale parameter and 
the acceleration factor for exponentially distributed 
lifetimes in the case of step-stress PALT. They also 
considered the problem of optimally designing PALT that 
terminates at a predetermined time. Bai et al. (1993) 
considered the estimation problem of parameters for 
items having lognormally distributed lives. The parameters 
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of this life time distribution and the acceleration factor 
were estimated by the method of maximum likelihood in 
step PALT. Abdel-Ghaly et al. (1997) used the Bayesian 
approach for estimating the Weibull distribution 
parameters given that the shape parameter is known. 

Madi (1997) applied the Gibbs sampling approach to 
the partially accelerated life testing (PALT). This sampling 
approach was proposed as a general method for 
Bayesian calculations. He derived empirical Bayes 
estimators for the failure of the exponential lifetime 
distribution under normal conditions. Abdel-Ghaly et al. 
(2002) studied both the estimation and optimal design 
problems for the Pareto distribution under step-stress 
PALT with type-I censoring. Abdel-Ghani (2004) 
considered the estimation problem of the log-logistic 
distribution parameters under step PALT in the case of 
type-I censored data. Recently, Aly and Ismail (2008) 
studied the optimal design problem of step-stress PALT 
in the case of Weibull distribution with type-I censored 
data. More recently, Ismail (2010) applied the Bayesian 
approach to the estimation problem in the case of step 
stress partially accelerated life tests with two stress levels 
and type-I censoring assuming the two-parameter 
Gompertz distribution as a lifetime model. This paper 
concentrates on both estimation and optimal design 
problems in the case of the two-parameter Gompertz 
distribution under step-stress PALT using type-II 
censored data. 
 
 
THE MODEL AND TEST METHOD 
 
Notations 
 
n, total number of test items in a PALT; Y(r), the time of rth failure at 
which the experiment is terminated; T, lifetime of an item at normal 
use condition; Y, total lifetime of an item in a step PALT; f(t), 
probability density function at time t at normal use condition; R(t), 
reliability function at time t at normal use condition; h(t), hazard 

(failure) rate at time t at normal use condition; β, acceleration factor 

(β > 1); τ, stress change-time in a step PALT (τ ≤ Y(r)); GAV, 
generalized asymptotic variance; MLEs, maximum likelihood 
estimates/estimators; MSE, mean square error; CIs, confidence 

intervals; IW, interval width; ∧, implies a maximum likelihood 

estimate; ↓ (.), evaluated at (.); θ, α, the two parameters of 

Gompertz distribution (θ > 0 and α > 0); yi, observed value of the 
total lifetime Yi of item i , i = 1, …, n; nu, na, numbers of items failed 

at normal use and accelerated use conditions, respectively; 
*

u
n , 

*

a
n , optimal numbers of items failed at normal use and accelerated 

use conditions, respectively; y(1) ≤ … ≤ y(nu) ≤ τ ≤ y(nu +1) ≤ … ≤ y(nu + 

na) ≤ y(r) ordered failure times. 
 
 
The gompertz distribution 

 
The Gompertz distribution plays an important role in modeling 
survival times, human mortality and actuarial tables. As indicated by 
Walker and  Adham  (2001),  the  Gompertz  distribution  has  many  

 
 

 
 
applications, particularly in medical and actuarial studies. According 
to the literature, the Gompertz distribution was formulated by 
Gompertz (1825) to fit mortality tables. Many authors have 
contributed to the statistical methodology and characterization of 
this distribution (Read 1983; Gordon, 1990; Makany, 1991; Rao and 
Damaraju, 1992; Franses, 1994; Wu and Lee, 1999). Garg et al. 
(1970) studied the properties of the Gompertz distribution and 
obtained the maximum likelihood estimates for the parameters. 
Osman (1987) derived a compound Gompertz model by assuming 
that one of the parameters of the Gompertz distribution is a random 
variable following the gamma distribution. He studied the properties 
of compound of Gompertz distribution and suggested its use for 
modeling lifetime data and analyzing the survivals in heterogeneous 
populations. Chen (1997) developed an exact confidence interval 
and an exact joint confidence region for the parameters of the 
Gompertz distribution under type-II censoring. According to Jaheen 
(2003), the Gompertz distribution has been used as a growth 
model, especially in epidemiological and biomedical studies. 
However, there has been little recent work on the Gompertz in 
comparison with its early investigation. The Gompertz distribution 
can be considered as a theoretical distribution of survival times. In 
this paper, the lifetimes of the test items are assumed to follow a 
Gompertz distribution with probability density function (pdf) as 
follows: 
 

,   ]}1) )[exp(/( exp{ )( −−= tttf ααθαθ t > 0, θ > 

0, α > 0                                (1) 
 

This distribution does not seem to have received enough attention, 
possibly because of its complicated form (Garg et al., 1970). It is 

worth noting that when α → 0, the Gompertz distribution will tend to 
an exponential distribution (Wu et al., 2003). The two-parameter 
Gompertz model is a commonly used survival time distribution in 
actuarial science and reliability and life testing (Ananda et al., 
1996). There are several forms for the Gompertz distribution given 
in the literature. Some of these are given in Johnson et al. (1994). 
The pdf formula given in Equation 1 is the commonly used form and 
it is unimodal. It has positive skewness and an increasing hazard 
rate function. In addition, the Gompertz distribution can be 
interpreted as a truncated extreme value type-I distribution 
(Johnson et al., 1995). The reliability function of the Gompertz 
distribution takes the form: 
 

]},1 ) )[exp(/(exp{)( −−= ttR ααθ               (2) 

 
and the corresponding hazard rate is given by: 
 

), exp( )( tth αθ=                  (3) 

 
Thus, the hazard rate increases exponentially over time. 
 
 
The test method 

 
In the case of step-stress PALT, the test procedure and its 
assumptions are described as follows: 
 
 
Test procedure 
 
i) Each of the n test items is first run at normal use condition. 

ii) If it does not fail at normal use condition by a pre-specified timeτ,  
then it is put on accelerated use condition and run until it fails or the  

 
 



 
 

 
 
test is terminated. 
 

That is, if the item has not failed by some pre-specified time τ (τ is 
called stress change-time), the test condition is switched to a higher 
level of stress and it is continued until failure occurs or the 
observation is censored. The effect of this switch is to multiply the 
remaining lifetime of the item by the inverse of an acceleration 

factor β, which is the ratio of the hazard rate at accelerated 

condition to that at normal use condition (β > 1). Thus, the total 
lifetime of a test item denoted by Y passes through two stages, the 
first stage is the normal use condition and the second one is the 
accelerated use condition, respectively. 
 
 
Assumptions 
 
1) The total lifetime Y of an item is as follows: 
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Where T is the lifetime of an item at normal use condition. 
This model is called the tampered random variable (TRV) 
model. It was proposed by DeGroot and Goel (1979). 
2) The lifetimes Y1, …, Yn of the n test items are 
independent and identically distributed random variables 
(i.i.d. r.v.'s). 
 
 
MAXIMUM LIKELIHOOD ESTIMATION OF THE 
MODEL PARAMETERS 
 
As indicated by Grimshaw (1993), the ML method is 
commonly used for most theoretical models and kinds of 
censored data. Although the exact sampling distribution 
of maximum likelihood estimators (MLEs) is sometimes 
unknown, MLEs have the desirable properties of being 
consistent and asymptotically normal for large samples. 
The lifetime of test unit is assumed to follow the two-
parameter of Gompertz distribution with pdf given in 
Equation 1 (Garg et al., 1970). Therefore, the probability 
density function of total lifetime Y of an item in a step-
stress PALT can be given by: 
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Where, 
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1
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Which is an equivalent form to Equation 1, 
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yf  is obtained by the transformation-variable 

technique using Equations 1 and 4. 
 
 
Point estimation 
 
The observed values of the total lifetime Y are given by: 
 

 y(1) ≤ … ≤ y(nu) ≤ τ ≤ y(nu +1) ≤ … ≤ y(r) ; r = nu + na 
 
Since the total lifetimes Y1, …, Yn of n items are 
i.i.d.r.v.’s, then the general form of the total likelihood 
function for them can be written as: 
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Where nc = n - r. 

Therefore, the likelihood function of the sample is given 
by: 
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It is usually easier to maximize the natural logarithm of 
the likelihood function rather than the likelihood function 
itself. So, the natural logarithm of the likelihood function 
can be written as: 
 

 

]}
1

)([
1

{lnln +∑
=

−∑
=

++= + ττβαβθ yy
n

i

n

i
anrLln

a

i

u

i

]1]))([(
1 1

[exp]1) [exp(){/( −+−∑
=

∑
=

+−− ττβαααθ yy
n

i

n

i
i

u a

i

]}1]))([[exp(
)(

−+−+ ττβα
r

ync   (7) 
 
The first derivatives of the natural logarithm of the total 

likelihood function in (7) with respect toβ, θ and α are 
given by: 
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From Equation 9, after equating it to 0, the maximum 

likelihood estimate of θ can be given by: 
 

 .  
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2ψ
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By substituting for θ into the two Equations 8 and 10 and 
equating each of them to zero, the system equations are 
then reduced to the following two non-linear equations: 
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Obviously, it is very difficult to obtain a closed-form of 
solution for the two non-linear Equations 12 and 13. So, 
iterative procedures must be used to solve these 
equations, numerically. The Newton-Raphson method is 

used to obtain the MLEs of β and α. Thus, once the 

values of αβ ˆandˆ  are determined, an estimate of θ is 

easily obtained from (11). 
 
 
Interval estimation 
 
The observed Fisher information matrix, as well as the 
asymptotic variance–covariance matrix of the MLEs is 
derived. Approximate confidence intervals (CIs) for the 
parameters based on normal approximation to the 
asymptotic distribution of MLEs are derived. As indicated 
by Vander Wiel and Meeker (1990), the most common 
method to set confidence bounds for the parameters is to 
use the large-sample (asymptotic) normal distribution of 
the ML estimators. To construct a confidence interval for 

a population parameter λ; assume that Lλ = Lλ ( y1, …, yn 

) and Uλ = Uλ( y1, …, yn ) are functions of the sample data 
y1, …, yn such that: 
 

Pλ(Lλ ≤ λ ≤ Uλ) = γ , (14) 
 

Where the interval [Lλ,Uλ] is called a two-sided γ 100% 

confidence interval for λ. Lλ and Uλ are the lower and 

upper confidence limits for λ, respectively. The random 
limits Lλ and Uλ enclose λ with probabilityγ. 
Asymptotically, the maximum likelihood estimators are 
consistent and normally distributed. Therefore, the two-

sided approximate γ 100% confidence limits for a 

population parameter λ can be constructed such that: 
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Where z is the [100(1-γ/2)]th standard normal percentile 

and )ˆ(λσ is the standard deviation of the point estimate 

of the parameter λ. Thus, the two-sided approximate γ 
100% confidence limits for β, θ and α are given 
respectively by: 
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In relation to the asymptotic variance-covariance matrix 
of the MLE of the parameters, it can be approximated by 
numerically inverting the observed Fisher-information 
matrix. The observed Fisher-information matrix is 
composed of the negative second derivatives of the 
natural logarithm of the likelihood function evaluated at 
the MLEs. It can be given by the following matrix: 
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The elements of the matrix F in (17) can be expressed by 
the following equations: 
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Therefore, the maximum likelihood estimators of β, θ and 

α have an asymptotic variance-covariance matrix 
obtained by inverting the Fisher information matrix 
defined in equation (17). The observed Fisher information 
matrix enables us to construct CIs for the parameters 
based on the limiting normal distribution through 
simulation. 
 
 
OPTIMUM TEST PLAN 
 
Now, for the optimal design stage of the test, a new 
experiment with test units different from those tested in 
the stage of parameter estimation is conducted. The 

current aim is to obtain the optimal value of τ based on 
the outputs of the stage of parameter estimation that are 
in the same time considered inputs to the optimal design 
stage of the test. It is worth noting that the stress change-

time τ is a prespecified time for the stage of parameter 

estimation. But for the optimal design stage of the test, τ 
is considered a switching parameter to be optimally 
determined according to a certain optimality criterion. 
Here, the problem of optimally designing a simple time-
step-stress PALT is considered which terminates after a 
pre-specified number of failures. Optimum test plans for 
products having a two-parameter Gompertz lifetime 
distribution are developed. The optimum criterion is to 

find the optimal stress change-time τ*
 such that the 

generalized asymptotic variance (GAV) of the MLEs of 
the model parameters at normal use condition is 
minimized. The GAV of the MLEs of the model 
parameters is the reciprocal of the determinant of F. That 
is: 
 

F
GAV

1
)ˆ,ˆ,ˆ( =αθβ            (24) 

 

The minimization of the GAV over τ solves the following 
equation: 
 

0
 

 =
∂

∂
τ

GAV
            (25) 

 
In general, the solution to (16) is not in a closed form and 
therefore requires a numerical method such as Newton-
Raphson. The Newton-Raphson method is applied to 

obtain the optimal stress-change time τ*
 which minimizes 

the GAV. 
 
 
SIMULATION STUDIES 
 
The main objective of this simulation study is to make a 
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Table 1. The MLEs of the parameters, the associated MSE and the IW of the model parameters for 

different sized samples using type-II censoring in step-stress PALT with τ = 2.5 and r = 0.70 n. 
 

               (ββββ, θθθθ, αααα) 
n            Parameter 

(2, 0.5, 0.6) (5, 0.8, 1.4) 

Estimate MSE IW Estimate MSE IW 

100 

β 2.3473 0.2157 1.6331 5.4874 0.6104 0.9581 

θ 0.5406 0.0381 1.1273 0.9623 0.0537 0.7945 

α 0.6435 0.0243 0.8724 1.6725 0.2534 0.6429 

        

200 

β 2.2510 0.1684 1.4892 5.4323 0.4735 0.7615 

θ 0.5398 0.0267 1.0544 0.9106 0.0352 0.7211 

α 0.6275 0.0154 0.6091 1.6342 0.1916 0.5378 

        

300 

β 2.1938 0.1132 1.3675 5.3711 0.3286 0.6311 

θ 0.5257 0.0183 0.8976 0.8754 0.0267 0.5133 

α 0.6114 0.0117 0.4111 1.5482 0.1461 0.3921 

        

400 

β 2.1256 0.0651 1.2944 5.2458 0.2166 0.4392 

θ 0.5231 0.0118 0.8361 0.8474 0.0243 0.3206 

α 0.6089 0.0068 0.2846 1.4633 0.0645 0.2744 

        

500 

β 2.0722 0.0290 1.1167 5.1939 0.1644 0.2685 

θ 0.5164 0.0068 0.7922 0.8287 0.0177 0.1955 

α 0.6062 0.0044 0.1275 1.4301 0.0376 0.1271 

        

800 

 

β 2.0310 0.0211 1.0231 5.1153 0.0788 0.1746 

θ 0.5086 0.0041 0.6535 0.8085 0.0122 0.1153 

α 0.6032 0.0027 0.0761 1.4216 0.0214 0.0822 
        

1000 

β 2.0046 0.0173 0.9261 5.0352 0.0347 0.1172 

θ 0.5047 0.0028 0.4106 0.8003 0.0104 0.0781 

α 0.6011 0.0012 0.0354 1.4008 0.0210 0.0301 
 
 
 

numerical investigation for illustrating the theoretical 
results of both estimation and optimal design problems 
given in this paper. Considering the type-II censoring, 
several data sets are generated from Gompertz 
distribution for different combinations of the true 

parameter values of β, θ and α. The true parameter 
values used here are (2, 0.5, 0.6) and (5, 0.8, 1.4). 
Different samples sizes (n = 100, 200, 300, 400, 500, 800 
and 1000) are considered using 10000 replications for 
each sample size. The Newton-Raphson method is used 

for obtaining the MLEs of β, θ and α. Therefore, the 
derived nonlinear logarithmic likelihood equations in (12) 
and (13) are solved iteratively. Once the values 

of αβ ˆ andˆ  are determined, an estimate of the 

parameter θ is easily obtained from Equation 11. For 
different sample sizes and different true values of the 
parameters, the MLEs of the model parameters, their 
mean square error (MSE) and the interval width (IW) of 

the parameters are reported in Table 1. The results of 
simulation studies provide insight into the sampling 
behavior of the estimators. These results indicate that the 
ML estimates approximately the true values of the 
parameters as the sample size n increases. Also, as 
shown from the numerical results, the MSE of the 
estimators decrease as the sample size n is getting to be 
larger. Moreover, the IW of the model parameters is 
shown to be narrower as the sample size n increases. 
Table 2 presents the results of optimum test plans. 

The numerical results reported in Table 2 demonstrate 
that the PALT model is appropriate because there have 
failed items in both stages. That is, testing not only at 
normal use condition but also at accelerated condition. 
Also, Table 2 presents the optimal GAV which is 

numerically obtained with τ*
 in place of τ for different 

sized samples. As indicated from the results, the optimal 
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Table 2. The results of optimal design of step-stress PALT for different sized samples using type-II censoring with r = 0.70 n. 
 

(ββββ, θθθθ, αααα) 
n 

(2, 0.5, 0.6) (5, 0.8, 1.4) 

ττττ* n
*
u n

*
a Optimal GAV ττττ* n

*
u n

*
a Optimal GAV 

100 1.7661 45 25 0.4922 1.2653 43 27 0.4511 

200 1.8644 97 43 0.4151 1.2871 92 46 0.3873 

300 1.8952 158 52 0.3477 1.3398 152 58 0.2465 

400 1.9107 207 73 0.2588 1.3462 204 76 0.1782 

500 1.9232 268 82 0.1162 1.5074 258 92 0.0931 

800 1.9410 421 139 0.0471 1.5422 416 144 0.0217 

1000 1.9462 543 157 0.0133 1.5715 527 173 0.0112 
 
 
 

GAV decreases as the sample size increases. 
 
 

Conclusion 
 

This paper considered the problems of estimation and 
optimally designing simple time-step stress PALT for the 
Gompertz distribution under type-II censored data. The 
MLEs and IW of the model parameters were obtained. 
Also, optimum test plans were developed under the 
assumptions of Gompertz lifetimes of test units and type-
II censoring. The minimization of the GAV of the MLEs of 
model parameters was adopted as an optimality criterion. 
It is concluded that the PALT model is a suitable scheme. 
It enables us to save time and money in a limited time 
without necessarily using a high stress to all test units. In 
practice, the optimum test plans are important for 
improving the level of precision in parameter estimation 
and thus improving the quality of the inference. So, 
statistically, optimum plans are needed, and the 
experimenters are advised to use it for estimating the life 
distribution at design stress. The usefulness of the 
optimal design lies in the fact that it can serve as a 
benchmark for comparison with other designs. As a 
future work, the problem of designing time-step stress 
PALT based on progressively censored data will be 
studied for this distribution. Also, the case of multi-stress 
life tests will be considered under the same distribution. 
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