Full Length Research Paper

Antimicrobial activity and constituents of the hexane extracts from leaf and stem of Origanum vulgare L. ssp. Viride (Boiss.) Hayek. growing wild in Northwest Iran

Nahid Rahbar, Ali Shafaghat* and Farshid Salimi

Department of Chemistry, Khalkhal Branch, Islamic Azad University, Khalkhal, Iran.

Accepted 24 January, 2012

Antimicrobial effects of various hexane extract and fatty acids have been extensively studied. Fatty acids with nonpolar compounds have been found to have a broad spectrum of microbicidal activity. The hexane extracts from leaf and stem of Origanum vulgare L. ssp. Viride which were collected from Northwestern Iran, were obtained by Soxhlet apparatus. The fatty acids in hexane extracts were derived to their methyl esters and determined by gas chromatography/flame ionization detector (GC/FID) and gas chromatography/mass spectrometry (GC/MS) systems. The extracts from the leaf and stem were characterized by a high amount of unsaturated fatty acids (UFA) and long-chain hydrocarbons. The main components of the leaf and stem extracts were tridecane (14.6 and 16.1%), 9, 12, 15-octadecatrienoic acid (ω-3) (14.7 and 1.2%), tetradecane (8.7 and 10.2%), hexadecanoic acid (1.6 and 6.7%) and pentadecane (5.7 and 4.1%), respectively. The hexane extract from O. vulgare leaf was detected as an important source of unsaturated fatty acid compounds. The hexane extract from stem of O. vulgare consisted mainly of aliphatic compounds; while in leaf extract of the plant, unsaturated fatty acids predominated over aliphatic components. The antimicrobial activity of the extracts of those samples were determined against seven Gram-positive and Gram-negative bacteria (Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae), as well as three fungi (Candida albicans, Saccharomyces cerevisiae and Aspergillus niger). The bioassay showed that the both oils exhibited a moderate antimicrobial activity.

Key words: Origanum vulgare ssp. viride, Lamiaceae, antimicrobial activity, unsaturated fatty acid, ω- 6.

INTRODUCTION

Organic fatty acids are naturally found in vegetables and fruits and may be formed during processes like fermentation or may be added into food during the manufacturing process. Numerous species of the plants which are rich fatty acids especially in seeds are of great importance as herbs and spices. During recent years, plant compounds have come more into the focus of phytotherapy (Buckle, 1999; Sylvestre et al., 2006). Their widespread use has raised the interest of scientists in basic research of fatty acids. Especially, the antimicrobial and antioxidant activities of fatty acids have been investigated in recent years (Karlova et al., 2010; Shafaghat, 2011). The genus Origanum ((Family: Lamiaceae) (MARZANGOOSH in Persian) is represented in the flora of Iran by one species with 3 subspecies: Origanum vulgare L. ssp. Gracile; O. vulgare L. subsp. viride and O. vulgare L. subsp. vulgare (Mozaffarian, 2007). Many different species, commonly known as Oregano or Origanum, are of economic interest, although they belong to different botanical families and genera. O. vulgare L. ssp. viride is an aromatic, herbaceous and perennial plant growing wild in the North West Iran. In folk medicine, Origanum species are used as powerful disinfectants, flavouring agents, in perfumes and in scenting soaps (Gunther, 1949; Chiej, 1984 and Kotb, 1985). The essential oils and the constituents of many Origanum species have been studied (Sendra and Cunat, 1980; Ravid and Putievsky, 1983; Akgul and Bayrak,
Preparation of hexane extracts

Dried and powdered materials (leaf and stem) were extracted with hexane using a Soxhlet apparatus (70°C, 4 h) to obtain the fatty acids, aliphatic compounds and the other apolar components. During extraction procedures, hexane (95%) was used. The extracts were concentrated by rotary evaporator under vacuum at 40°C. The extraction yields are presented in Table 2.

Trans-esterification process

After removing hexane using rotary evaporator, the oily mixtures were derived to their methyl esters by the International Olive Oil Council (IOOC) and IUPAC reports by trans-esterification process (Method of Analysis, 2001; Paquat and Hautfenne, 1992). In this process, dried hexane extracts were dissolved in hexane (5 ml) and then extracted with 5 ml of 2 M methanolic KOH at room temperature for 60 s. The upper phases were analyzed by gas chromatography/flame ionization detector (GC/FID) and gas chromatography/mass spectrometry (GC/MS) systems.

Gas chromatography (GC) analysis

GC analysis was performed on a Shimadzu 15A gas chromatograph equipped with a split/splitless injector (250°C) and a flame ionization detector (250°C). N2 was used as carrier gas (1 ml/min) and the capillary column used was DB-5 (50 m x 0.2mm, film thickness 0.32 µm). The column temperature was kept at 60°C for 5 min and then heated to 220°C with a 5°C/min rate and kept constant at 220°C for 5 min. The relative percentages of the characterized components are given in Table 1.

Gas chromatography/mass spectrometry (GC/MS) analysis

GC/MS analysis was performed using a Hewlett Packard 5973 with an HP-5MS column (30 m x 0.25 mm, film thickness 0.25 µm). The column temperature was kept at 60°C for 5 min and programmed to 220°C at a rate of 5°C/min and kept constant at 220°C for 5 min. The flow rate of helium as carrier gas was 1 ml/min. MS were taken at 70 eV. The fatty acids and terpenoids were identified by comparing their retention times and mass peaks with those of standard compound mixtures and by NIST-Wiley library data search. Relative percentage amounts were calculated from peak area using a Shimadzu C-R4A chromatopac without the use of correction factors.

Antimicrobial activity

The in vitro antibacterial and antifungal activities of the extracts were evaluated by the disc diffusion method (DDM) using Mueller-Hinton agar for bacteria and Sabouraud Dextrose agar for fungi (Baron and Finegold, 1990). Discs containing 30 µL of the hexanic extracts were used and growth inhibition zones were measured after 24 and 48 h of incubation at 37 and 24°C for bacteria and fungi, respectively. Gentamicin and tetracycline for bacteria and nystatin for fungi were used as positive controls. The microorganisms used were: Staphylococcus aureus ATCC 25923, Klebsiella pneumoniae ATCC 3583, Pseudomonas aeruginosa ATCC 27852, Enterococcus faecalis ATCC 15753, Staphylococcus epidermidis ATCC 12228, Enterobacter cloacae ATCC 13047, and Escherichia coli ATCC 25922.
Table 1. Chemical composition (%) of the hexanic extract from leaf and stem of *Origanum vulgar*.

<table>
<thead>
<tr>
<th>Compound* (related fatty acid)</th>
<th>Rt (min)</th>
<th>Leaf (%)</th>
<th>Stem (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Propenylcyclohexane</td>
<td>8.2</td>
<td>2.3</td>
<td>--</td>
</tr>
<tr>
<td>Undecane, 2,4-dimethyl</td>
<td>8.4</td>
<td>2.8</td>
<td>3.3</td>
</tr>
<tr>
<td>Dodecane, 4-methyl</td>
<td>8.5</td>
<td>1.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Dodecane, 2-methyl</td>
<td>8.52</td>
<td>--</td>
<td>2.5</td>
</tr>
<tr>
<td>Undecane, 3-methyl</td>
<td>8.6</td>
<td>2.2</td>
<td>--</td>
</tr>
<tr>
<td>1-Decene, 4-methyl</td>
<td>8.7</td>
<td>4.5</td>
<td>--</td>
</tr>
<tr>
<td>Tridecane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4,6-Trimethylindane</td>
<td>9.0</td>
<td>14.6</td>
<td>16.1</td>
</tr>
<tr>
<td>2,5-dimethyl,dodecane</td>
<td>9.2</td>
<td>1.9</td>
<td>--</td>
</tr>
<tr>
<td>Benzene, 4-(2-butenyl)-1,2-dimethyl</td>
<td>9.3</td>
<td>2.1</td>
<td>--</td>
</tr>
<tr>
<td>Tetradecane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tridecane, 4-methyl</td>
<td>9.7</td>
<td>8.7</td>
<td>10.2</td>
</tr>
<tr>
<td>Tridecane, 2-methyl</td>
<td>9.9</td>
<td>3.2</td>
<td>5.3</td>
</tr>
<tr>
<td>Tridecane, 3-methyl</td>
<td>9.92</td>
<td>2.2</td>
<td>3.6</td>
</tr>
<tr>
<td>Dodecane, 2,6,10-trimethyl</td>
<td>10.0</td>
<td>1.6</td>
<td>2.9</td>
</tr>
<tr>
<td>5-ethyl-1,3-dimethylindan</td>
<td>10.2</td>
<td>1.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Cyclododecane, ethyl</td>
<td>10.3</td>
<td>1.9</td>
<td>1.1</td>
</tr>
<tr>
<td>Naphthalene, 2,7-dimethyl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naphthalene, 2,3-dimethyl</td>
<td>10.6</td>
<td>5.2</td>
<td>4.1</td>
</tr>
<tr>
<td>1-Tetradecene</td>
<td>10.8</td>
<td>--</td>
<td>1.3</td>
</tr>
<tr>
<td>Tetradecane, 4-methyl</td>
<td>11.0</td>
<td>2.6</td>
<td>--</td>
</tr>
<tr>
<td>Tetradecane, 3-methyl</td>
<td>11.2</td>
<td>0.8</td>
<td>3.9</td>
</tr>
<tr>
<td>8-Hexadecene</td>
<td>11.3</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td>Pentadecane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naphthalene, 1-(1-methylethyl)</td>
<td>11.7</td>
<td>5.7</td>
<td>4.1</td>
</tr>
<tr>
<td>Naphthalene, 2,3,6-trimethyl</td>
<td>11.9</td>
<td>0.6</td>
<td>1.3</td>
</tr>
<tr>
<td>4,6,8-Trimethylazulene</td>
<td>12.1</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>pentaedcane, 2-methyl</td>
<td>12.2</td>
<td>0.3</td>
<td>2.3</td>
</tr>
<tr>
<td>Pentadecane, 3-methyl</td>
<td>12.5</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>1-Heptadecene</td>
<td>12.6</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>(-)-Spathulenol</td>
<td>12.7</td>
<td>--</td>
<td>2.2</td>
</tr>
<tr>
<td>Hexadecane</td>
<td>12.8</td>
<td>0.2</td>
<td>--</td>
</tr>
<tr>
<td>Pentadecane, 2,6,10-trimethyl</td>
<td>12.9</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>Heptadecane</td>
<td>13.5</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Tetradecanoic acid, methyl ester (Tetradecanoic acid)</td>
<td>14.0</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Octadecane</td>
<td>14.3</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Nonadecane</td>
<td>15.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Hexadecanoic acid, methyl ester (Hexadecanoic acid)</td>
<td>16.2</td>
<td>0.2</td>
<td>--</td>
</tr>
<tr>
<td>9-Octadecenoic acid, methyl ester (9-Octadecenoic acid)</td>
<td>16.5</td>
<td>1.6</td>
<td>6.7</td>
</tr>
<tr>
<td>9,12-Octadecadienoic acid, methyl ester (9,12-Octadecadienoic acid)</td>
<td>18.0</td>
<td>--</td>
<td>2.0</td>
</tr>
<tr>
<td>9,12,15-Octadecatrienoic acid, methyl ester (9,12,15-Octadecatrienoic acid) ω-3</td>
<td>18.1</td>
<td>3.2</td>
<td>2.8</td>
</tr>
<tr>
<td>Octadecanoic acid, methyl ester (Octadecanoic acid)</td>
<td>18.2</td>
<td>14.7</td>
<td>1.2</td>
</tr>
<tr>
<td>Eicosane</td>
<td>18.4</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Eicosanoic acid, methyl ester (Eicosanoic acid)</td>
<td>19.0</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Docosanoic acid, methyl ester (Docosanoic acid)</td>
<td>20.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>95.2</td>
<td>96.8</td>
</tr>
</tbody>
</table>

The composition of the extracts was determined by comparison of the mass spectrum of each component with Wiley GC/MS library data and also from its retention times (Rt). Rt = Retention time.
Table 2. Class compositions and yield of the hexanic extract from leaf and stem of *O. vulgare*.

<table>
<thead>
<tr>
<th>Class composition</th>
<th>Leaf (%)</th>
<th>Stem (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliphatic and aromatic compounds</td>
<td>74.8</td>
<td>82.9</td>
</tr>
<tr>
<td>Saturated fatty acid (SFAs)</td>
<td>2.5</td>
<td>7.9</td>
</tr>
<tr>
<td>Unsaturated fatty acid (UFAs)</td>
<td>17.9</td>
<td>6.0</td>
</tr>
<tr>
<td>UFAs/SFAs</td>
<td>7.16</td>
<td>0.76</td>
</tr>
<tr>
<td>Yield</td>
<td>5.1</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Table 3. Antimicrobial activity of leaf and stem oils of *"Origanum vulgare"*.

<table>
<thead>
<tr>
<th>Tested microorganism</th>
<th>Hexane extracts</th>
<th>Antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>leaf oil</td>
<td>stem oil</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>11.9±0.13</td>
<td>10.1±0.10</td>
</tr>
<tr>
<td>S. epidermidis</td>
<td>13.1±0.12</td>
<td>11.1±0.21</td>
</tr>
<tr>
<td>E. faecalis</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>S. aureus</td>
<td>14.1±0.13</td>
<td>14.1±0.12</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>13.7±0.31</td>
<td>13.2±0.23</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>E. coli</td>
<td>10.1±0.12</td>
<td>10.9±0.20</td>
</tr>
<tr>
<td>A. niger</td>
<td>12.2±0.22</td>
<td>11.7±0.13</td>
</tr>
<tr>
<td>C. albicans</td>
<td>11.8±0.23</td>
<td>10.9±0.11</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>7.9±0.21</td>
<td>7.8±0.26</td>
</tr>
</tbody>
</table>

NA = Not active.

Escherichia coli ATCC 25922, Aspergillus niger ATCC 16404, Candida albicans ATCC 5027 and Saccharomyces cerevisiae ATCC 9763.

RESULTS AND DISCUSSION

Fatty acids profile

The hexane extract composition from leaf and stem of *O. vulgare* was investigated using GC/FID and GC/MS techniques for the first time. Analysis of the fatty acid methyl esters and aliphatic compounds from *O. vulgare* leaf and stem oils showed the presence of fatty acid methyl esters and indirectly the fatty acids. According to the results, the hexane extract yields of the studied *O. vulgare* species leaf and stem were found 5.1 and 3.3% on the basis of dry weight of the plant materials and the unsaturated fatty acid contents were higher than saturated ones and the highest total percentage was detected in stem (Table 1).

The percentage and retention time of components are given in Table 1. As it is shown, the total contents of hexane extracts varied from 95.2 (in leaf) to 96.8% (in stem). The major unsaturated and saturated fatty acid including linolenic (ω-3) and hexadecanoic acid are shown in the Table. The major polyunsaturated fatty acid (PUFAs) was linolenic (ω-3) acid. Four minor acids were tetradecanoic acid (0.1 to 0.4%), octadecanoic acid (0.4 to 0.5%), eicosanoic acid (0.2%) and docosanoic acid (0.1 to 0.2%).

As can be seen in Table 1, about 40 components of the extract from leaf, and 36 components from stem extract were identified, too. There were some differences in the fatty acid profiles of the different part of this plant. Unsaturated fatty acids (UFAs), saturated fatty acids (SFAs) and some of the aliphatic compounds were observed in both parts of this plant. In fact, both fractions mainly include aliphatic compounds, with a clear predominance of tridecane and tetradecane. One of the essential fatty acids (EFAs), 9, 12, 15- octadecatrienoic acid (linolenic acid or ω-3) was a predominant component in *O. vulgare* leaf, but not found in the stem oil. Linoleic acid is an omega-6 fatty acid, ranging from 2.8 (in stem) to 3.2% (in leaf) that was found a little amount in this work. The main aliphatic compounds in the *O. vulgare* (leaf and stem) extracts samples studied were tridecane (14.6 and 16.1%), respectively. The ratios of unsaturated fatty acid (UFAs)/SFAs (saturated fatty acid) were 7.16 and 0.76 in extract from leaf and stem, respectively (Table 2). The hexanic extract of leaf from this plant had a higher proportion of UFAs compared to stem part (Table 1).

The hexane extracts of leaf and stem from *O. vulgare* was tested against four Gram-positive and three Gram-negative bacteria, as well as three fungi. The results, presented in Table 3, show that the hexane extracts from
leaf and stem exhibited a moderate biological activity against all tested fungi and bacteria except for a resistant Gram-negative bacteria, *K. pneumoniae*, as well as a fungi, *A. niger*. The most sensitive microorganisms against leaf and stem extracts were *S. aureus* with inhibition zones of 14.1 to 14.7 mm, *K. pneumoniae* 13.2 to 13.7 mm and *S. epidermidis* 11.1 to 13.1 mm, respectively. Other microorganisms were found to be less sensitive to the extracts with inhibition zones ranging from 7 to 11 mm. According to our results, the main constituents of hexane extracts were aliphatic and aromatic compounds.

It is clear that there is a significant correlation between the chemical compositions and antimicrobial activity. Thus, it seems that *O. vulgare* leaf may be a moderate dietary source for UFAs and/or effective antimicrobial.

ACKNOWLEDGEMENTS

We are grateful of Mrs. Azimi (Agriculture Research Center "ARC" Ardabil, Iran.) for helpful assistance in botanical identification.

REFERENCES

