Review

Progress in strategies for sequence diversity library creation for directed evolution

College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China 625014.

Accepted 27 December, 2010

Protein engineering has been the most attractive strategy for biologists to redesign enzymes. As the simplest technique of protein engineering, directed evolution has been applied to many fields, such as industry, agriculture and medicine. An experiment of directed evolution comprises mutant libraries creation and screening or selection for enzyme variants with desired properties. Therefore, a successful application of directed evolution depends on whether or not one can generate a quality library and perform effective screening to find the desired properties. Directed evolution is already increasingly used in many laboratories to improve protein stability and activity, alter enzyme substrate specificity, or design new activities. Meanwhile, many more effective novel strategies of mutant library generation and screening or selection have emerged in recent years, and will continue to be developed. Combining computational/rational design with directed evolution has been developed as more available means to redesign enzymes.

Key words: Protein engineering, directed evolution, sequence diversity creation, novel strategy, computational design, rational design.

INTRODUCTION

Enzymes are nature’s catalysts, tremendously accelerating the rates of a wide range of biochemical reactions with extreme specificity. Despite its high popularity for chemical synthesis in laboratory, enzymes almost always present too many problems to become suitable for industrial application. Limitations include incompatibility with non natural substrates, low stability, poor activity, and requirements for expensive cofactors (Farinas and Bulter, 2001). Therefore, applying enzymes to the industrial scale requires engineering strategies to improve their stability or activity. Protein engineering has been the most effective strategy for that purpose.

Rational design is reported to be an effective strategy to modify enzymes, including altering the reaction mechanism of the enzyme to catalyse new reactions, switching substrate specificity, expanding substrate specificity, and improving substrate specificity, such as enantioselectivity in kinetic resolutions, and most enzymes have been engineered successfully through this way (Garmaise, 2001; Jermutus et al., 2001; Antikainen, 2005). However, it is not always useful. It reacts only when the knowledge of sequence-structure-function is available, but there are small number of enzymes whose structure or function are available. Besides, rational design is complex and multifactorial. Consensus concept has been established to improve thermostability of phytase, however, the complex calculated program limits its extensive

*Corresponding author. E-mail: chenhui@sicau.edu.cn. Tel: +86-835-2886126.

Abbreviations: epPCR, Error-prone PCR; RID, random insertion/deletion mutagenesis; RPR, random priming recombination; STEP, staggered extension process; ITCHY, incremental truncation for the creation of hybrid enzyme; PCR, polymerase chain reaction; RACHITT, random chimeragenesis on transient templates; SHIPREC, sequence homology-independent site-directed chimeragenesis; MEGAWHOP, megaprimer polymerase chain reaction of whole plasmid; EP-RCA, error-prone rolling circle amplification; SeSaM, sequence saturation mutagenesis; RAISE, random insertion/deletion strand exchange mutagenesis; RCA, rolling circle amplification; YLBS, Y-ligation-based block shuffling; MUPREC, multiplex-polymerase chain reaction-based recombination; SISDC, sequence-independent site-directed chimeragenesis; NRR, non-homologous random recombination.
Directed evolution is a general term used to describe various techniques for generation of protein mutants and screening/selection of desirable functions (Farinas and Bulter., 2001) and it is a powerful complement to 'rational' engineering approaches in the absence of detailed mechanistic understanding (Dougherty et al., 2009). Directed evolution has emerged since the 1970s and it plays an important role in improving, altering enzyme properties and studying sequence-structure-function relationships of enzymes. The laboratory evolution experiment, contrast to Darwinian evolution, often has a defined goal, and the key processes—library creation and selection or screening—are carefully controlled by the experimenter (Figure 1). Comparing to rational design, as an “irrational design” strategy, it does not need to provide insight into sequence-structure-function relationships of proteins. As one of the most effective approaches to engineer enzymes, directed evolution has been used to redesign many enzymes for the requirement of industrial, medical and research application successfully.

A successful application of directed evolution requires one to generate a quality library and perform effective screening to find the desired properties. It is essential to bear a strategy for creating directed evolution sequence libraries that are rich in proteins with the desired enzymatic function, and we will focus on it here. The strategies of selection and screening for enzyme variants with the desired properties will not be discussed here, since you can find them elsewhere. This review is based on an overview of the different strategies available for creating directed evolution sequence libraries, to discuss

Figure 1. Schematic diagram of directed protein evolution. A typical directed protein evolution experiment was carried out starting at construction of gene mutant library, followed by gene library expression and improved gene(s) isolation.
the recent advances in the techniques and strategies, including the introduction of computational strategies aimed at improving the quality and potential of mutant libraries.

OVERVIEW OF DIFFERENT STRATEGIES FOR MUTANT LIBRARY CREATION

Mutagenesis and recombination have been considered as two main sorts for the creation of sequence diversity libraries. The techniques of mutagenesis, such as error-prone PCR (epPCR) and random insertion/deletion mutagenesis (RID), generate sequence diversity in the form of point mutations, insertions or deletions. However, recombination techniques do not directly create new sequence diversity but combine existing diversity in new ways. Recombination techniques can be divided into homologous recombination and non-homologous recombination depending on whether genes contain sequence homology. A range of different techniques are available for recombining diverse sequences, such as DNA shuffling, random priming recombination (RPR), the staggered extension process (StEP) for homologous recombination, and incremental truncation for the creation of hybrid enzyme (ITCHY) for non-homologous recombination. The ultimate purpose for all recombination techniques is to recombine DNAs from different sources in new ways to form novel sequences.

Error-prone PCR is a familiar method used to generate variants with random mutations, which is designed to alter and enhance the natural error rate of polymerase on the bases of standard polymerase chain reaction (PCR) methods (Pritchard and Corneb, 2005). The combination of introducing a small amount of Mn^{2+} and various ratios of nucleotides in the error-prone PCR process are usually effective to create sequence diversity. Higher concentrations of Mg^{2+} are usually used to stabilize non-complementary pairs. Although most enzymes have been designed successfully through this way, it is difficult. The frequency of beneficial mutations is generally low in error-prone PCR reactions. Sequential error-prone PCR is a better choice to generate variants, which performs several times of error-prone PCR to accumulate beneficial mutations (Kong et al., 2001). On the other hand, error-prone PCR produces libraries with biases. Random insertion/deletion mutagenesis offers a general method to reduce these biases as well as access insertions and deletions at random positions within the amino acid sequences (Murakami et al., 2003). However, the procedure of RID is complex, and the experimenter must be sure each step is working correctly.

Recombination techniques bypass the above limitations by allowing the collection of beneficial mutations from multiple genes. DNA shuffling is a method for in vitro recombination of homologous genes invented, which has been the most popular recombination technique in recent years (Stemmer, 1994). In DNA shuffling, a single DNA sequence or a population of DNA sequences are randomly fragmented and then reassembled into full-length, chimeric sequences by PCR, and they are usually called "single-gene DNA shuffling" and "gene family shuffling", respectively. Many new shuffling strategies have emerged in recent years, such as synthetic shuffling, exon shuffling, whole-genome shuffling and Y-ligation-based block shuffling. Random priming recombination is a simple and efficient method for in vitro mutagenesis and recombination of polynucleotide sequences reported by Shao et al. (1998). RPR generally consist of two steps: Generation of a large number of short DNA fragments using random primers and production of a library of full-length sequences through DNA polymerization. The staggered extension process recombination is performed through series of polymerase-catalyzed primer extensions, generating cross hybridization during growing of gene fragments (Zhao et al., 1998). This method commences with priming the template sequence(s) followed by repeated cycles of denaturation, annealing and abbreviated extension. The extending fragments anneal to different templates in each cycle until full-length sequences are obtained (Figure 2). DNA shuffling, RPR and StEP all require the sequences similar enough to be recombined. Random chimeragenesis on transient templates (RACHITT) is a technique that is conceptually similar to StEP and DNA shuffling but is designed to produce chimera with a much larger number of crossovers. It can increase the frequencies of recombination between sequences with low homology, which generated an average of 14 crossovers per parental gene, a much higher rate than with the above recombination methods (Coco, 2003). RACHITT produces a single-stranded, full-length transient template containing uracil and single-stranded partial donor fragments. As one or more parental donor gene fragments can simultaneously anneal to the template, which generates high-frequency crossovers.

Nonhomologous recombination techniques make possible to construct hybrid proteins even when the genes have little or no sequence homology (Lutz et al., 2001). They also allow the efficient creation of new protein folds, while protein variants generated by homologous recombination or mutagenesis are most likely to maintain structural similarity to the parental proteins. Therefore, they enable the generation of protein structural diversity that may not exist in nature. A high-throughput screening is critical following library construction, since large numbers of nonfunctional progeny is present in the library created by non-homologous recombination. There are several non-homologous recombination techniques that are available for directed evolution, which include incremental truncation for the creation of hybrid enzyme, sequence homology-independent site-directed chimera-genesis (SHIPREC) (Udit et al., 2003), sequence homology-independent protein recombination (Sieber et
Figure 2. Schematic diagram of three familiar homologous recombination techniques. All methods start at a series of homologous genes. In DNA shuffling and RPR, these DNAs are fragmentized by DNase I digestion and random priming, respectively. These fragments are then reassembled into full-length chimerical genes in a self-priming reaction, followed by a standard PCR to amplify the full-length genes. In StEP oligonucleotide primers anneal to the denatured templates, a series of denaturation, annealing, and short extension are repeated until full-length sequences is obtained.

al., 2001) and some new strategies will be introduced below in detail.

NEW STRATEGIES FOR MUTANT LIBRARY CREATION

The above traditional methods for mutant library creation have redesigned many enzymes for the requirements of industrial, medical and research application. However, alternating and improving methods is necessary for the directed evolution of enzymes. In the following, this review will discuss new strategies for mutant library creation on the base of mutagenesis, homologous recombination and non-homologous recombination, respectively.

Mutagenesis

Although error-prone PCR methods remain one of the most popular approaches through mutagenesis to generate libraries for directed evolution, some more samples and effective methods on the basis of mutagenesis have emerged in recent years, such as megaprimer PCR of whole plasmid (MEGAWHOP) (Miyazaki, 2003), error-prone rolling circle amplification (EP-RCA) (Fujii et al., 2004), sequence saturation mutagenesis (SeSaM) (Wong et al., 2004), random insertion/deletion strand exchange mutagenesis (RAISE) (Fujii et al., 2006).

EP-RCA is a very simple random mutagenesis method using rolling circle amplification (RCA) described by Fujii et al. (2004). This method consists of only one RCA step
to check the effect of this technique. Compare to error-prone PCR, EP-RCA can yield mutants with an adequate mutation frequency for directed evolution experiments but it does not require treatments with any restriction enzymes or DNA ligases. EP-RCA has given rise to broad substitution and some mutants with improved ceftazidime resistance when the entire pUC19 plasmid was used which has TEM-1 β-lactamase gene, to check the effect of this technique.

RAISE method is also described based on gene shuffling (Fujii et al., 2006). The protocol of RAISE consists of only three steps: Firstly, obtain 100 to 300 bp DNA fragments from a DNasel digestion; secondly, use of terminal deoxynucleotidyl transferase (TdT) to introduce random nucleotides at the 3’ terminus of the digested DNA fragments; thirdly, use of self-priming PCR to obtain entire target gene which have introduced various lengths of random insertions, deletions and substitutions (Figure 3). Fujii et al. (2006) obtained some of the deletion mutations of TEM β-lactamase through RAISE that caused higher activities than point mutations, which indicates that RAISE method may be a powerful technique of protein engineering in future.

The SeSaM is a four-step method that can saturate every single nucleotide position of the target sequence with all four standard nucleotides (Wong et al., 2006). SeSaM method is partly similar to RAISE, with the difference in utilization universal base to tail the DNA fragments in SeSaM, rather than random nucleotides in RAISE. Finally, after full-length sequence synthesis, universal base replacement by standard nucleotides is necessary to introduce mutations for SeSaM (Figure 3). SeSaM overcomes limitations caused by biased polymerases, and it is a fast technique of mutagenesis to accomplish a process of directed evolution within 2 to 3 days.

Homologous recombination

Applying recombination for directed evolution is a breakthrough, which allows multiple genes rearrangement to generate improved enzymes. DNA shuffling is the most classic and popular method for homologous recombination, which means multiple genes used to recombine, must possess high similarity with each other. Similar to mutagenesis, many new techniques have emerged for the development of homologous recombination in recent years.

Compared to other recombination techniques, Y- ligation-based block shuffling (YLBS) rearranges DNA blocks and recombinates point mutations (Kitamura et al., 2002). In the YLBS method, two types of single-stranded DNAs are used to form a “Y” structure with a stem and two branches, and YLBS performs sequence blocks to rearrange by repeating cycles of Y-ligation. Then YLBS introduces or eliminates sequence blocks efficiently, which can generate a huge diversity of shuffled protein. Therefore, YLBS is a much more effective strategy to obtain some novel proteins that do not exist in nature.

PCR-based recombination is based on homologous recombination of oligonucleotides which have about 20 bp overlap with each other. The following several PCR steps are performed to generate full-length target genes through self-priming of these oligonucleotides or the previous PCR products. PCR-based two-step DNA synthesis (PTDS) is a simple, rapid, high-fidelity and cost-effective technique described by Xiong et al. (2004). The protocol of PTDS only contains two step; synthesis of individual fragments and the entire sequence by PCR. High-fidelity DNA polymerase Pfu is often used to ensure the high-fidelity of PTDS. PTDS shows two prominent advantages compared to other methods: (i) The PTDS method is rapid, as the entire process is about 5 to 7 days; (ii) the PTDS method is suitable for reengineering long genes (5 to 6 kb). Multiplex-PCR-based recombination (MUPREC) is another high-fidelity method based on PCR, described by Eggert et al. (2005). A multiplex-PCR generates gene fragments that contain preformed point mutations, which are subsequently assembled into full-length genes by a recombination-PCR step.

Nonhomologous recombination

It is difficult for homologous recombination to recombine genes with little sequence homology, which leads to the development of techniques for non-homologous recombination. This approaches enable the generation of protein structural diversity that may or may not exist in nature, and potentially very useful in evolution of multifunctional proteins. In contrast to DNA shuffling and related methods, ITCHY invented by Ostermeie et al. (1999) does not rely on the parental genes containing regions of DNA sequence homology to create crossovers. There are some other new non-homologous recombination techniques described for recombining sequences without homology.

Sequence-independent site-directed chimeragenesis (SISDC) is a simple and general method that allows crossovers at multiple sites independent on DNA sequence identity (Hiraga and Arnold, 2003). SISDC comprises four steps: Firstly, align the nucleotide sequences of parent genes to determine consensus sequences for targeted sites; secondly, insert marker tags designed with the same restriction endonuclease into targeted sites; thirdly, remove the tag regions by digestion with the restriction endonuclease introduced in the previous step; fourthly, mix fragments which can ligate with each other, which generate the final, chimeric library. Hiraga and Arnold (2003) have recombinated β-lactamases TEM-1 and PSE-4 which only have 49% nucleotide sequence identity at seven sites to evaluate the SISDC method. More
recently, non-homologous random recombination (NRR) method has been described, allowing recombining non-homologous proteins, which is difficult or impossible to accomplish through the previous techniques (Bittker et al., 2004; Doyon and Liu, 2007). NRR method consists of DNaseI fragmentation, blunt-end ligation/extension, and capping using two DNA hairpins to stop the extension. Bittker et al. (2004) applied NRR for recombining chorismate mutase (CM) enzymes, and found that functional CM mutants contained many insertions, deletions and rearrangements.

COMBINING RATIONAL/COMPUTATIONAL DESIGN WITH DIRECTED EVOLUTION

Combining rational/computational design with directed evolution has been a revolution of protein engineering in the recent years. Combine computational design pre-screening experimental library construction can diminish mutant library site, which can save a large number of time and money for high-throughput screening (Funke et al., 2005). Computational design is generally based on the structure of proteins, which comprises three stages.
Firstly, generate a chemical and geometric definition of the catalytic machinery. Secondly, generate placement of the active site residues through geometric definition. Thirdly, form a stereochemically complementary binding surface by optimizing the remainder of the active site (Dwyer et al., 2004). De novo protein design (Kuhlman et al., 2003) and Famclash (Saraf et al., 2004) were effective techniques of computational design which show the increasing power of computational design in the future.

Rational design is often used to cooperate with library diversity generation by structure analysis of a protein through computational techniques. Primary sequences alignment and secondary and spatial structure modeling are usual strategies for rational design. Diverse sequences will be tested to find out those that have functional properties and suppose why; which can be modeled in silico (Figure 4). Sandgren et al. (2003) compared the Cell2A amino acid sequences of *Hypocrea schweinitzii* and *Hypocrea jecorina* which have different thermostability, and found they show high similarity. Therefore, they substituted the differences to study which are important for thermostability (Sandgren et al., 2003). Combining rational design with directed evolution is semi-rational design of protein engineering, offering a target for directed evolution. This approach can greatly diminish the library size, which can save a great deal of time and money for the following high-throughput screening.

CONCLUSION

Directed evolution mimics the process of Darwinian evolution in a test tube, comprising mutant libraries creation and screening or selection for enzyme variants with the desired properties. The successful application of directed evolution depends on whether or not one can generate a quality library and perform effective screening strategy. The size and sequence diversity of a library are preconditions of screening or selection, so it is essential...
to develop more effective strategies for creating directed evolution sequence libraries that are rich in protein with the desired enzymatic function (Yuan et al., 2005; Neylon, 2004).

In this review, we, on the base of an overview of strategies for mutant library generation, have discussed some new techniques in the form of mutagenesis, homologous recombination, and non-homologous recombination. The advantages and limitations of every strategy have been discussed above. The experimenter can choose the best one suitable for the experiment based on the enzyme used and the condition of the laboratory. Traditional strategies, such as error-prone PCR and DNA shuffling, remain the most popular for directed evolution. The combination of error-prone PCR followed by shuffling of selected mutants with improved function is the most commonly used strategy for directed evolution experiments, such as error-prone PCR followed by DNA shuffling or STEP. Non-homologous recombination techniques are more effective for complex enzymes evolution, and it may obtain novel protein not existing in nature. Therefore, non-homologous recombination techniques will be increasingly popular for directed evolution. Combination of rational/computational design with directed evolution has been developed as a new breakthrough for directed enzyme evolution. The use of computational design has expanded to include the thermostabilization of enzymes (Korkkegin et al., 2005) and the redesign of an enzyme active site for improved catalytic activity (Park et al., 2006). However, it is still difficult to apply this approach for some complex enzymes, because of the limitation of protein modeling algorithms (Chica et al., 2005) (Table 1).

An effective screening or selection method is also necessary for a successful directed evolution, and many advanced technologies have emerged in recent years (Matsuura and Yomo, 2006; Lin and Cornish, 2002; Hibbert and Dalby, 2005). The advances in screening technologies and application were not been discussed here, as they could be found elsewhere.

REFERENCES

