Full Length Research Paper

Assessing estrogenic activity of *Nigella sativa* in ovariectomized rats using vaginal cornification assay

Saadat Parhizkar¹²³, Latiffah Abdul Latiff¹³⁴, Sabariah Abdul Rahman¹³, Mohammad Aziz Dollah¹, Hanachi Parichehr⁴

¹Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia.
²School of Health, Yasuj University of Health and Medical Sciences, Iran.
³Institute of Biosciences, University Putra Malaysia, Serdang 43400, Malaysia.
⁴Faculty of Science, Biology Department, Biochemistry unit, Alzahra University, Iran.

Accepted 14 January, 2011

The aim of this study was to determine the estrogenic activity of *Nigella sativa* (NS) by vaginal cornification assay using an ovariectomized rat model. Forty ovariectomized Sprague Dawley rats, weighting 250 to 350 g were used in the study. *N. sativa* powders were administered to ovariectomized rats for 21 consecutive days at dosages of 300, 600 and 1200 mg/kg respectively, and were compared with each of daily treatment with 0.2 mg/kg conjugated Equine estrogen as positive control or distilled water as negative control. Vaginal smears were taken to observe the estrogenic effect on vaginal epithelium of rats. The vaginal smear showed an atrophic pattern at baseline. The occurrence of vaginal cornification after *N. sativa* supplementation indicated estrogenic activity of *N. sativa*, but this effect was not as much as CEE. The most influence of *N. sativa* in vaginal cornification was observed in low dose NS that this result was in agreement with serum Estradiol level of this group. The cornified cells percentage significantly differed from control group (P<0.05). These data suggest that *N. sativa* possesses estrogenic function in the ovariectomized rat model which can be helpful in managing menopausal symptoms as an alternative for Hormone Replacement Therapy.

Key words: *Nigella sativa*, vaginal cytology assay, ovariectomized rats, estrogenic activity.

INTRODUCTION

Nigella sativa L., commonly known as black cumin seed, belongs to the botanical family of Ranunculaceae (Kamal et al., 2010). It has been used in many Middle Eastern countries as a natural remedy for 2000 years. *N. sativa* (NS) is an amazing herb with a rich historical and religious background (Swamy and Tan, 2001; Kamal et al., 2010). The desirable effects of *N.sativa* has been tested widely on cardiovascular system (Ali and Blunden, 2003; Najmi et al., 2008; Qidwai et al., 2009; Tasawar et al., 2011) immune system (Al-Ghamdi, 2001; Al-Naggar et al., 2003; Alsai, 2008) and digestive system (Mahmoud et al., 2002; Abdel-Sater, 2009; Hassan et al., 2011) as well as homeostasis (Houcher et al., 2007; Najmi et al., 2008; Abdel-Sater, 2009; El-Bagir et al., 2010; Tasawar et al., 2011). As a traditional medicine, *N. sativa* (Black seed) increases milk production and promotes menstruation in the female, but the effects of *N. sativa* on reproductive organs have not been clarified and particularly no scientific research was found on its effect on female reproductive system. It is therefore, necessary to determine if *N. sativa* does have any estrogenic activity on the female reproductive organ and what effect does it have. So the present study was designed to determine the estrogenic activity of short term supplementation of *N. sativa* in ovariectomized rats’ using vaginal cornification assay.

MATERIALS AND METHODS

Plant materials

N. sativa seeds (imported from India) were purchased from a local herb store in Serdang, Malaysia. Voucher specimens of seeds...
were kept at the Cancer Research Laboratory and the seed was identified and authenticated by Professor Dr. Nordin Hj Lajis, Head of the Laboratory of Natural Products, Institute of Bioscience, University Putra Malaysia. After cleaning the seeds under running tap water for 10 min, they were rinsed twice with distilled water and air-dried in an oven at 40°C overnight. The seeds were grounded to a powder shape using an electric grinder (National, Model MX-915, Kadoma, Osaka, Japan) for 10 min and were mixed with rat chow pellet powder and water into different doses including 300, 600 and 1200 mg/kg body weight. Afterward, dough was baked in an oven at 40°C until it received instant weight.

Chemicals and reagents
Conjugated Equine Estrogen (CEE 0.625 mg) was purchased from Wyeth, Montreal, Canada. CEE (Wyeth Montreal, Canada), prepared in a dosage of 0.2 mg/kg (Hajdu et al., 1965; Oropeza et al., 2005; Araujo et al 2006) by dissolving it in distilled water (Hajdu et al., 1965; Genazzani et al., 2004) and was used as a positive control for comparing with the supplemented groups. Estradiol Radioimmunoassay (RIA) kit was purchased from Diagnostic Systems Laboratories (DSL), USA. All other reagents and chemicals were of analytical grade.

Animals
The protocol of the study was approved by Animal Care and Use Committee (ACUC), Faculty of Medicine and Health Sciences, University Putra Malaysia (UPM) with UPM/FPSK/PADS/BR/UH/F01-00220 reference number for notice of approval. Forty female albino Sprague-Dawley rats weighting 250 to 350 g aged 4 months were supplied by animal house of Faculty of Medicine and Health Sciences, University Putra Malaysia. The animals were housed in a single temperature controlled (29 to 32°C) cage and 50 to 60% relative humidity in 12 h dark/light cycle. The animals were allowed to acclimatize for at least 10 days before the start of the experiments. The rats were fed with a standard rat chow and allowed to drink water ad libitum. All animal received human care according to the criteria outlined in the "Guide for care and use of laboratory animals" prepared by the ACUC of Faculty of Medicine and Health Sciences, Universiti Putra Malaysia and animal handling were conducted between 08.00 and 10.00 am to minimize the effects of environmental changes. Vaginal smear was also examined daily. Serum estradiol and body weight were measured at baseline (day 0), 11th, and 21st days at the end of experiment.

Experimental design
In order to induce menopause and to investigate reproductive changes following supplementation with N. sativa, the rats were ovariectomized under a combination of xylazine and ketamine (10 + 75 mg/kg, i.p. respectively) anesthesia. Bilateral ovariectomy was performed via a dorso-lateral approach with a small lateral vertical skin incision (Parhizkar et al., 2008). The ovariectomized animals were acclimatized at the Animal House of Faculty of Medicine and Health Sciences for one month prior to supplementation. Ovariectomized rats were assigned into five groups (each containing 8 animals). Negative control group was given distilled water (1 ml) as the vehicle (gavage) and the second group was treated with (0.2 mg/kg/day) Conjugated Equine Estrogen (CEE) (gavage) as positive control. The third, fourth and fifth groups were supplemented with NS (300, 600 and 1200 mg/kg body weight) respectively. Supplementations with N. sativa, CEE and distilled water were continued for 3 consecutive weeks.

Vaginal smear
Vaginal smears were carried out to monitor cellular differentiation and to evaluate the presence of leukocytes, nucleated epithelial cells, or cornified cells. Vaginal smear samples were collected between 08.00 and 10.00 am daily. The vaginal smears were prepared by washing with 10 µl of normal saline (NaCl 0.9%) and were then thinly spread on a glass slide. They were allowed to dry at room temperature and then stained using Methylene blue dripping. The slides were rinsed in distilled water after 30 min and allowed to dry. The smears were studied using the light microscope (40×) and the cell type and their relative numbers were recorded. Vaginal smear cell counts were performed on 100 cells randomly. The percentage of cornified cells was determined according to Terenius (1971) using the following formula:

\[\text{Percentage of Cornified Cells} = \frac{\text{Cornified Cells}}{\text{Cornified Cells} + \text{Nucleated Cells} + \text{Leucocytes}} \times 100 \]

Blood collection
The blood samples were collected at three different times, which were on day 0 (pre-treatment), day 11 (during treatment) and day 21 (after treatment). The rats were fasted for 12 h before blood collection. Prior to blood sampling, the rats were anesthetized with diethyl ether to ease handling. The blood samples were collected by cardiac puncture using 25G, 1” needle. Approximately 2 ml of blood volume were taken and dispensed into labeled plain tubes. The blood samples were then centrifuged at 3000 rpm for 10 min to separate the serum. The serum was stored at -80°C until assays were carried out.

Statistical analysis
Data were expressed as means ± standard deviation. The data were analyzed using SPSS windows program version 15 (SPSS Institute, Inc., Chicago, IL, USA). The One-way Analysis of Variance (ANOVA) and General linear Model (GLM) followed by Duncan Multiple Range Test (DMRT) were used to determine which N. sativa concentration shows the most significant effect. A p-value less than 0.05 (P<0.05) was considered to be significant.

RESULTS
Vaginal epithelial cell cornification
There was no significant difference in the percentage of cornified cells between groups at baseline and results confirmed a menopausal pattern in OVX rats. However after treatment, cornification was observed in all treatment groups which was significantly different from those negative control group (p<0.05) which remained in an atrophic pattern as observed in the absence of estrogen (Figures 1 - 5).

Serum estradiol
Over the period of treatment, all groups showed reduction...
Figure 1. Vaginal smear of ovariectomized rat from control group treated with distilled water for 3 weeks. A great number of leukocytes are observed (methylene blue staining, 40×).

Figure 2. Vaginal smear of ovariectomized rat treated with Conjugated Equine Estrogen (0.2 mg/kg) for 3 weeks. Cornified and nucleated epithelial cells are observed (methylene blue staining, 40×).

Figure 3. Vaginal smear of ovariectomized rat treated with low dose of *Nigella sativa* (300 mg/kg) for 3 weeks. Cornified, nucleated epithelial cells and leukocytes are observed (methylene blue staining, 40×).
Figure 4. Vaginal smear of ovariectomized rat treated with medium dose of *Nigella sativa* (600 mg/kg) for 3 weeks. Cornified, nucleated epithelial cells and leukocytes are observed (methylene blue staining, 40×).

Figure 5. Vaginal smear of ovariectomized rat treated with high dose of *Nigella sativa* (1200 mg/kg) for 3 weeks. Cornified, nucleated epithelial cells and leukocytes are observed (methylene blue staining, 40×).
in the level of estradiol except positive control (CEE) and low dose N. sativa supplementation which significantly increased (p<0.05). OVX rats supplemented with CEE showed 353% elevation in the estradiol level in the first 10 days, afterward the estradiol level decreased, but the final level of estradiol in this group still remained 147% higher than baseline. In low dose NS, increment in serum estradiol level was observed initially, but a slight decrease was observed after the second 10 days. However the levels of estradiol in NS groups were noticeably higher than the control group (Figure 6).

DISCUSSION

The present study using ovariectomized rats provides the basis for vaginal cornification assays of N. sativa at the first time. Vaginal cytology assay is particularly used to determine the estrogenic activity of the synthetic estrogens, xenoestrogens (Ashby et al., 2000; Diel et al., 2000; Stroheker et al., 2003; Wuttke et al., 2003; Fusani et al., 2007) and phytoestrogens (Okazaki et al., 2002; Balk et al., 2002; Wuttke et al., 2003; Chiechi et al., 2003; Wang et al., 2003). It has been firstly used by Cook et al. (1933). It is a sensitive, simple and inexpensive method to predict the estrogenic activity. The assay can be performed in either immature or ovariectomized rodents (Ashby et al., 2000; Diel et al., 2000; Stroheker et al., 2003). In this study, N. sativa induced cornification of vaginal cells at the three doses tested (300, 600 and 1200 mg/kg). These results are consistent with the trend for serum estradiol level which showed more potent in low dose N. sativa in these rats. In the previous study (Keshri et al., 1995) only rising in E2 level was assayed. Keshri and his colleagues (1995) reported post-coital contraceptive effect of N.sativa. On the other hand Bashandy (2007) showed that N. sativa oil improved reproductive performance in hyperlipidemic male rats. The effect might be due to the presence of unsaturated fatty acids that are valuable to sustain the reproductive capacity of male animals especially when they are getting older.

Other study has shown that the post coital effectiveness of N. sativa is roughly parallel to its estrogenicity (Keshri et al., 1995).

The mechanisms responsible for the effects of phytoestrogens are not clearly understood but there is suggestive evidence that phytoestrogens could act through two possible mechanisms namely, estrogen receptor-independent (Ginsburg and Prelevic, 2000).

Many studies have shown that phytoestrogens bind to estrogen receptors and show significant estrogenic-like effects. The considerable change in the levels of estrogen in the present study suggests that N.sativa may act both directly and indirectly on the estrogen receptors. These estrogenic activities of N.sativa could be attributed to the unsaturated fatty acid contents, which are proven to possess estrogenic effects in animals (Liu et al., 2004; Hu et al., 2007; Suzuki et al., 2008), in man and in cell cultures (Banu et al., 2006).

Vaginal cell cornification was not obvious until 5 days after beginning treatment, which indicates that the estrogenic effects of N. sativa may result from short-term consumption. Furthermore the recovery of rats on vaginal cytology after receiving the synthetic estrogen, conjugated equine estrogen, is also slower than the feeding of N.
sativa. This might be taken as an advantage of using N. sativa for hormone replacement therapy compared to the synthetic estrogens when the short-term effect is needed. The result of current study showed estrogen-like effects of N. sativa in some indicators such as vaginal cell cornification and blood estradiol (E2) level of OVX rats, thereby indicating the probable beneficial role for the treatment of postmenopausal symptoms.

Conclusion

This study provides novel evidence in support of continuing action of the traditional use of N. sativa in gynecologic disorders.

REFERENCES

Balk JL, Whiteside DA, Naus G, De Ferrari E, Roberts JM (2002). A

Balk JL, Whiteside DA, Naus G, De Ferrari E, Roberts JM (2002). A

Balk JL, Whiteside DA, Naus G, De Ferrari E, Roberts JM (2002). A

Balk JL, Whiteside DA, Naus G, De Ferrari E, Roberts JM (2002). A

Balk JL, Whiteside DA, Naus G, De Ferrari E, Roberts JM (2002). A

Balk JL, Whiteside DA, Naus G, De Ferrari E, Roberts JM (2002). A

Balk JL, Whiteside DA, Naus G, De Ferrari E, Roberts JM (2002). A

Balk JL, Whiteside DA, Naus G, De Ferrari E, Roberts JM (2002). A