Full Length Research Paper

Lead tolerance and detoxification mechanism of Chlorophytum comosum

Youbao Wang*, Jiemin Tao and Jie Dai

College of Life Sciences, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui Province, People's Republic of China

Accepted 26 August, 2011

Chlorophytum comosum seedlings were grown in soils containing different lead (Pb) concentrations (CK, 200, 400, 600, 800, 1000, 1250, 1500 and 2000 mg/kg-dry soil) for three months and the effects on the growth, physiological indexes and the accumulation of C. comosum were examined. The results show that the tolerance index (TI) of C. comosum were all above 100 in soils containing 500 mg/kg or lower Pb. Malondialdehyde (MDA) level and electrical conductivity (EC) of C. comosum differed insignificantly with rising Pb concentration. The activities of catalase (CAT) and peroxidase (POD) increased significantly in lower Pb concentration and reached their maximum at 1000 and 250 mg/kg, respectively. In addition, C. comosum plant could maintain a lower Pb level in vivo in soils containing higher Pb concentration. These data indicate that C. comosum is surprisingly tolerant to Pb stress.

Key words: Chlorophytum comosum, lead, accumulation, tolerance, physiological index.

INTRODUCTION

With the rapid development of industries, soil heavy metal pollution becomes an increasingly important issue worldwide. Among various toxic metals, lead (Pb) which interferes with many physiological processes was considered as the most phytotoxic agent to plants and human beings (Poskuta et al., 1996; Bradshaw, 1997; Xia, 2004). Pb pollution had drawn international attention and it is urgent to develop methods to clean up Pb-contaminated soils. As compared to physical and chemical remediation, phytoremediation is preferred because of safety and lower cost (Raskin et al., 1994; Wong, 2003; Singer et al., 2007). Phytoremediation of heavy metal-contaminated soils basically includes phytoextraction and phytostabilization (Vangronsveld et al., 1995; Salt and Krämer, 2000; Dahmani-Müller et al., 2000). The normal phytoremediation practice is to choose metal-tolerant and fast-growing plants with high biomass that can survive in metal-contaminated and nutrient deficient soils. Plant species suitable for revegetation of mine tailings should have evolved biological mechanisms substrates (Tordoff et al., 2000; Whiting et al., 2004).

Nowadays, ornamental plants have become a new source of phytoremediation because they are not only used for landscaping but also have practical applications in air pollution monitoring and control (Hemdez et al., 2005). Consideration of ornamental plant in the reclamation of heavy metal polluted soil has important practical significance (Zhou, 2006). Chlorophytum comosum (Thunb.) Baker is an evergreen horticultural plant native to southern Africa, which is characterized by high biomass, easy cultivation, intense competitive ability, high tolerance to heavy metal stress and wide geographic distribution (Bai et al., 2010; Wang et al., 2011). As a popular horticultural plant, C. comosum has high economic benefits and when they are removed, the roots, a main part containing much heavy metal, are also moved from the soil, thereby avoiding secondary pollution. The heavy metal accumulated will not be transferred to the food chain and consequently reduce the risk to human health. The objectives of this current research were to investigate the effects of Pb on the growth and Pb accumulation, and to explore the tolerance mechanisms of C. comosum to Pb, and to provide scientific basis for the reclamation of Pb polluted soil.

*Corresponding author. E-mail: wybzl @ tom.com. Tel: +86-553-3869193.
Table 1. Effect of Pb on C. comosum growth matters.

<table>
<thead>
<tr>
<th>Pb stress (mg/kg)</th>
<th>Root length (cm)</th>
<th>Length of aboveground part (cm)</th>
<th>Root volume (cm3)</th>
<th>Fresh weight (g)</th>
<th>TIa (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK</td>
<td>13.21±0.68abb</td>
<td>21.53±1.10a</td>
<td>2.71±0.49b</td>
<td>5.37±0.52ab</td>
<td>100ab</td>
</tr>
<tr>
<td>250</td>
<td>13.31±0.58ab</td>
<td>22.39±1.92a</td>
<td>2.95±0.37b</td>
<td>5.37±0.49ab</td>
<td>100.75ab</td>
</tr>
<tr>
<td>500</td>
<td>15.49±0.33a</td>
<td>22.51±2.10a</td>
<td>3.01±0.17b</td>
<td>5.93±0.14a</td>
<td>109.69a</td>
</tr>
<tr>
<td>750</td>
<td>11.29±4.09b</td>
<td>23.89±2.10a</td>
<td>4.87±1.00a</td>
<td>5.72±1.67a</td>
<td>85.46b</td>
</tr>
<tr>
<td>1000</td>
<td>10.23±1.54bc</td>
<td>24.43±2.24a</td>
<td>5.15±0.58a</td>
<td>4.87±1.11b</td>
<td>74.18bc</td>
</tr>
<tr>
<td>1250</td>
<td>9.86±2.46bc</td>
<td>17.20±1.64b</td>
<td>2.92±0.91b</td>
<td>3.92±1.26c</td>
<td>77.44bc</td>
</tr>
<tr>
<td>1500</td>
<td>9.64±2.08bc</td>
<td>12.87±1.90c</td>
<td>2.43±1.10b</td>
<td>4.80±0.90b</td>
<td>72.98bc</td>
</tr>
<tr>
<td>2000</td>
<td>6.46±1.65c</td>
<td>11.33±1.66c</td>
<td>1.57±0.54c</td>
<td>3.53±0.77c</td>
<td>48.90c</td>
</tr>
</tbody>
</table>

a TI: Tolerance index: the average root length of experimental group to that of control ×100.

b Values followed by the same letter within a column are not significantly (P>0.05) different according to the least significant difference (LSD) test.

MATERIALS AND METHODS

Experimental setup

C. comosum seedlings with aerial root were collected from the same matrix plant and were used in the experiment after one-week acclimation at room temperature in the laboratory. The test soil is yellow brown soil collected from Zheshan located in Wuhu, Anhui province, China. The pH value, electrical conductivity (EC), total amount of N, P, K and organic matter (OM) are 5.33, 101 µs/cm, 1.55, 2.06, 9.69 and 25.55 mg/kg, respectively. The soil was homogenized, screened with a 3 mm-sieve and air dried. About 250 g test soil was filled in each plastic pot (Φ = 12.5 cm). Pb was applied as Pb(NO$_3$)$_2$ to each pot and the eight treatment concentrations including control were CK (a soil sample without exogenous Pb), 250, 500, 750, 1000, 1250, 1500 and 2000 mg/kg of dried soil. After equilibration for two weeks at room temperature, two seedlings were transplanted to each pot. The soil moisture was maintained at 80% of WHC. Each treatment had three replicates.

Sampling and analysis

About 90 days later, C. comosum was carefully uprooted and washed with distilled water. Roots and aboveground parts were cut with scissors, and their length and fresh weight were determined. The tolerance index was calculated. The samples were dried at 70°C for 48 h until constant weight. The physiological indicators of fresh leaves were measured, and the contents of photosynthetic pigment were determined spectrophotometrically. EC was measured with conductivity meter (DDS-11A, Shanghai) and MDA content was determined according to Yan et al. (1997). POD were determined by guaiacol colorimetric method and CAT were measured by the decrease of absorbance at 240 nm (Wu and Tiedemann, 2002). All enzyme activities were calculated on the base of fresh weight (FW).

The physical and chemical properties of the soil samples were determined according to the Environmental Monitoring Center of China (1992). The plant samples were dried with oven for half an hour at 105°C and then stood over night at 75°C until constant weight. The dried samples were digested in mixed acids (HNO$_3$: HClO$_4$: H$_2$SO$_4$ = 8:1:1). Pb content was analyzed with an atomic absorption spectrophotometer (AA6800, Shimadzu, Japan) (Environmental Monitoring of China 1992). To avoid cross-contamination, all containers were washed in 2% HNO$_3$ for more than 24 h before used.

RESULTS AND DISCUSSION

Effects of Pb on growth of C. comosum

During the 90-day treatment, lead affected markedly the growth of C. comosum seedlings (Table 1). The morphological features were quantitatively confirmed by measuring the length of roots and aboveground parts, root volumes and fresh weights (FW). These physiological indexes all increased significantly at lower Pb concentration. At 250 and 500 mg/kg Pb concentrations, the length of roots and fresh weights increased as compared to the controls, and both reached their maximum at 500 mg/kg Pb concentration, which were 1.17 and 1.10 times higher than the control, respectively. The length of leaves and root volumes reached their peak values in 1000bmg/kg, which were 1.13 and 1.90 times higher than the control, respectively. In addition, at 2000 mg/kg Pb concentration, the parameters mentioned...
Effects of Pb on tolerance index

The primary effect of lead toxicity on plants is the rapid inhibition of root growth, probably due to the inhibition of cell division in root tips (Eun et al., 2000). Root system is the main part that absorbs and excludes heavy metal. The root length of sensitive plant is obviously inhibited by heavy metal, while that of tolerant plant is only slightly affected. TI is an important indicator that reflects the heavy metal tolerance of plants (Yan et al., 1997). During 90 days of Pb exposure, the TI values of C. comosum were not significantly different from the control, except for that at the 2000 mg/kg Pb treatment. The TI of C. comosum were all above 100 in soil Pb concentration less than 500 mg/kg and the peak value was 109.69 at 500 mg/kg (Table 1). When compared with Acacia farnesiana, a lead bioaccumulator, when Pb\(^{2+}\) concentration in the medium was increased to 1000 mg/L, the TI showed an important decrease, as low as 8 to 10% after 60 days exposure (Amalia et al., 2011). Our findings indicate that C. comosum could maintain normal growth under high Pb stress and the plant is tolerant to Pb pollution.

Effect of Pb on lipid peroxidation and the activity of antioxidative enzymes

A suitable criterion to select plants for metal phyto-remediation purposes could be the presence of...
Table 2. Effects of Pb on EC, MDA content, POD and CAT activities of *C. comosum*.

<table>
<thead>
<tr>
<th>Pb stress (mg/kg)</th>
<th>EC (µs/cm)</th>
<th>MDA content (µmol/g)</th>
<th>POD activity (mg/g·min)</th>
<th>CAT activity (mg/g·min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK</td>
<td>0.13±0.06bc</td>
<td>0.20±0.13c</td>
<td>75.13±6.45a</td>
<td>2.01±0.53f</td>
</tr>
<tr>
<td>250</td>
<td>0.15±0.03a</td>
<td>0.29±0.14ab</td>
<td>82.15±3.73a</td>
<td>2.63±0.14bcd</td>
</tr>
<tr>
<td>500</td>
<td>0.13±0.02cd</td>
<td>0.26±0.02b</td>
<td>50.12±2.56b</td>
<td>2.87±0.02abc</td>
</tr>
<tr>
<td>750</td>
<td>0.13±0.01c</td>
<td>0.29±0.04a</td>
<td>49.13±5.78b</td>
<td>2.90±0.04ab</td>
</tr>
<tr>
<td>1000</td>
<td>0.12±0.01d</td>
<td>0.30±0.07a</td>
<td>49.12±3.20b</td>
<td>3.00±0.07a</td>
</tr>
<tr>
<td>1250</td>
<td>0.12±0.01d</td>
<td>0.25±0.03b</td>
<td>48.12±6.20bc</td>
<td>2.53±0.03cd</td>
</tr>
<tr>
<td>1500</td>
<td>0.14±0.01b</td>
<td>0.24±0.04a</td>
<td>40.14±4.40c</td>
<td>2.41±0.04de</td>
</tr>
<tr>
<td>2000</td>
<td>0.11±0.01d</td>
<td>0.21±0.01bc</td>
<td>47.11±6.35bc</td>
<td>2.12±0.01ef</td>
</tr>
</tbody>
</table>

* a: Values followed by the same letter within a column are not significantly (P>0.05) different according to the least significant difference (LSD) test.

Table 3. Pb Concentration and distribution in *C. comosum*.

<table>
<thead>
<tr>
<th>Pb stress (mg/kg)</th>
<th>Concentration in above ground part (mg/kg)</th>
<th>Concentration in root (mg/kg)</th>
<th>BC a: Aboveground part</th>
<th>TF b</th>
<th>Root</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK</td>
<td>12.21±2.20d</td>
<td>15.34±1.5f</td>
<td>0.48±0.09a</td>
<td>0.80±0.02b</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>68.69±9.10c</td>
<td>180.16±36.67e</td>
<td>0.27±0.05b</td>
<td>0.38±0.02d</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>91.50±4.88c</td>
<td>189.64±15.76e</td>
<td>0.18±0.01c</td>
<td>0.48±0.02d</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>154.03±11.58b</td>
<td>229.19±39.81d</td>
<td>0.21±0.02c</td>
<td>0.67±0.10bc</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>172.50±17.68b</td>
<td>239.84±30.20c</td>
<td>0.17±0.02cd</td>
<td>0.72±0.17bc</td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td>201.53±25.50a</td>
<td>315.75±15.31a</td>
<td>0.16±0.02cd</td>
<td>0.64±0.10c</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>163.75±22.9b</td>
<td>265.59±39.80b</td>
<td>0.11±0.05de</td>
<td>0.62±0.01c</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>181.81±10.03ab</td>
<td>191.75±9.66e</td>
<td>0.09±0.01e</td>
<td>0.95±0.01a</td>
<td></td>
</tr>
</tbody>
</table>

a: BC: Bioaccumulation coefficient; b: TF: translocation factors; c: Values followed by the same letter within a column are not significantly (P>0.05) different according to the least significant difference (LSD) test.

Biochemical mechanisms related to heavy metal tolerance (Amalia et al., 2011). Membrane lipids are the major target of free radical attack, since the protonation of superoxide radical (•O2−) can produce hydroperoxyl radical (•HO2), which can convert fatty acids to toxic lipid peroxides. Therefore, measurement of the products of lipid peroxidation, such as MDA, has been commonly used to assess oxidative stress/injury (Diwan et al., 2010). According to our research, both EC and MDA production changed insignificantly with increasing Pb concentration. As the most widely accepted indicator of oxidative damage, the maximum of the MDA content was 0.24 in 1000 mg/kg, which was 1.5 times of the control, then it decreased with increasing Pb stress.

We further investigated the activities of POD and CAT, which play an important role in the protective enzyme system. As a defensive mechanism, SOD, POD and CAT could protect plant from damage induced by Pb toxicity. POD and CAT are key enzymes in the detoxification of H2O2, so protective enzymes can prevent the accumulation of •O2− and H2O2 effectively and limit membrane lipid peroxidation caused by free radicals (Diwan et al., 2010). With the raise of Pb concentration, the activities of POD and CAT in leaves showed a downward trend after rising initially (Table 2). The activities of POD and CAT reached their peaks in 250 and 1000 mg/kg, which were 1.09 and 1.49 times, respectively of the control. In addition, when Pb concentration was up to 2000 mg/kg, activities of POD and CAT were 62.70 and 105.47% of the control, respectively. Higher Pb concentration would impair the structure and synthesis of enzyme and protective enzyme system would be damaged. In the evolution and elimination processes of free radicals, only the active oxygen species scavengers can maintain the biological free radicals at a low level in order to maintain the normal physiological activity.

Pb accumulation

The accumulation and compartmentation of heavy metals in plant were important indexes in choosing tolerant plant species. As seen in Table 3, the Pb concentrations in roots and aboveground parts of *C. comosum* reached their peaks at 1250 mg/kg Pb, that is, 315.75 and 201.53 mg/kg, respectively. The Pb concentration in the roots
and aboveground parts of *C. comosum* was 191.75 and 181.81 mg/kg in soils treated with 2000 mg/kg Pb. The translocation factor was decreased at low Pb concentration, but increased significantly when Pb concentration in soil reached 750 mg/kg. The translocation factor was 0.95 at 2000 mg/kg Pb concentration.

Plant tolerance to a particular metal is governed by an inter-related network of physiological and molecular mechanisms. The apparent tolerance to increasing levels of toxic elements can result from the exclusion of toxic elements or the metabolic tolerance of plants to specific elements (Sun and Zhou, 2005). Table 3 shows that *C. comosum* was extremely tolerant to lead stress and with increasing Pb concentration, *C. comosum* could maintain a lower Pb level in plant tissues in soil with higher Pb concentration. Metal uptake depends primarily on metal bioavailability (Jabeen et al., 2009). Root secretion which can absorb heavy metals could inhibit the bioavailability of soil pollutants. Glue-like substance secreted by roots, though competitive binding with Pb$^{2+}$, Cu$^{2+}$, Cd$^{2+}$, could keep those heavy metals outside the roots (Sun and Zhou, 2005; Li et al., 2002).

Some researches showed, under Pb stress, plants could secrete citric acid, malic acid and acetic acid which could form soluble complexes with lead. Those soluble complexes could inhibit the transmembrane transport of lead and reduce the bioavailability of lead ions in the environment (Shen et al., 1997). Besides, Li et al. (2002) demonstrated that NtCBP4 and AtCNGC1 are the two components of a transport pathway which are responsible for the entry of Pb ion into roots. Kim et al. (2006) found that AtPDR12 which is located in the cell membrane has the efflux mechanism of Pb$^{2+}$ and AtPDR12-overexpression enhanced the resistance in plants to Cd and Pb toxicity.

Conclusion

Instead of inhibition, lower Pb concentration stimulated the growth of *C. comosum*. The TI of *C. comosum* were all above 100 at Pb concentrations below 500 mg/kg and the growth traits increased initially and then declined at higher Pb concentration. The same results also can be observed in physiological characteristics of *C. comosum*. The activities of POD and CAT raised obviously when exposed to lower Pb concentration, as a result, the contents of MDA and chl, which were important indicators of damages caused by adversity, did not differ significantly from controls in Pb concentration below 1000 mg/kg. Furthermore, *C. comosum* could maintain lower Pb level in plant tissues in soils treated with higher Pb concentration.

Our findings suggest that *C. comosum* is highly tolerant to Pb stress, and has the advantages of high biomass, easy cultivation and wide geographic distribution, which most heavy-metal-tolerant plants lack and will supply a gap of most Pb-tolerant plant discovery.

ACKNOWLEDGEMENT

The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 31070401), the Key Foundation of Education Department of Anhui Province (No. KJ 2009 A 104, KJ 2010 A 152), the Foundation of the Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources in Anhui and the Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province.

REFERENCES

Raskin I, Kumar PBAN, Dushenkov S, Salt SD (1994). Bioconcentration

