Review

Biocontrol genes from *Trichoderma* species: A review

Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi-110012, India.

Accepted 25 November, 2011

In the world, the traditional agricultural practices are getting affected by various problems such as disease, pest, drought, decreased soil fertility due to use of hazardous chemical pesticides, pollution and global warming. As a result, there is a need for some eco-friendly biocontrol agents that help in resolving the previous mentioned problems. The various types of biological control agents such as bacteria and fungi are involved in biocontrol activity. Among them, fungal genus *Trichoderma* plays a major role in controlling the plant diseases. The species of *Trichoderma* are known to produce different kinds of enzymes which have a significant role in biocontrol activity like cell wall degradation, biotic and abiotic stress tolerance, hyphal growth, antagonistic activity against plant pathogens. By the advance techniques laid in the molecular biology, we can easily isolate, characterize, clone, sequence and express the functions of these genes and can study their functions and role in the biocontrol mechanism. This review article explains about the role, and functions of some major biocontrol genes present in the *Trichoderma* species viz., *Trichoderma harzianum*, *Trichoderma viride*, *Trichoderma atroviride*, *Trichoderma reesei*, *Trichoderma hamatum* and *Trichoderma longibrachiatum*.

Key words: *Trichoderma* spp., genes, cloning, transformation, expression.

INTRODUCTION

The species of *Trichoderma* are well known for their biocontrol activity against many plant pathogens that cause major problems in the current agricultural scenario. *Trichoderma* species are known for their production of cell wall degrading enzymes which can be used for commercial productions. All living organisms are made up of genes that code for a protein which performs the particular functions. Genes play a major role in the biocontrol process by regulating some signals and lead to the secretion of some enzymes or proteins that help in the degradation of the pathogens and hence they are known as biocontrol genes. Increased expression of the genes helps in enhanced biocontrol activity which helps in promoting the plant growth and prevents the plant from pathogen attack. So the biocontrol genes can be cloned and produced in large amounts for commercial applications (Massart and Jijakli, 2007).

Some genes of *Trichoderma* species can be used to provide resistance to the biotic and abiotic stresses such as salt, heat and drought (Kuc, 2001). Before using as a commercial product, the biocontrol mechanism of a particular species should be well known (Grondona et al., 1997). The major biocontrol process involves antibiosis, providing plant nutrition and mycoparasitism (Janisiewicz and Korsten, 2002).

Trichoderma species are used widely as biocontrol agents because they have more benefits on plant growth such as promoting plant growth, increasing the nutrient uptake from the soil, and decreasing the activity of the soil borne pathogens that ultimately affect the growth of the plant (Harman et al., 2004). Among the various species of the *Trichoderma, Trichoderma harzianum* is considered to be the most effective biocontrol agent (Gao et al., 2002).

BIOCONTROL GENES AND THEIR FUNCTIONS FROM *TRICHODERMA* SPECIES

The genus *Trichoderma* acts as a biocontrol agent due to its feasible character in fighting against the pathogens. Some major kinds of biocontrol genes that can be easily...
isolated, cloned and characterized are protease, chitinase, glucanase, tubulins, proteinase, xylanase, monooxygenase, galacturonase, cell adhesion proteins and stress tolerant genes. These genes have their unique functions in the biocontrol mechanism such as cell wall degradation, hyphal growth, stress tolerance, and parasitic activity. Tubulins are structural proteins made of microtubules and they help in studying the cell wall composition of the pathogens (Li et al., 2010). Chitinase helps in the breakdown of the glycosidic bonds. Glucose oxidase catalyses D-glucose to D-glucono-1,5-lactone and hydrogen peroxide are known to have antifungal effect (Ciliento et al., 2004). Xylanase helps in breaking hemicellulose a major component of plant cell walls (Figure 1).

FUNCTIONS OF BIOCONTROL GENES

Cell wall degradation

From *Trichoderma virens*, a gene named *tvsp1* encoding for serine protease was cloned successfully and its function was analyzed. Serine protease has an important role in pathogenesis or biocontrol activity against *Rhizoctonia solani* which affects the cotton seedlings. The gene *tvsp1* was expressed in *Escherichia coli* and cloned using pET-30 vector. Thus, serine protease helps in degrading the fungal cell wall (Pozo et al., 2004).

In *T. harzianum* trichodiene synthase gene *tr5* was isolated and characterized. This *tr5* gene was responsible for the synthesis of the enzyme trichothecene which inhibits the protein and DNA synthesis in the cells of the pathogens and inhibits their growth. The trichothecene shows phytotoxic activity against *Fusarium* species. The gene *tr5* was isolated and by designing of specific primers. The sequence was inserted into pGEM-T vector, cloned and expressed.

The presence of *tr5* gene was confirmed by screening with other *Trichoderma* isolates (Gallo et al., 2004). The expression of gene *tag83* which encodes cell wall degrading enzyme exo-β-1,3-glucanase was isolated from *Trichoderma asperellum* and characterized. The expression analysis of this gene was studied using real time and reverse transcription-polymerase chain reaction (RT-PCR). The enzyme activity of glucanase was studied by comparing with various types of carbon sources like starch, cellulose, chitin, chitosan and cell walls of *R. solani*. The expression of *tag83* gene with *R. solani* showed that glucanase enzyme exhibits parasitic activity against pathogens (Marcello et al., 2010).

T. virens transformants expressed two different kinds of β-1,3 and β-1,6 glucanase genes viz., *TvBgn2* and *TvBgn3*. These genes secrete cell wall degrading enzyme that helps in the biocontrol activity. *T. virens* GV29.8 wild type and double over expression (DOE) transformant strains were used to detect the enzyme activity against pathogens like *R. solani, Pythium ultimum* and *Rhizopus oryzae* (Djonovic et al., 2007).

A gene, *gluc78* which codes for an antifungal glucan 1,3-β-glucosidase was isolated, cloned and sequenced from *Trichoderma atroviride*. This gene has its significance in the cell wall degradation of the pathogens. The gene *gluc78* was cloned in pGEM-T vector and the expression analysis was done against pathogens such as *R. solani* and *P. ultimum* (Donzelli et al., 2001). From *T. harzianum*, a glucose repressor gene *crel* was isolated and characterized. This gene causes the repression of cellulase and xylanase encoding genes. Cellulase and xylanase are the major type of enzymes that involve in the cell wall degradation of the pathogens. The gene was cloned using pTZ57R/T plasmid vector and transformed into *E. coli* DH 10B and the role of *crel* gene in cellulase and xylanase expression was studied (Saadia et al., 2008).

β-Tubulins are structural components of most cells and they interact with benzimidazole fungicides, and play a major role in biocontrol process. This β-tubulin gene was isolated and characterized from *T. harzianum*. The β-tubulin gene was amplified by PCR, the coding regions and the flanking sequences were identified using inverse and nested PCR. The sequences were analyzed for the presence of motifs for the expression of the gene. The three dimensional model of β-tubulin gene was done by Swiss-model automated comparative protein modeling server (Li and Yang, 2007). From *T. virens*, a gene, Sm1 a cysteine-rich protein was isolated and expressed. It shows defense activity against diseases in dicot and monocot plants (Buensanteai et al., 2010).

Serine proteases play a key role in the fungal biology and involves in biocontrol activity. From *T. harzianum* a novel serine protease gene named SL41 has been cloned and expressed successfully in *Saccharomyces cerevisiae*. The cDNA of SL41 gene was sequenced and it was cloned in pMD18-T vector and the yields were inserted into *E. coli* DH5-α. Thus, serine proteases were cloned and characterized (Liu et al., 2009).

The gene, *ThPG1* which encodes for endopolygalacturonase was isolated from *T. harzianum* and characterized. This enzyme involves in the cell wall degradation of the pathogens like *R. solani* and *P. ultimum* and helps in the plant beneficial interactions. The expression study of this gene was studied by comparing the wild and mutant type strains.

The full length cDNA clone of *ThPG1* gene was obtained by polymerase chain reaction and was cloned in pSIL-pG1 vector. The phylogenetic relationship was obtained by Neighbor-joining (NJ) tree method (MoranDiez et al., 2009). A gene, *Tv6Gal* which codes for endo-β-(1→6)-galactanase gene was isolated from *T. virens*, cloned and expressed in *E. coli*. Galactanase enzymes belong to the family of arabinogalactan proteins that involve in cell-cell adhesion, cell expansion and cell death. The cDNA clone of the gene *Tv6Gal* was done by...
Figure 1. Structure of biocontrol genes: A) tubulin, B) chitin, C) protease, D) xylanase, E) proteinase, F) monoxygenase, G) β-endogalactanase, H) β-endoglucanase, and I) adenylate-Cyclase. (www.google.co.in/images). From *T. harzianum* gene encoding for endochitinase and β-tubulin has been cloned and characterized successfully using pGEM-T vector ongoing work (senior author).

RT-PCR, cloned in pGEM-T vector and expressed in *E. coli* (Kotake et al., 2004).

Xylanase producing *Trichoderma* strain SY was isolated from the soil. The gene coding for xylanase, *Xyl* was cloned by RT-PCR. *Xyl* was highly expressed when it was grown in cellulose as an only source of carbon. The full length cDNA of *Xyl* was amplified by PCR and cloned in pGEM-T vector. The cloned gene was expressed in *E. coli* and the proteins were analyzed using sodium dodecyl sulphate poly acrylamide gel electrophoresis (SDS-PAGE) (Min et al., 2002). From *T. virens*, the g-protein α subunits genes, *TgaA* and *TgaB* were cloned and characterized. This gene exhibits antagonist activity against *R. solani* and *Sclerotium rolfsii*.
Biotic and abiotic stress tolerances

Species of Trichoderma helps the plant to survive in the abiotic stress conditions. From T. harzianum T34 isolate, hsp70 gene was cloned and characterized. This gene helps in increasing the fungal resistance to heat and other stresses such as salt tolerance, osmotic and oxidative tolerances. The protein sequences were analyzed using DNAsStar package and aligned using CLUSTAL X algorithm. The hsp70 gene was cloned in pGEM-T vector and expressed in different isolates of T. harzianum (ManteroBarrientos et al., 2008).

From the fungus T. harzianum, a gene named Thkel1 was isolated and characterized. This gene codes for putative kelch-repeat protein which helps in regulating the glucosidase activity and enhances tolerance to salt and osmotic stresses in Arabidopsis thaliana plants. The vector used for cloning was pSIL-KEL and was transformed to T. harzianum. The expression of this gene was studied by growing the fungal at various biotic and abiotic stress conditions (Hermosa et al., 2011). From T. virens glutathione transferase gene TvgGST was cloned. When transgenic plant expresses this gene against different concentrations of cadmium, it shows tolerance to cadmium accumulation in plants. Thus it acts as cadmium tolerant gene (Dixit et al., 2011).

Mycoparasitism

From 31 isolates of T. harzianum, five have been selected namely (T 30, 31, 32, 57 and 78) and from them genes encoding for N-acetyl-β-D-glucosaminidase (exc1 and exc2), chitinase (chih42 and chih33), protease (prb1) and β-glucanase (bgn 13.1) were cloned and expressed. These genes play a major role in the mycoparasitic activity against the pathogens especially Fusarium oxysporum. The expressions of these genes that codes for these enzymes were determined by RT-PCR and their effects against the pathogens were tested by dual plate assay (LopezMondejar et al., 2011). In T. virens, an adenylate-cyclase encoding gene named tac1 gene was isolated and cloned. This gene has its role in mycoparasitic activity against R. solani and P. ultimum (Mukherjee et al., 2007). ThPTR2 a di or tri peptide transporter gene isolated from T. harzianum CECT 2413 has a significant role in the mycoparasitic activity against Botrytis cinerea.

The cDNA of ThPTR2 gene was obtained through reverse transcript polymerase chain reaction, transferred into pBlRC43 plasmid, cloned and expressed. The sequences were aligned using CLUSTAL-W algorithm and protein binding motifs were discovered. The mycoparasitic expression of the ThPTR2 gene was analyzed by dual culture assay (Vizcaino et al., 2006). The gene, qid74 isolated from T. harzianum CECT 2413 was found to play a significant role in cell protection and provide adherence to hydrophobic surfaces that helps the fungus in mycoparasitic activity against R. solani pathogen. The function of this gene was studied by comparing the expression of genes in wild type transformants and disruptants. The results showed that qid74 gene was responsible for adhesion to the hydrophobic surfaces of the pathogenic fungi and helps in the antagonistic activity (Rosado et al., 2007).

A gene named, Taabc2 was cloned from T. atroviolure and characterized. This gene has a significant role in ATP binding cassette (ABC) transporter in cell membrane pump that helps in the mycoparasitic activity. The expression of this gene was found to be more when they uptake the nutrients from the pathogenic fungi. The gene was cloned using pGEM-T vector, expression of the genes were analyzed using RT-PCR.

The antagonist activity against pathogens such as R. solani, B. cinerea, and P. ultimum was done by dual culture plate assay with T. atrovire and wild and mutant type strains (Ruocco et al., 2009). From T. harzianum genes encoding for proteinase prb1 and endochitinase ech42 were isolated and characterized. These genes involved in the mycoparasitic activity against R. solani and S. rolfsii. For the production of these enzymes, the genes were induced by lectin-carbohydrate interaction a diffusible factor. This factor regulates the production of proteinase and endochitinase which helps in the mycoparasitism (Cortes et al., 1998).

In Trichoderma hamatum the expression of mycoparasitism genes, namely chitinase chit42 and proteinase prb1 were analyzed. The expressions of these genes were analyzed by confrontation assay against the plant pathogen Sclerotinia sclerotiorum. During sequence analysis the presence of motifs was discovered and that helps in the regular expression of the genes that enhances the parasitic activity against pathogens (Steyaert et al., 2004).

T. longibrachiatum transformants showed over expression of β-1,4-endoglucanase gene egl1. This gene showed biocontrol activity against P. ultimum in damping-off of cucumber. The egl1 gene, coding for endoglucanase was isolated from T. longibrachiatum, cloned and expressed in Saccharomyces cerevisiae. The expression of the gene was compared with the wild type and transformed strains. The results showed that the over expression of egl1 gene showed good biocontrol activity (Migheli et al., 1998). TmkA, mitogen activated protein kinase from T. Virens is known to cause mycoparasitic activity against R. solani and S. rolfsii (Mukherjee et al., 2003).

Antifungal activity

A transcription factor gene named Thctf1 was isolated
Table 1. List of biocontrol genes isolated from different *Trichoderma* species and their functions.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Name of the isolate and biocontrol gene</th>
<th>Function</th>
<th>Strain identification by DNA sequence analysis with accession numbers</th>
<th>Effect of the gene in biocontrol</th>
<th>Author</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T. harzianum strain IMI206040 (proteinase prb1 and endochitinase (ech42 genes))</td>
<td>Parasitic activity against Sclerotium rolfsii and Rhizoctonia solani.</td>
<td>Accession numbers not available</td>
<td>Expression of this gene helps in regulation of hydrolytic enzymes.</td>
<td>Cortes et al.</td>
<td>1998</td>
</tr>
<tr>
<td>2</td>
<td>T. longibrachiatum wild type strain CECT2606 (β-1,4-endoglucanase gene, egl1)</td>
<td>Biocontrol activity against Pythium ultimum on cucumber.</td>
<td>Accession numbers not available</td>
<td>Shows enhanced biocontrol activity.</td>
<td>Migheli et al.</td>
<td>1998</td>
</tr>
<tr>
<td>3</td>
<td>T. harzianum strain P1 74058 (ech42 gene)</td>
<td>Biocontrol activity against Botrytis cinerea and R. solani.</td>
<td>Accession numbers not available</td>
<td>Disruption of this gene affects the biocontrol activity.</td>
<td>Woo et al.</td>
<td>1999</td>
</tr>
<tr>
<td>4</td>
<td>T. atroviride strain P1 (ATCC 74058) (1,3-β-glucosidase gene, gluc78)</td>
<td>Cell wall degradation of pathogens Pythium and Phytophthora.</td>
<td>GenBank AF253421</td>
<td>Exhibits moderate biocontrol activity.</td>
<td>Donzelli et al.</td>
<td>2001</td>
</tr>
<tr>
<td>5</td>
<td>Trichoderma strain SY (Xylanase gene Xyl)</td>
<td>Helps in breakdown of hemicellulose.</td>
<td>GenBank AY156910</td>
<td>Only gene isolation</td>
<td>Min et al.</td>
<td>2002</td>
</tr>
<tr>
<td>6</td>
<td>T. virens strain IMI 304061 (TmkA Mitogen Activated Protein kinase gene)</td>
<td>Biocontrol activity against pathogens like S. rolfsii and R. solani.</td>
<td>GenBank AY141978</td>
<td>This gene represses the conidial formation of R. solani.</td>
<td>Mukherjee et al.</td>
<td>2003</td>
</tr>
<tr>
<td>7</td>
<td>T. harzianum strain ATCC 90237 (trichodiene synthase tri5 gene)</td>
<td>A toxic secondary metabolite which is responsible for inhibiting DNA or protein synthesis, and enhances virulence against Fusarium spp.</td>
<td>DDBJ/EMBL/ Gen bank accession number is AJ 784992.</td>
<td>Increases the virulence against Fusarium spp.</td>
<td>Gallo et al.</td>
<td>2004</td>
</tr>
<tr>
<td>8</td>
<td>T. virens strain IMI 304061 (TgaA, TgaB genes)</td>
<td>Antagonism against S. rolfsii and R. solani.</td>
<td>GenBank AY186729 (tgaA) and AY168002 (tgaB).</td>
<td>Increases virulence in the plant pathogenic interactions.</td>
<td>Mukherjee et al.</td>
<td>2004</td>
</tr>
<tr>
<td>9</td>
<td>T. virens wildtype strain Gv29-8 and an arginine auxotrophic strain, Tv10.4 (tvsp1 serine protease encoding gene)</td>
<td>Involved in pathogenesis or biocontrol process of R. solani.</td>
<td>GenBank AY242844</td>
<td>Exhibits moderate activity against R. solani.</td>
<td>Pozo et al.</td>
<td>2004</td>
</tr>
<tr>
<td>10</td>
<td>T. hamatum strain LU593 (chitinase chit42 and proteinase prb1 gene)</td>
<td>Mycoparasitic activity against Sclerotinia sclerotiorum.</td>
<td>GenBank ITS1-AY241456, chit42-A258898, prb1-A258899, xbg1.3-110-A269826</td>
<td>Exhibits moderate biocontrol activity.</td>
<td>Steyaert et al.</td>
<td>2004</td>
</tr>
<tr>
<td>No.</td>
<td>Strain</td>
<td>Accession number</td>
<td>Description</td>
<td>Biocontrol Activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>T. viride IFO31137 (endo-β-1-6-glactanase gene)</td>
<td>Accession number not available</td>
<td>A type of arabinogalactan proteins that involves in cell-cell adhesion, expansion and cell death.</td>
<td>Expression of gene enhances the production of proteins. Kotake et al. 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>T. atroviride strain P1 ATCC 74058 (tga1 gene)</td>
<td>GenBank AY190117</td>
<td>Chitinase formation and production of antifungal metabolites.</td>
<td>Increases the antifungal activity. Reithner et al. 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>T. viride IMI 304061 (tmk4 gene)</td>
<td>Accession number not available</td>
<td>Induction of plant systemic resistance and biocontrol activity against R. solani. (Tested in greenhouse condition)</td>
<td>Shows increased biocontrol activity. Viterbo et al. 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>T. harzianum CECT 2413 (erg1 gene)</td>
<td>GenBank AM050097</td>
<td>Silencing of the erg1 gene enhances resistance to terbinafine that shows antifungal activity.</td>
<td>Shows enhanced biocontrol activity. Cardoza et al. 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>T. harzianum Rifai CECT 2413 (qid74 gene)</td>
<td>Accession number not available</td>
<td>Involved in cell protection and adherence to hydrophobic surfaces that helps in antagonism against R. solani.</td>
<td>Shows moderate biocontrol activity. Rosado et al. 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>T. viride Gv29-8 (TvBgn2 and TvBgn3 genes)</td>
<td>Accession number not available</td>
<td>These genes help in encoding cell wall degrading enzymes.</td>
<td>Shows enhanced biocontrol activity. Dzonovic et al. 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>T. viride IMI 304061 (tac1, adenylate cyclase gene)</td>
<td>Accession number not available</td>
<td>Mycoparasitism against R. solani, S. rolfsii, Pythium spp. and production of secondary metabolism.</td>
<td>Shows reduced biocontrol activity. Mukherjee et al. 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>T. hamatum LU593 (monooxygenase gene)</td>
<td>GenBank EU124654</td>
<td>Antagonist activity against S. sclerotiorum, S. minor and S. cepivorum.</td>
<td>Shows enhanced biocontrol activity. Carpenter et al. 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>T. harzianum E58 (CRE1 gene)</td>
<td>Accession number not available</td>
<td>Production of cellulase and hemicellulase enzymes.</td>
<td>Shows enhanced biocontrol activity. Saadia et al. 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>T. harzianum CECT 2413 (T34 hsp70)</td>
<td>GenBank EU311400</td>
<td>Increases fungal resistance to heat and abiotic stresses.</td>
<td>Shows increased biocontrol activity. MonteroBarrientos et al. 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Strain</td>
<td>GenBank Accession</td>
<td>Activity</td>
<td>Biocontrol</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-------------------</td>
<td>----------</td>
<td>------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>T. asperellum (Enzymology Group collection, UFG-ICB) (tag 3 gene)</td>
<td>Accession number not available</td>
<td>Production of cell wall degrading enzyme glucanase.</td>
<td>Significant biocontrol</td>
<td>Marcello et al. 2010</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>T. virens strain TvSMOE38 (Sm1 gene, cysteine-rich protein)</td>
<td>Accession number not available</td>
<td>A small cysteine-rich protein that induces defense responses in dicot and monocot plants and in protecting crop diseases.</td>
<td>Enhanced biocontrol</td>
<td>Buensanteai et al. 2010</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>T. virens (strain IMI 304061) (TvGST glutathione transferase gene)</td>
<td>GenBank EH628505</td>
<td>Enhances cadmium tolerance in plants.</td>
<td>Increases biocontrol activity.</td>
<td>Dixit et al. 2011</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>T. harzianum CECT 2413 (Thke11 gene)</td>
<td>GenBank EU399786</td>
<td>Expression of this gene in A. thaliana modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses.</td>
<td>Enhanced biocontrol</td>
<td>Hermosa et al. 2011</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>T. harzianum CECT 2413 (genes encoding for NAGases (exc1 and exc2), chitinases (chl42 and chl133), proteases (prb1) and b-glucanases (bgm13.1)</td>
<td>Accession number not available</td>
<td>Mycoparasitic activity against F. oxysporum.</td>
<td>Enhanced biocontrol</td>
<td>Mondezar et al. 2011</td>
<td></td>
</tr>
</tbody>
</table>
from *T. harzianum*. The gene involves in the production of 6-pentyl-2H-pyran-2-one (6-PP) and shows antifungal activity against pathogens such as *R. solani*, *B. cinerea*, and *S. rolfsii*. The sequences were analyzed using Lasergene package and cloned using pGEM-T vector (Rubio et al., 2009).

T. brevicompactum encodes, *tri5* a trichodiene synthase gene. The over expression of this gene helps in the production of trichodermin which shows antifungal activity against *S. cerevisiae*, *Kluveromyces marxianus*, *Candida albicans*, *C. glabrata*, *C. tropicalis* and *Aspergillus fumigatus*. The sequences were analyzed using DNAstar package and aligned using CLUSTAL-X algorithm for analyzing the phylogenetic relationship. The gene *tri5* was cloned in pURSPT5 and transformed into *T. brevicompactum* (Tijerino et al., 2011).

From *T. harzianum*, endochitinase gene named *Th-Chit* was isolated, characterized and that gene confers antifungal activity in transgenic tobacco plant. Chitinase are one of the cell wall degrading proteins that help in the antifungal activity. The gene, *Th-Chit* was cloned using pTZ57R vector, and sequencing of the cloned cDNA was done by ABI prism automated DNA sequencer. From this the full length chitinase gene was isolated and then it is cloned in a binary vector named pIHR-Th-Chit. The gene was transferred to tobacco plant and their presence was analyzed by polymerase chain reaction amplification from the control and transformed plants. Thus, Th-Chit gene confers antifungal activity against *A. alternata* (Saiprasad et al., 2009).

The *erg1* gene from *T. harzianum* was cloned and characterized. This gene encodes an enzyme named squalene epoxidase, which helps in the synthesis of ergosterol and silencing of this gene provides resistance to terbinafine, an antifungal compound. The antifungal activity was checked with *Saccharomyces cerevisiae*. pSIL-E1 vector was used to clone the gene *erg1*. Sequencing was done by DNAstar package and aligned using CLUSTAL-W algorithm. This is the first terpene biosynthesis gene characterized from *Trichoderma* genus (Cardoza et al., 2006).

Tga1 gene, the G protein α subunit of *T. atroviride* involves in production of chitinase and antifungal metabolites. Chitinase are the proteins that are involved in degrading the cell walls of pathogenic fungus. The sequences were cloned in the pGEM-T vector and characterized. The antifungal activity was determined by dual culture technique by plating wild type and mutant *Δtga1* strain of *T. atroviride* against plant pathogens such as *R. solani*, *B. cinerea*, and *S. sclerotiorum*. The antifungal activity between the wild and mutant type strains were analyzed by altering the *tga1* gene (Reithner et al., 2005).

In *T. harzianum*, a gene, viz., *ech42* codes for endochitinase was studied. The gene was cloned in pAN7-1 vector. Disruption of this gene affects the biocontrol activity of the fungus. The antifungal activity was tested against pathogens like *B. cinerea*, and *R. solani* with the wild type and disruptant strains (Woo et al., 1999). From *T. hamatum* monoxygenase gene was isolated and characterized. This gene helps in the antifungal activity against some pathogens like *S. sclerotiorum*, *Sclerotinia minor*, and *Sclerotium cepivorum*. The expression of monoxygenase gene was influenced by until it had made contact with the two fungal species, and the expression seems to be more particularly at pH 4.

The DNA was isolated from *T. hamatum*, genomic library was constructed and it was sequenced. Agrobacterium mediated gene transformation was done with the help of pG3K02 and the gene was expressed. The promoter region of the monoxygenase gene was analyzed for the presence of motifs which helps in the regular expression of the genes. Thus, *T. hamatum* monoxygenase gene plays it significant role in the antagonist activity (Carpenter et al., 2008).

Hyphal growth

A new gene, *TrCCD1* from *Trichoderma reesei* was isolated and characterized. This gene involves in carotenoid metabolism that helps in the development of conidiospores and hyphal growth in *T. reesei*. The function of the gene was analyzed by comparing two mutant types named *ccdO* and *ccdP* (carotenoid cleavage dioxygenase) with the parental type. The T-DNA insertion of fungal genome was sequenced using specific primer, multiple sequence alignment was done using CLUSTAL-W algorithm and phylogenetic relationship was done by neighbor joining method (Zhong et al., 2009).

CONCLUSION

The various types of *Trichoderma* species were involved in the biocontrol activity and their mechanism of action were well known by the characterization and expression of the genes present in them. The fungal pathogens were known to cause major diseases in the agricultural scenario. So, most of the farmers were using hazardous chemical pesticides which cause major problems in the yield, ultimately affecting the land, soil fertility and remains toxic when consumed by humans and animals.

By using various microbial biocontrol agents, this problem has been reduced. The genes isolated from these biocontrol agents has been found to play an essential role in biocontrol activity therefore, with the help of genetic engineering techniques still more number of beneficial genes should be discovered in developing the agriculture for our future generations.

REFERENCES

Buensanteai N, Mukherjee PM, Horwitz BA, Cheng C (2010).
Expression and purification of biologically active Trichoderma virens proteinaceous elicitor Sm1 in Pichia pastoris. Protein Express. Purif. 72: 131-138.

