Full Length Research Paper

Contractions on Hilbert space with the smallest local unitary spectra

Cesim Temel

Department of Mathematics, Faculty of sciences, Yuzuncu Yil University, 65080 Van, Turkey.
E-mail: cesimtemel@yahoo.com. Tel: +90 0432 225 10 25-29.

Accepted 20 June, 2012

Let T be a contraction on a complex Hilbert space H, let $\sigma_T(x)$ be the local spectrum of T at $x \in H$, and let $\sigma_T(x) \cap \Gamma$ be the local unitary spectrum of T at x; $\Gamma = \{ z \in C : |z| = 1 \}$. We show that if $\sigma_T(x) \cap \Gamma$ is of Lebesgue measure zero, then $\lim_{n \to \infty} \| T^n x \|$ exists and is equal to $\inf_{n \geq 0} \| T^n x \|$. A contraction $T \in B(H)$ is said to be a C_1-contraction if $\inf_{n \geq 0} \| T^n x \| > 0$, for every $x \in H \setminus \{ 0 \}$. For an arbitrary $T \in B(H)$, we denote as usual by $\sigma(T)$ the spectrum of T and by $R(z, T) = (zI - T)^{-1}$ the resolvent of T. In this paper, we will $D = \{ z \in C : |z| < 1 \}$, $\Gamma = \{ z \in C : |z| = 1 \}$, and $A(D)$ denotes for the disc-algebra. If $T \in B(H)$ is a contraction, then the spectrum of T lies in \overline{D}. The set $\sigma_T(\Gamma) = \sigma(T) \cap \Gamma$ is called the unitary spectrum of T.

For an arbitrary $T \in B(H)$ and any $x \in H$, we define $\rho_T(x)$ to be the set of all $\lambda \in C$ for which there exists a neighborhood U_λ of λ with $u(\lambda)$ analytic on U_λ having values in H, such that $(zI - T)u(\lambda) = x$ on U_λ. This set is open and contains the resolvent set $\rho(T)$ of T. By definition, the local spectrum of T at x, denoted by $\sigma_T(x)$ is the complement of $\rho_T(x)$, so it is a closed subset of $\sigma(T)$. If $T \in B(H)$ is a contraction and $x \in H$, then the set $\sigma_T(x) \cap \Gamma$ will be called the local unitary spectrum of T at x. Consider the case where U is a unitary operator on H. Let $E(\cdot)$ be the spectral measure of U.

For given $x \in H$, let μ_λ be the vector-measure defined on the Borel subsets of Γ by $\mu_\lambda(\Delta) = E(\Delta)x$. One can easily see that $\sigma_T(x) = \sup \{ \mu_\lambda \}$.

Generally, the local spectrum of an operator $T \in B(H)$ may be very "small" with respect to its usual spectrum. Indeed, let σ be a "small" part of $\sigma(T)$ such that both σ and $\sigma(T) \setminus \sigma$ are closed sets. Let P_σ be the spectral projection associated with σ and let $H_\sigma = P_\sigma H$. We know that H_σ is a (closed) T-invariant subspace and $\sigma(T |_{H_\sigma}) = \sigma$. Now, we can...
readily verify that \(\sigma_\tau(x) \subset \sigma \) for every \(x \in H_\sigma \).

Let \(T \in \mathcal{B}(H) \) be a contraction and let \(x \in H \). We can see that \(\xi \in \rho_\tau(x) \cap \Gamma \) if and only if \(R(z,T)x (|z| > 1) \)
admits an analytic extension to some neighborhood of \(\xi \).
It follows that if \(\xi \in \rho_\tau(x) \cap \Gamma \) for every \(x \in H \), then \(\xi \in \rho(T) \). Hence, we have
\[
\sigma_\tau(T) = \bigcup_{x \in H} (\sigma_T(x) \cap \Gamma).
\]

Note that there exist a contraction \(T \in \mathcal{B}(H) \) and \(x \in H \)
such that \(\sigma_\tau(x) \cap \Gamma = \emptyset \), but \(\sigma_\tau(T) = \Gamma \). Indeed, let \(H^2(K) \)
be the Hardy space of \(K \)-valued analytic functions on \(D \) and let \(S \) be the unilateral shift operator
on \(H^2(K) \); \((S_\lambda^*_K f)(\lambda) = \lambda f(\lambda) \). Its adjoint, the backward shift, is given by:
\[
(S^* f)(\lambda) = \frac{f(\lambda) - f(0)}{\lambda}, \quad f \in H^2(K).
\]

It is easy to verify that for every \(f \in H^2(K) \) and \(z \in C \)
with \(|z| > 1\),
\[
(z I - S^*) f(\lambda) = \frac{z^{-1} f(z^{-1}) - \lambda f(\lambda)}{1 - \lambda z}.
\]

Hence \(\sigma_{S^*} f(\lambda) \cap \Gamma \) consists of all \(\xi \in \Gamma \) such that \(f \)
has no analytic extension to a neighborhood of \(\xi \). It
follows that if \(f \) admits an analytic extension across the
unit circle, then \(\sigma_{S^*} f(\lambda) \cap \Gamma = \emptyset \). However, \(\sigma_{S^*} (S_\lambda^* K) = \Gamma \).

Note also that for every nonzero \(f \in H^2(K) \),
\(\sigma_{S^*} f(\lambda) = \overline{D} \).

Recall that a contraction \(T \in \mathcal{B}(H) \) is said to be
completely non-unitary if it has no proper reducing
subspace on which it acts as a unitary operator. As is
well known (Nikolski, 1986), if \(T \in \mathcal{B}(H) \) is a contraction,
then there exists a canonical decomposition (with respect
to \(T \)) of the space \(H \) into two \(T \)-invariant subspaces:
\(H = K \oplus L \) such that: i) \(K \) and \(L \) reduce \(T \); ii) \(S := T|_K \) is a completely non-unitary contraction; iii) \(Z \)
\(U := T|_L \) is a unitary operator, where the subspace \(L \)
is defined by:

\[
L = \{ x \in H : \| T^n x \| = \| x \| \quad n \in \mathbb{R} \}.
\]

The operator \(S \) (respectively \(U \)) will be called
completely non-unitary (unitary) part of \(T \). According to
this decomposition, every \(x \in H \) can be written as
\(x = x^u_T + x^u_T \). The vector \(x^u_T \) (respectively \(x^u_T \)) will be called
completely non-unitary (unitary) part of \(x \).

It can be seen that if \(T \in \mathcal{B}(H) \), \(\lim_{n \to \infty} \| T^n x \| = 0 \) if
and only if \(\sigma_{S^*} f(\lambda) = \emptyset \). Generally, the asymptotic
behavior of the sequence \(\{ T^n \} \) is frequently related to
unitary spectrum of the underlying operator. This is well
illustrated by the following classical result of Nagy-Foias
(Nagy and Foias, 1966). If the unitary spectrum of a
completely non-unitary contraction \(T \in \mathcal{B}(H) \) has
Lebesgue measure zero, then \(\lim_{n \to \infty} \| T^n x \| = 0 \) for all
\(x \in H \) (the proof based on unitary dilation arguments). In
this paper, we address the problem whether local and
quantitative versions of the Nagy-Foias Theorem hold.
For related results see (Allan and Ransford, 1989; Batty
et al., 1998; Mustafayev, 2010).

RESULTS

The following theorem is the main result of this paper.

Theorem 1

Let \(T \in \mathcal{B}(H) \) be a contraction and let \(x \in H \) be such
that \(\sigma_\tau(x) \cap \Gamma \) is of Lebesgue measure zero. Then, we have:
\[
\lim_{n \to \infty} \| T^n x \| = \| x^u_T \|,
\]
where \(x^u_T \) is the unitary part of \(x \) in the canonical
decomposition of the space \(H \) with respect to \(T \).

For the proof, we need the following lemmas.

Lemma 1

Let \(T \in \mathcal{B}(H) \) be a contraction, let \(E \) be a \(T \)-invariant
subspace, and let \(\pi : H \to H/E \) be the canonical
mapping. Then, the following assertions hold:

a) \(\sigma_{T|_E}(x) \cap \Gamma = \sigma_{T}(x) \cap \Gamma \quad \) for every \(x \in E \);
b) \(\sigma_T(x^c_T) \cap \Gamma \subset \sigma_T(x) \cap \Gamma \), where \(x^c_T \) is the completely non-unitary part of \(x \in H \) in the canonical decomposition of \(H \).

c) \(\sigma_T(\pi x) \subset \sigma_T(x) \) for every \(x \in H \), where \(\tilde{T} \) is the induced mapping; \(\tilde{T} \circ \pi = \pi \circ T \).

Proof

a) Let \(x \in E \). It is easy to see that \(\sigma_T(x) \subset \sigma_{T \mid E}(x) \), and so

\[
\sigma_T(x) \cap \Gamma \subset \sigma_{T \mid E}(x) \cap \Gamma .
\]

For the reverse inclusion, let an arbitrary \(\xi \in \rho_T(x) \cap \Gamma \) be given. Then, there exists a neighborhood \(U_\xi \) of \(\xi \) with \(u(z) \) analytic on \(U_\xi \) having values in \(H \), such that \((zI-T)u(z) = x \) on \(U_\xi \). Since

\[
u(z) = R(z; T)x = \sum_{n=0}^{\infty}z^{-n-1}T^n x \in E,
\]

for all \(z \in U_\xi \) with \(|z| > 1 \), we have \(\nu(z) = 0 \) for all \(z \in U_\xi \) with \(|z| > 1 \). By uniqueness theorem, \(\nu(z) = 0 \) for all \(z \in U_\xi \), so that \(u(z) \in E \). Thus, we have \((zI-T)u(z) = x \) on \(U_\xi \). This shows that \(\xi \in \rho_T(x) \cap \Gamma \).

b) Let \(H = K \Theta L \) be the canonical decomposition of \(H \) and let \(S = T \mid K \). It follows from a) that

\[
\sigma_T(x^c_T) \cap \Gamma = \sigma_S(x^c_T) \cap \Gamma .
\]

It remains to show that \(\sigma_T(x^c_T) \subset \sigma_T(x) \). If \(\lambda \in \rho_T(x) \), then there exists a neighborhood \(U_{\lambda_0} \) of \(\lambda \) with \(u(z) \) analytic on \(U_{\lambda_0} \), having values in \(H \), such that \((zI-T)u(z) = x \) on \(U_{\lambda_0} \). Let \(P \) be the orthogonal projection from \(H \) onto \(K \). Then, we have \((zP-P\tilde{T})u(z) = x^c_T \). Since \(PT = TP = SP \), we obtain \((zI-S)Pu(z) = x^c_T \). This shows that \(\lambda \in \rho_S(x^c_T) \).

c) If \(\lambda \in \rho_T(x) \), then there exists a neighborhood \(U_{\lambda_0} \) of \(\lambda \) with \(u(z) \) analytic on \(U_{\lambda_0} \), having values in \(H \), such that \((zI-T)u(z) = x \) on \(U_{\lambda_0} \). It follows that \((zI-T)u(z) = x \) on \(U_{\lambda_0} \). Consequently, we have \((zI-T)u(z) = \pi x \) on \(U_{\lambda_0} \). This shows that \(\lambda \in \rho_T(\pi x) \).

Recall that \(V \in B(H) \) is called an isometry if \(\|Vz\| = \|z\| \) for all \(z \in H \). It is well known that if \(V \) is a non-unitary isometry, then \(\sigma(V) = \overline{D} \). Recall also that \(x \in H \) is a cyclic vector of \(T \in B(H) \), if the set \(\{e^{\imath \theta} : n = 0,1,2,...\} \) spans the whole space \(H \).

Lemma 2

If \(V \in B(H) \) is an isometry and \(x \in H \) is a cyclic vector of \(V \), then

\[
\sigma_{\|V\|}(V) = \sigma_{\|V\|}(x) \cap \Gamma .
\]

Proof

Assume that \(VH = H \), that is, \(V \) is a unitary operator. We must show that \(\sigma(V) = \sigma_{\|V\|}(x) \). By Spectral Theorem, there exists a positive measure \(\mu \) on \(\Gamma \) such that the operator \(M \) on \(L^2(\Gamma, \mu) \) defined by \(Mf = e^{\imath \theta}f \) is unitary equivalent to \(V \). Let \(\chi_\Delta \) denotes the characteristic function of any Borel subset \(\Delta \) of \(\Gamma \) and let 1 be the constant one function on \(\Gamma \). Then, we have \(\sigma(V) = \text{supp}(\mu) \) and \(\sigma_{\|V\|}(x) = \text{supp}(\nu) \), where \(\nu \) is a vector measure on \(\Gamma \) that is defined by \(\nu(\Delta) = \chi_\Delta 1 \).

Since \(\|\nu(\Delta)\| = \|\nu(\Delta)\| \), we have \(\text{supp}(\mu) = \text{supp}(\nu) \) and so, \(\sigma(V) = \sigma_{\|V\|}(x) \).

Assume that \(VH \neq H \). In this case \(\sigma(V) = \overline{D} \), so that \(\sigma_{\|V\|}(x) = \overline{D} \). Let \(K = H \Theta VH \). By Wold's Decomposition Theorem (Nagy and Foias, 1966), there exists a decomposition \(H = H_0 \oplus H_1 \) such that \(H_0 \) and \(H_1 \) reduce \(V \). \(V_0 = V \mid_{H_0} \) is unitary and \(V_1 = V \mid_{H_1} \) is unitary equivalent to the unilateral shift operator \(S \) on \(H_1^2 \). Let \(x = x_0 + x_1 \), where \(x_0 \in H_0 \) and \(x_1 \in H_1 \). Since \(x_1 \) is a cyclic vector of \(V_1 \), \(x_1 \neq 0 \), so that \(\sigma_{\|V_1\|}(x_1) = \overline{D} \). It remains to show that \(\sigma_{\|V_1\|}(x_1) \subset \sigma_{\|V\|}(x) \). If \(\xi \in \rho_{\|V\|}(x) \),
then there exists a neighborhood \(U_{\xi} \) of \(\xi \) with \(u(z) \) analytic on \(U_{\xi} \) having values in \(H \), such that
\[
(zI - V)u(z) = x
\]
on \(U_{\xi} \). Let \(P \) be the orthogonal projection \(H \) onto \(H_1 \). Then, we have \((zP - PV)u(z) = x \). Since \(PV = VP \), we obtain \((zI - V)P\) \(u(z) = x \). This shows that \(\xi \in \rho_{\chi}(x) \).

Lemma 3

Let \(T \in B(H) \) be a \(C_1 \)-contraction and let \(x \in H \), if
\[
f \in A(D)
\]
vanishes on \(\sigma_f(x) \cap \Gamma \), then \(f(T)x = 0 \).

Proof

By Nagy-Foias Theorem (Nagy and Foias, 1966), there exist an isometry \(V \) and a quasi-affinity \(X \) on \(H \) intertwining \(T \) and \(V ; XT = VX \). First, we claim that
\[
\sigma_f(x) \subset \sigma_f(x).
\]

(1)

If \(\lambda \in \rho_f(x) \), then there exists a neighborhood \(U_{\lambda} \) of \(\lambda \) with \(u(z) \) analytic on \(U \lambda \) having values in \(H \), such that \((zI - T)u(z) = x \) on \(U \lambda \). It follows that
\[
(zX - XT)u(z) = Xx \quad (z \in U \lambda)
\]
Consequently, we have \((zI - V)Xu(z) = Xx \) on \(U \lambda \). This shows that \(\lambda \in \rho_f(Xx) \).

Set
\[
K = \text{span}\{V^n Xx : n = 0, 1, 2, \ldots\},
\]
and
\[
L = \text{span}\{T^n x : n = 0, 1, 2, \ldots\}.
\]

Since \(V^n Xx = XT^n x \ (n \in \mathbb{N}) \), the operator \(X|_k \) is a quasi-affinity from \(L \) to \(K \) and
\[
(V|_k)x = (X|_k)f|_x.
\]

Also, since \(Xx \) is a cyclic vector of \(V|_k \), by Lemma 2
\[
\sigma_f(V|_k) = \sigma_f(x) \cap \Gamma.
\]

On the other hand, taking into account Lemma 1 a) and (1), we can write
\[
\sigma_f(x) \cap \Gamma = \sigma_f(x) \cap \Gamma \subset \sigma_f(x) \cap \Gamma.
\]

Hence, we have
\[
\sigma_f(V|_k) \subset \sigma_f(x) \cap \Gamma.
\]

(3)

We see that under the hypotheses of the Lemma, the Lebesgue measure of \(\sigma_f(x) \cap \Gamma \) is necessarily zero. It follows from (3) that \(\sigma_f(V|_k) \) has Lebesgue measure zero and therefore, \(V|_k \) is a unitary operator. Since \(f \in A(D) \) vanishes on \(\sigma_f(x) \cap \Gamma \), it follows that \(f \) vanishes on \(\sigma(V|_k) \), and so \(f(V)\) \(K = \{0\} \). Using now the identity (2), we can write \(Xf(T)K = \{0\} \). In particular, we have \(Xf(T)x = 0 \). Since \(X \) has zero kernel, we obtain that \(f(T)x = 0 \).

Lemma 4

Let \(T \in B(H) \) be a \(C_1 \)-contraction and let \(x \in H \) such that \(\sigma_f(x) \cap \Gamma \) is of Lebesgue measure zero, then
\[
\|T^n x\| = \|T^{*n} x\| = \|x\| \quad \text{for all } n \in \mathbb{R}.
\]

Proof

Set \(M = \sigma_f(x) \cap \Gamma \). Let us define a mapping \(h : C(M) \rightarrow H \) as a following way: Take a function \(f \in C(M) \). By Rudin-Carleson Theorem (Beauzamy, 1988), there exists a function \(\overline{f} \in A(D) \) such that \(\overline{f}(\xi) = f(\xi) \) for all \(\xi \in M \), and
\[
\|\overline{f}\|_{L^\infty} = \sup_{\xi \in M} |f(\xi)|.
\]

(4)

Set \(h(f) = \overline{f}(T)x \). By Lemma 3, \(h \) is a well-defined linear mapping. On the other hand, it follows from von Neumann inequality and the identity (4), the mapping \(h \) is bounded. Note also that if \(f, g \in C(M) \), then
\[
h(fg) = \overline{f}(T)\overline{g}(T)x. \]
and \(\tilde{f}_1 \) on \(M \) is defined by \(f_{-1}(\xi) = \xi^{-1} \), \(f_0(\xi) = 1 \) and \(f_1(\xi) = \xi \). Then, we have
\[
x = h(f_0) = h(f_{-1} f_1) = \tilde{f}_{-1}(T) \tilde{f}_1(T)x.
\]

Set \(S = \tilde{f}_{-1}(T) \). Then, \(S \) is a contraction on \(H \) which commutes with \(T \). Since \(f_1(T) = T \), we have \(STx = x \) so that \(ST^n x = T^{-n} x \) for all \(n \in \mathbb{R} \). It follows that
\[
||T^{-n} x|| = ||ST^n x|| \leq ||T^n x|| \leq ||T^{-n} x||.
\]

Thus, \(||T^n x|| = ||x|| \) for all \(n \in \mathbb{R} \). We know (Nagy and Foias, 1966) that if \(T \) is an arbitrary contraction and \(\xi \) is an eigenvector of \(T \) for the eigenvalue \(\lambda = 1 \), then \(\xi \) is also an eigenvector of \(T^* \) for the eigenvalue \(\lambda = 1 \). Since \(ST \) is a contraction and \(STx = x \), we have \(S T^* x = x \). It follows that \(||T^* x|| = ||x|| \) for all \(n \in \mathbb{R} \).

We are now able to prove the Theorem 1

Proof of Theorem 1

Let \(H = K \oplus L \) be the canonical decomposition of \(H \) and let \(S = T | _K \) be the completely non-unitary part of \(T \).

Let \(x = x_T^v + x_T^u \), where \(x_T^v \) is the completely non-unitary and \(x_T^u \) is the unitary part of \(x \). Let us show that
\[
\lim_{n \to \infty} ||T^n x_T^v|| = 0.
\]

For this reason, set
\[
K_0 = \{ x \in K : \lim_{n \to \infty} ||S^n x|| = 0 \}.
\]

Let \(\pi : K \to K/K_0 \) be the canonical mapping and let \(\tilde{S} : K/K_0 \to K/K_0 \) be the induced mapping; \(\tilde{S} \circ \pi = \pi \circ S \). First, we claim that \(\tilde{S} \) is a \(C_1 \)-contraction. For this, it is enough to show that for every \(x \in K \),
\[
\lim_{n \to \infty} ||\tilde{S}^n \pi x|| = ||S^n x||.
\]

Indeed, let
\[
\alpha = \lim_{n \to \infty} ||\tilde{S}^n \pi x|| = \lim_{n \to \infty} ||S^n x + K_0||.
\]

Then, we have \(\alpha \leq \lim_{n \to \infty} ||S^n x|| \). On the other hand, for an arbitrary \(\varepsilon > 0 \), there exist \(k \in \mathbb{R} \) and \(y \in K_0 \), such that \(||S^n x - y|| \leq \alpha + \varepsilon \), which implies
\[
||S^n k x - S^n y|| \leq \alpha + \varepsilon,
\]
for all \(n \in \mathbb{R} \). It follows that
\[
||S^{n+k} x|| \leq ||S^{n+k} x - S^n y|| + ||S^n y|| \leq \alpha + \varepsilon + ||S^n y||.
\]

As \(n \to \infty \), we obtain \(\lim_{n \to \infty} ||S^n x|| \leq \alpha + \varepsilon \), so that
\[
\lim_{n \to \infty} ||S^n x|| = \alpha.
\]

Further, it follows from the identity \(\hat{S}^* \hat{S} = S^* S \) that \(\hat{S} \) is a completely non-unitary contraction. Using Lemma 1 c), a), and b), respectively; we have
\[
\sigma_{\hat{S}}(\pi \xi_T^v) \cap \Gamma \subseteq \sigma_{\hat{S}}(\pi \xi_T^u) \cap \Gamma = \sigma_{\hat{S}}(\pi \xi_T^v) \cap \Gamma \subseteq \sigma_{\hat{S}}(\pi \xi_T^v) \cap \Gamma.
\]

It follows that \(\sigma_{\hat{S}}(\pi \xi_T^v) \cap \Gamma \) has Lebesgue measure zero. Since \(\hat{S} \) is a completely non-unitary \(C_1 \)-contraction, by Lemma 4, \(\pi \xi_T^v = 0 \), and so
\[
\lim_{n \to \infty} ||T^n x_T^v|| = \lim_{n \to \infty} ||S^n x_T^v|| = 0.
\]

Also, since \(||T^n x_T^u|| = ||x_T^u|| \) for all \(n \in \mathbb{R} \), we have that
\[
\lim_{n \to \infty} ||T^n x|| = \lim_{n \to \infty} ||T^n x_T^v + T^n x_T^u|| = \lim_{n \to \infty} ||T^n x_T^u|| = ||x_T^u||.
\]

CONCLUSION

It is easy to verify that if \(T \in B(H) \), then
\[
\lim_{n \to \infty} ||T^n x|| = 0 \quad \text{if and only if} \quad \sigma_{\pi}(T) = \emptyset.
\]
In general, the asymptotic behavior of the sequence \(\{ T^n \}_{n=1}^{\infty} \) is frequently related to unitary spectrum of the underlying operator. This is well illustrated by the classical result of Nagy-Foias (Nagy and Foias, 1966). If the unitary spectrum of a completely non-unitary contraction \(T \in B(H) \) has Lebesgue measure zero, then
\[
\lim_{n \to \infty} ||T^n x|| = 0 \quad \text{for all} \quad x \in H.
\]

In this note we show that if \(\sigma_{\pi}(x) \cap \Gamma \) of Lebesgue measure zero, then
\[
\lim_{n \to \infty} ||T^n x|| = ||x_T^v||.
\]

Consequently, local and quantitative version of the well known Nagy-Foias Theorem is proved.
REFERENCES

