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The main goal of this research was to develop the r eal-time remote sensing system as a rapid and field  
based method of identifying healthy and infected pl ants at an early stage of disease development, 
before visibly seen by human eye. This can be achie ved through the use of hyper-spectral imaging 
collected data between 380 to 1030 nm wavelengths. The black-shank disease was inoculated to 
tobacco plants as a model system for testing this t echnology. The hypercubes images acquired was 
processed using ENVI software and the “unscrambler”  statistical analysis software for principal 
components analysis (PCA). Spectral parameter of re flectance sensitivity was used to find the optimal 
wavelengths for determining and evaluating the leve l of damage by the black-shank fungus. The result 
of this research shows that, the spectral reflectan ce decreases significantly with the increasing seve rity 
level in both the visible and near-infrared wavelen gth ranges. Also the wavelength of 730 and 790 nm 
with corresponding bands of 283 and 330 was the mos t useful for discriminating black-shank disease 
severity level. This research indicates clearly the  relationship between spectral properties and plant  
response.  
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INTRODUCTION 
 
The hyperspectral imaging sensor originally developed 
for mining and geology to identify various minerals, this 
make it ideal for the mining and oil industries where it can 
be used to look for iron-ore and oil. It is now spread into 
the fields of Agriculture, Ecology, surveillance, 
pharmaceuticals, historical manuscript research and so 
on (Glaber et al., 2011). Hyperspectral sensors have 
been built with capability to collects and process the 
information from across the electromagnetic spectrum 
and divide it into many bands. This technique of dividing 
images into bands can be extended beyond the visibility 
of human eyes (that is, visible light in three bands of red, 
green and blue). The collected information is a set of 
images and each image represents a range of the 
electromagnetic spectrum (also known as a spectral 
band).   These  images  are  then  combined  and  form  a  
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three-dimensional hyperspectral data cube for processing 
and analysis (Garcia et al., 2008).  

The acquired data can be extracted, reduced or 
compressed using methods such as Principal component 
analysis (PCA) and independent component analysis 
(ICA). PCA method used to produce uncorrelated output 
bands, to segregate noise components, and to reduce 
the dimensionality of data sets. This is done by finding a 
new set of orthogonal axes that have their origin at the 
data mean and that are rotated so the data variance is 
maximized (Sankaran et al., 2010). ICA use to transform 
set of mixed and random signals into components that 
are mutually independent. Independent component 
transformation serves as a tool for blind source 
separation, where no prior information on the mixing is 
available. The transform is based on the non-Gaussian 
assumption of the independent sources, and uses higher-
order statistics to reveal interesting features in typically 
non-Gaussian hyperspectral datasets (Plaza et al., 2009).  

In recent development, hyperspectral imaging improved 
the use of information available in the  reflectance  region  
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Figure 1.  Location of visible spectrum wavelength range in nanometers (nm) from 400 to 700 within 
Range of Electromagnetic spectrum. Source: http://en.wikipedia.org/wiki/File:EM_spectrum.svg (with 
permission), accessed 6th Sep, 2011.  

 
 
 
of the spectra in combination with image processing 
software (Brantley et al., 2011). Figure 1 shows the 
visible spectrum (400 to 700 nm), which is the portion of 
the electromagnetic spectrum range that can be detected 
by the human eye in three bands of red, green and blue 
light. Both the visible spectrum region, near-infrared 
(NIR), and IR in hyperspectral imaging are used to detect 
the chemical composition of plants, to determine the 
nutrient and water status, and estimate the pigment 
content of leaves such as chlorophyll and carotenoid 
quantitative determinations (Dian et al., 2008). 
Hyperspectral method provides high-quality spectral 
information on the pigment distribution within leaves; 
through this the healthy and infected vegetables leaves 
and fruits can be easily differentiated by their reflectance 
intensities. Hyperspectral also can be used for the 
development and monitoring health of crops, for example 
to detect vegetables and fruits varieties and develop an 
early warning system for disease outbreaks (Bauriegel et 
al., 2011).  

An early disease detection system can aid in 
decreasing losses caused by plant diseases and can 
further prevent the spread of diseases. Hyperspectral 
imaging has been used in many researches for disease 
detection on plants and fruit varieties. For example the 
hyperspectral data collected from sugarcane leaf 
reflectance was used to predict sugarcane yellow leaf 
virus infection for two cultivars. The result showed that, 
leaf reflectance was effective at predicting sugarcane 
yellow leaf virus infection with more than 73% accuracy in 
both of the two cultivars (Grisham et al., 2010). Similarly, 
the canopy spectral reflectance of tomato plants in a 
diseased tomato field in Salinas Valley of California was 
collected. The mapped disease distribution at different 
stages showed an accurate conformation of late blight 
occurrence virus in the field. The spectral reflectance of 
the field samples indicated that the near infrared (NIR) 
region, especially 700 to 1300 nm, was much more 
valuable than the visible range (400 to 700 nm) to detect 
crop disease (Minghua et al., 2003). 

 Furthermore,  healthy  wheat  kernels  and   the  wheat 

kernels visibly damaged by Sitophilus oryzae, 
Rhyzopertha dominica, Cryptolestes ferrugineus, and 
Tribolium castaneum were scanned using hyperspectral 
imaging between 1000 to 1600 nm wavelengths. The 
results are classified with more than 85% accuracy 
except the kernels damaged by Tribolium castaneum with 
73.3% accuracy (Singh et al., 2009). Likewise the 
detection of chilling injury or damage in cucumbers, by 
which the region of interest spectral features of chilling 
injured areas showed the reduction of reflectance 
intensity. This was resulting from chilling treatment at 0oc 
over the period at post-chilling room temperature storage. 
A large spectral difference between good, smooth skins 
and chilling-injured skins occurred in the visible/near-
infrared regions of 700 to 850 nm (Yongliang et al., 2005). 

The objective of this research is to provide (i) Non-
destructive testing technology using Hyperspectral ima-
ging sensor and samples of Tobacco plants at the range 
of 380 to 1030 nm wavelength. (ii) To investigating the 
potential of hyperspectral imaging in terms of discrimina-
ting between healthy and black-shank infected leaves by 
quantification of light absorption and reflectance 
intensities (iii) To determine the moisture content of these 
samples plants under different conditions of health (iv) To 
find the wavelength bands at which leaf reflectance was 
the most responsive to Tobacco plants damage caused 
by the black-shank disease. 
 
 
MATERIALS AND METHODS  
 
The following materials were used in these experiments:  
hyperspectral imaging system, four pots of young tobacco plants, 
ENVI version 4.7.1 (environment for visualizing images), image 
processing software for windows by ITT visual information solution, 
and the unscrambler version 9.7, software for statistical analysis by 
(Camo software as).  
 
 
The hyperspectral imaging system  
 
Figure 2 shows the diagrammatical representation of  Hyperspectral 
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Figure 2.  The hyperspectral imaging system. ‘X’ axis is indicating movements directions of the conveyer and ‘R’ 
is indicating the default position of the conveyer. Data captured only during right to left movement (R—L distance), 
but during return movement of the conveyer (L—R) no data capture. While the ‘Y’ axis is indicating the movement 
directions of the hyperspectral camera were it can be set either to remain stationary, go up or down at specified 
distance during image capture.  

 
 
 
imaging system which was used in these experiments. The system 
comprises of a Computer with windows operating system, a 
Hyperspectral imaging camera of wavelength ranges from 380 to 
1030 nm (ImSpector V10E, Specim imaging Ltd, Finland), and the 
field of view (FOV) of 28°. A high-performance CCD cam era and 
Fiber light line illuminator with two pieces 150w tungsten halogen 
light lamps (Oriel Instruments, USA) set about an angle of 45° each. 
The user defined speed conveyer which is driven by a stepping 
motor (Zolix Corp. China, Zolix TS200AB). The enclosure of length, 
width and height of      (90 × 105 × 180 cm) constructed from sheet 
metal and columns, providing a rigid platform enclosing all 
components of the system excluding computer alone.  
 
 
Hyperspectral system calibrations  
 
During image acquisition there is an electronic current flowing in the 
detectors or sensors of the CCD arrays even without light shining 
on it (this current is called electronic dark current or just “dark 
current). Dark current is dependent on temperature and is 
proportional to the integration time (Jinsung et al., 2002). It is 
essential to calibrate the hyperspectral imaging system before 
acquiring any image or data to ensure the system is operating 
properly and to diagnose the instrumental errors. In order to get the 
optimal and satisfied reflectance of the tobacco plants samples, the 
hyperspectral background spectral response and the dark current 
image of the CCD camera must be calibrated.  

The center and the background reflectance of the hyperspectral 
were acquired using pure white rectangular-prism ceramics bar, 
which is one of the hyperspectral accessories with known 
reflectance of 99% (Naganathan et al., 2008). While for the “dark 
current image” calibration, the camera lens was completely covered 

with its non-transmittance black lid (0% reflectance). These two 
reference images are used to calculate the pixel-based relative 
reflectance for the raw line-scan images using Equation 1 (Singh et 
al., 2009):   
 

Ro D
R

W D

−=
−

                                                                           (1)

                    
Where R is the relative reflectance image, Ro is the raw reflectance 
image, D is the dark reference image and W is the white reference 
image.  
 
 
Data acquisition and processing  
 
The hyperspectral imaging data is also called Hypercubes, and is 
built-up as the sensor passes over the ground or over the product, 
or as the product passing in front of the hyperspectral sensor 
(Burger and Gowen, 2011). In these experiments, the black 
background that provides low reflectivity was used in order to avoid 
much noise and acquire full reflectance of the target object. Figure 
3b shows an example of hypercube images acquired from Figure 
3a, one of our experimental tobacco plants pots. Also Figure 3(b) 
shows the hyperspectral data cube structure, which is a 3-
dimensional image that comprised of spatial data ‘U’ and ‘V’ 
coordinates, and spectral data created by the diffraction grating 
which disperses the wavelength of light ‘W’ (Xu et al., 2008). The 
hypercube images of the tobacco plants samples was all collected 
on day 1, 6, 12 and 18 experiments, but without cutting up the 
leaves from the host plants. Also the room temperature was set to 
be  21℃  throughout  the  experiments.  All  the captured hypercube  
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Figure 3.  Hyperspectral data structure. Figure 3(b) indicating 3D hyperspectral Image data which is also called 
‘hypercube data’ was acquired from figure 3(a) top view of the Tobacco Plant Pot (RGB images). The spatial axis 
(U and V) and the spectral wavelength (W) are the lines, samples and spectral bands with the dimensional 
numbers of (640, 680) and (512) respectively.  

 
 
 
images in a raw data format were saved directly into the computer 
hard disk through the USB port.  

Figure 4 shows the spectrometer field of view (FOV), sensor 
diameter or width, and focal length of the charge-coupled device 
(CCD) camera. During images shootings the plant samples were 
conveyed individually to the field of view (FOV) of the hyperspectral 
imaging. The movement of the conveyer was sets on the speed of 
2.5 mm/s up to the distance of 250 mm. This covers the total length 
of the plants samples, that is, horizontally and X-direction from the 
hyperspectral software program window. The spectral camera 
height was adjusted to about 55 cm height above the plant samples, 
so that the field of view (FOV) was about 25 cm lengths which 
covered the width of the plants samples. Also the camera remained 
stationary during images capture, that is, speed in vertical direction 
from the hyperspectral software program window Y = 0 mm/s 
(Figure 2).  

In order to collect the entire spectral images, the plants were all 
scanned line-by-line which is also known as push-broom 
(Naganathan et al., 2008). The estimated image pixel size is 0.35 
mm and the sizes in samples, lines and bands of hyperspectral 
images collected are 640, 680 and 512 respectively. The angle of 
view, which is used interchangeably with the more general term 
field of view (FOV), describes the angular extent of a given scene 
that is imaged by a camera, can be calculated as Equation 2 
(Ciaran et al., 2010). 
 

2 arctan
2

d
FOV

f
= ∗                                                       (2) 

 
Where d represents the CCD camera sensor width or diameter, and 
f is the focal length of the camera (Figure 4).  

After acquiring hypercube images and calibrations of reflectance 
of   the  tobacco  plants  samples,  three  regions  in  each  pot  was 

selected randomly for the first time by selecting boundary areas of a 
leaf, marked and saved as regions of interest (ROI). The changes 
of these ROIs (region 1, 2 and 3 at each pot) were monitored 
throughout the experimental period. Each ROI has covered an 
average area of 45,000 pixels. Plants were kept in the greenhouse 
and watered as necessary but no fertilizer was added during 1 to 18 
experimental days. Principal component analysis (PCA) was 
performed to analyse the relationship and differences of healthy 
and infected plants changes in reflectance and water contents. 
These were performed by reducing the uncorrelated or principal 
components (PCs) and maximize representation of the original 
hyperspectral image data (Muhammed, 2005). 

The pot 3 and 4 plants artificial inoculation with black shank 
pathogen (Phytophthora nicotianae) came up immediately after day 
one experiments. The total of 32 hypercube images was captured 
and processed using ENVI Image processing Software for windows. 
During processing of hyperspectral images with ENVI sometimes 
there is need to specify and assigned the wavelength unit either in 
micrometers (µm), nanometer (nm), GHz, wavenumber or Index, (if 
not, error may occur in the result). This can be done from the ‘File 
tab’ in the ENVI main menu under ‘edit ENVI header’ likewise 
results too can be converted to micrometers, nanometers and so on, 
1 mm = 1000 µm, 1 µm = 1000 nm and so on, (Freek, 2004).  
 
 
Data reduction methods  
 
Principal component analysis (PCA) method  
 
Principal component analysis is a powerful tool for analysing data, 
also is a variable reduction method that condenses all the spectral 
information into a few latent variables, which are called principal 
components (PCs). The data sets with many variables by which 
some of the variance axes may be great, whereas others may be 
small, such  that  they  can  be  ignored  (Burger and Gowen, 2011).  
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Figure 4.  Hyperspectral imaging camera field of view (FOV Angle) covered 
an object. Where by ‘f’ is defined as camera focal length and ‘d’ as the 
camera sensor width or diameter.   

 
 
 
For example one might start with 100 original variables and might 
end with only 10 meaningful axes. This is known as reducing the 
dimensionality of a data set. In this work PCA was used to reduce 
the spectral dimension of the hypercube images data of the tobacco 
leaves. The Data set (Ds) can be express as hypercube structure (λ) 
plus the error or noise (E), mathematically as Equation 3:  
 

( )Ds E U V W Eλ= + = ∗ ∗ +
                                    (3)                 

 
Where U, V and W, are hypercube spatial axes and spectral 
wavelength (Figure 3b).  
 
 
Minimum noise fraction (MNF) method  
 
The minimum noise fraction transform MNF is a rotation tool that 
determines the inheritance dimensionality of image data, to 
segregate noise in the data, and to reduce the computational 

requirements for subsequent processing. MNF is a linear 
transformation that consists of separate principal components 
analysis rotations that includes; (i) The first rotation uses the PCs of 
the noise covariance matrix to decorrelate and rescale the noise in 
the data, (this is called noise whitening), and resulting in 
transformed data in which the noise has unit variance and no band-
to-band correlations (Burger and Gowen, 2011). (ii) The second 
rotation uses the PCs derived from the original image data after 
they have been noise-whitened by the first rotation and rescaled by 
the noise standard deviation. The inherent dimensionality of the 
data is determined by examining the final eigenvalues and the 
associated images.   

Also noise from the data can be removed by performing a 
forward transform, to examine the images and eigenvalues of 
bands that contain the coherent images. Then run an Inverse MNF 
transform using a spectral subset to include only the good bands or 
smoothing the noisy bands before the inverse. In ENVI, an 
individual end member spectra can be transformed into MNF space 
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for input into mixture tuned matched filtering (MTMF).  
 
 
Tobacco plant diseases 
 
Types of tobacco plant diseases 
 
There are many types of tobacco plants disease such as foliar 
diseases which are related to leaves, like tobacco mosaic virus 
(TMV), brown spot (Alternaria alternata), blue mold (Peronospora 
tabacina), scab (Hymenula affinis) and verticillium wilt (Verticillium 
albo-atrum) (Yamaji et al., 2010; Zuo et al., 2007). Also there are 
soil-borne diseases like black-shank (Phytophthora nicotianae), 
granville wilt (Ralstonia solanacearum), root-knot nematode 
(Meloidogyne arenaria) and fusarium wilt (Fusarium oxysporum) 
(Alvessantos, 2007; Caillaud et al., 2008).  
 
 
The black-shank fungus  
 
In this experiment, the black-shank fungus (P. nicotianae) was used 
for the artificial inoculation of pot 3 and 4 tobacco plants samples. 
This fungus may attack tobacco plants of all ages whereby the 
roots and basal parts of the stem are primarily affected. The root 
system is often partly or completely black; a dark lesion may extend 
several centimeters up the stalk (Hernandez et al., 2009; Zhao et 
al., 2011). The infected plants usually wilt during the hottest part of 
the day and may not recover at the night, while the older plants 
infected with this disease wilt suddenly or the leaves droops. 
Development of this type of disease in cool weather is slower than 
when temperatures are high (Chacón et al., 2009). The severity 
levels in plants caused by the black-shank fungus can be calculated 
using Plant Senescence Reflectance Index (PSRI) from the 
hyperspectral data collected with various changes in reflectance 
intensity due to different infection levels (e.g. 1, 6, 12 and 18 days 
after inoculation in this experiment). The PSRI is designed to 
maximize the sensitivity of the index to the ratio of bulk carotenoids 
to chlorophyll (e.g. alpha-carotene and beta-carotene). An increase 
in PSRI indicates increased canopy stress (carotenoid pigment), 
the onset of canopy senescence, plant fruit ripening and so on. 
PSRI is defined by the Equation 4 (Brantley et al., 2011; Sankaran 
et al., 2010): 
 

680 500

750

R R
PSRI

R

−=
                                                 (4)          

 
Where PSRI is the plant senescence reflectance index, R indicates 
reflectance, and the subscript number indicates a particular 
wavelength in nm. Other studies have also indicated that it is 
possible through reflectance of hyperspectral imaging data to model 
water content and estimate the leaf drought stress when it was 
infested. Software such as ENVI can be used to find the specific 
wavelengths in which leaf reflectance was most strongly responsive 
to damage caused by the fungus. The water band index ratio 
(Equation 5) provides a good indicator of water content in the fine 
tissues of the canopy (Claudio et al., 2006; Sankaran et al., 2010):  
 

900

970

nm

nm

R
WBI

R
=                                                                    (5)          

  
Where WBI is the water band index, R900 and R970 are the leaf 
reflectance at wavelengths of 900 and 970 nm respectively. 

 
 
 
 
RESULTS 
 
The reflectance   
 
The influence of the pathological status of plants on its 
spectral characteristics can be visible or detectable in the 
visible/NIR or IR regions of the electromagnetic spectrum. 
The spectral parameters such as single wavelength 
reflectance, plant senescence reflectance index (SPRI) 
and water band index (WBI) were used to discriminate 
the severity level of black-shank infection on tobacco 
plants. Figure 5a to d shows the average spectral images 
of ROIs responses over the entire spectral wavelengths 
(380 to 1030 nm) acquired during 1 to 18 days 
experiments. The ROIs from both plants during day 1 
experiment shows the average spectral reflectance 
intensity of 73 to 75% (Figure 5a). The spectrum of plant 
leaves changes in both the visible/NIR regions due to 
physiological stress. The non-inoculated tobacco plants 
(pot 1 and 2) stayed healthy over the experimental period. 
The infected tobacco plants (pot 3 and 4) in Figure 5b 
day 6 experiment shows a trend similar to that of the 
healthy plants, but reflectance decreased slightly in both 
visible and the near infrared region with about 8% from 
day 1 experiment. At this stage no symptoms were 
present to the human eyes.  

The differences in spectral intensities were specifically 
noted in both the visible and NIR regions due to the 
absorption of incident light changes. The reflectance of 
plant leaves in the visible and NIR regions decreases in 
advanced disease infection due to the decreased 
chlorophyll content, changes in other pigments and foliar 
internal structure (Minghua et al., 2003). The symptoms 
of black shank disease became visible 12 days after 
inoculation (DAI), whereby the leaves affected from the 
lower part of the plant gradually turn yellow and some 
hang down the stalk by 18dai. The spectra intensity of 
detected fluorescence determines the evaluation of 
disease advancement. Figure 5c and d shows the 
average reflectance intensity of infected plants decreases 
substantially to approximately 37% by 18dai compared to 
the day 1 spectra. While the average spectral responses 
of healthy plants increased slightly with about 6% 
throughout the experimental days.  

The pathological conditions of plants, vegetation, plants 
disease and so on, can be recognized visibly or detect-
able either within visible/NIR or IR regions of electromag-
netic spectrum range. The spectrums of green plants are 
determined by their chemical and morphological 
characters, which have a close relation to growth periods, 
health conditions and seasonal phenomenon (Yang et al., 
2000). The obtained spectral characteristics of fluore-
scence with intensity peaks in 521 to 650 nm (116 to 220 
bands), and 720 to 850 nm (275 to 376 bands) range, 
were sensitive to the black-shank severity level, also 
explicitly outlined healthy and pathologically changed 
areas. But specifically the wavelengths of 730 and 790 nm  
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Figure 5. Average spectrums of tobacco plants pots regions of interest (ROIs). Where (a) is day 1 experiment average spectra, (b) 
is day 6 experiment average spectra, (c) is day 12 experiment average spectra and (d) is day 18 experiment average spectra. The 
pot 3 and 4 with star symbols are the inoculated pots with black-shank disease which was immediately after day 1 experiment. 
The inoculated pots average spectral reflectance from day 6 to 18 decreases significantly with the increasing severity level at both 
the visible and near-infrared wavelength ranges. While the average Spectral of healthy plants pot 1 and 2 increased slightly with 
about 5% throughout the experimental days.  

 
 
 
with corresponding bands of 283 and 330 provided the 
highest correlation coefficient.  
 
 
The moisture of the tobacco leaves  
 
When the plants are stressed by the disease, the water 
content and absorption of incident light of that plants 
changes in both the visible and near infrared range. This 
reaction is probably due to the decreased chlorophyll 
content, changes in other pigments and foliar internal 
structure (Minghua et al., 2003).The agricultural stress 
tool and vegetation index calculator in ENVI was used to 
analyze the leaf moisture content from hyperspectral 
reflectance data. These tools are intended specifically for 
use on agricultural product and agricultural land to 
support precision agriculture analysis, to designed and 
create a spatial map showing the distribution of crop 
stress. The crops or plants exhibiting  low stress conditions 

is usually made up of healthy vegetation, while the plants 
under high stress conditions shows signs of dry or dying 
plant material, very dense or sparse canopy, and 
inefficient light use (Brantley et al., 2011).  

Both the agricultural stress tool and vegetation index 
calculator uses vegetation indices (VIs) that are construc-
ted from reflectance measurements in two or more 
wavelengths in order to analyse specific characteristics of 
vegetation, such as total leaf area and water content. 
Table 1 shows some indices equations grouped into 
categories that calculate similar properties, and their 
functions in field of analysis (Kim et al., 2011; Sankaran 
et al., 2010). The tobacco plants water contents were 
analyzed using agricultural stress tool by which three of 
VIs bands was selected from each category at a time. 
The selected VIs bands include; (i) normalized difference 
vegetation index (NDVI) from broadband greenness 
category (ii) photochemical reflectance index (PRI) from 
light use  efficiency  category  and (iii)  water  band  index  
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Table 1. The Vegetation Indices (VIs) grouped into categories that calculate similar properties. VIs are combinations of surface reflectance at two or 
more wavelengths designed to highlight a particular property of vegetation. Each of the VIs is designed to accentuate a particular vegetation property.  
 

VIs 
Cat. 

Indices group Description Equation Reference 

B
ro

ad
ba

nd
 g

re
en

ne
ss

 

Normalized 
Difference Vegetation 
Index (NDVI) 

Is one of the oldest, most well-known, and 
most frequently used VIs. Its formulation and 
use of the highest absorption and reflectance 
regions of chlorophyll make it robust over a 
wide range of conditions.  

800 670

800 670

R R
NDVI

R R

−=
+

 
(Brantley et al., 2011) 

Enhanced Vegetation 
Index (EVI) 

An enhancement on the NDVI to better 
account for soil background and atmospheric 
aerosol effects. 

800 680

800 680 450

2.5
6 7.5 1

R R
EVI

R R R

 −=  + − + 

 
(Kim et al., 2011) 

The Simple Ratio 
(SR) index 

The SR is the ratio of the highest reflectance; 
absorption bands of chlorophyll makes it both 
easy to understand and effective over a wide 
range of conditions 

801

670

R
SR

R
=  

(Daughtry et al., 
2000) 

Atmospherically 
Resistant Vegetation 
Index (ARVI)  

Is an enhancement to the NDVI that is 
relatively resistant to atmospheric factors (for 
example, aerosol). It uses the reflectance in 
blue to correct the red reflectance for 
atmospheric scattering 

800 680 450

800 680 450

(2 )

(2 )

R R R
ARVI

R R R

− ∗ −=
+ ∗ −

 
(Kim et al., 2011) 

     

N
ar

ro
w

ba
nd

 g
re

en
ne

ss
 

The Modified Red 
Edge Normalized 
Difference Vegetation 
Index (mNDVI705) 

Is a modification of the Red Edge NDVI, it 
capitalizes on the sensitivity of the vegetation 
red edge to small changes in canopy foliage 
content, gap fraction, and senescence.  

750 705
705

750 705 4452

R R
mNDVI

R R R

−=
+ −

 
(Daniel and John, 

2002) 

The Vogelmann Red 
Edge Index 1 (VOG1) 

A narrowband reflectance measurement that 
is sensitive to the combined effects of foliage 
chlorophyll concentration, canopy leaf area, 
and water content. 

740

720

1
R

VOG
R

=  
(Kim et al., 2011) 

Vogelmann Red Edge 
Index (VOG 2 & 3). In 
VOG3 it is R720 in 
place of R726 

A shape of the near-infrared transition that is 
indicative of the onset of canopy stress and 
senescence. 

734 747

715 726

2
R R

VOG
R R

−=
+

 
(Kim et al., 2011) 

     

Li
gh

t u
se

 
ef

fic
ie

nc
y

 

Photochemical 
Reflectance Index 
(PRI)  

Useful to estimate absorption by leaf 
carotenoids (especially xanthophyll) 
pigments, leaf stress, and carbon dioxide 
uptake.  

531 570

531 570

R R
PRI

R R

−=
+

 
(Huang et al., 2007) 

Structure Insensitive 
Pigment Index (SIPI) 

Indicator of leaf pigment concentrations 
normalized for variations in overall canopy 
structure and foliage content.  

800 445

800 680

R R
SIPI

R R

−=
−

 
(Rumpf et al., 2010) 

     

D
ry

 o
r 

se
ne

sc
en

t 

Cellulose Absorption 
Index (CAI)  

A vegetation index indicating exposed 
surfaces containing dried plant material. 

0.5( 2000 2200) 2100CAI R R R= + −  (Daughtry et al., 
2004) 

Plant Senescence 
Reflectance Index 
(PSRI)  

Uses a ratio of carotenoids to chlorophyll to 
detect onset and degree of plant senescence.  680 500

750

R R
PSRI

R

−=  

(Kim et al., 2011) 

     

Le
af

 p
ig

m
en

t
s 

Carotenoid 
Reflectance Index 
(CRI1 & 2). In CRI2, it 
is R700 in place of R500 

Detects a relative difference in absorption 
indicative of changes in leaf total carotenoid 
concentration relative to chlorophyll 
concentration. 

510 550

1 1
1CRI

R R

   
= −   
   

 
(Anatoly et al., 2002) 

Anthocyanin 
Reflectance Index 
(ARI1 & 2). In ARI1, 
there is no R800 
wavelength 

A variant of the ARI1, which is sensitive to 
changes in GREEN absorption relative to 
RED, indicating leaf anthocyanins. 

800
550 700

1 1
2ARI R

R R

    
= −    

     

 (Anatoly et al., 2001) 
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Table 1. Contd. 
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Water Band Index 
(WBI)  

Reflectance measurement that is sensitive to changes 
in canopy water status 

9 0 0

9 7 0

n m

n m

R
W B I

R
=  (Sankaran et al., 

2010) 

Moisture Stress Index 
(MSI)  

Reflectance measurement that is sensitive to 
increasing or decrease of leaf water content 

1599

819

R
MSI

R
=  (Pietro et al., 2001) 

Normalized 
Difference Infrared 
Index (NDII) 

A reflectance measurement that is sensitive to 
changes in water content of plant canopies. It uses a 
normalized difference formulation instead of a simple 
ratio. 

819 1649

819 1649

R R
NDII

R R

−=
+

 (Jackson, 2004) 

 

Source of categorization: ENVI manual and tutorial DVD shipped with software.  
 
 
 
(WBI) from canopy water-content category (Table 1).  

The vegetation index calculator provides 27 predefined 
VIs that can be used to detect the presence and relative 
abundance of various vegetation properties from 
hyperspectral data. These VIs are combinations of 
surface reflectance at two or more wavelengths designed 
to highlight a particular property of vegetation. Each index 
is grouped into a category by the main function of the 
index (Sonnentag, 2008). The ‘biophysical cross 
checking’ which is one of the truly unique features for the 
vegetation analysis component in ENVI was set to be 
‘On’ from the VIs calculator parameters window. If 
enabled, allows the comparison of different indices at 
each pixel to validate their results. All or some of the 
available VIs appears in the calculator can be selected 
and click OK to passed the result into the available bands 
list window. Figure 6a and b shows the ENVI vegetation 
index calculator, and available bands list window for pot 3 
tobacco plants data respectively.  

Results can be loaded in gray-scale by selecting one 
band of VIs at a time, or loaded in RGB colors by 
selecting 3 bands of VIs at a time and fill them in R, G 
and B columns in available bands list window (Figure 6b). 
Figure 7 compared the results in RGB colors of moisture 
contents for figure 7a healthy tobacco leaf from pot 3 
during day 1 experiments, and Figure 7b which shows 
the same leaf infected 18dai with black-shank. The color 
ramp displayed the classes whereby blue to green 
represent low stress (that is, healthy plants or vegetation), 
whereas yellow to reds indicate high stress (that is, 
weakest / infected plants or vegetation).  

Based on our results obtained, the decrease in 
reflectance is indicating the increase in severity level. 
Figure 8 shows the stress plot of healthy and infected 
tobacco plants disease advancements in percentages. 
The infected plant shows the disease advancement of 
about 37% by 18dai. While non-inoculated plants 
increased in reflectance with about 6% and stayed 
healthy throughout the experimental days. The percent-
tage calculations are based on reduced and increased of 
the average spectra from day 1 to 18 experiments.   

Principal component analysis (PCA) 
 
Principal component analysis (PCA) was used to find the 
overall similarities and differences of healthy and infected 
tobacco plants within 380 to 1030 nm wavelength. The 
average reflectance spectra obtained from day 18 final 
experiment for both healthy and infected tobacco plants 
pots samples was used. The collected spectrum which 
was represents the average area of the samples plants, 
showed similarity in patterns but differ on the reflectance 
absolute values. In order for the PCA to work properly, 
the mean was subtracted from each of the data 
dimensions which produce the data set whose mean is 
equal to zero. Then the data was transferred to the 
“unscrambler” Statistical Analysis software by (CAMO 
software AS), for PCA.  

The first derivatives obtained from the average 
reflectance show that the most important wavelength are 
identified at 630, 680, 750, 790, 840 and 880 nm. The 
first three principal components from the variance curve 
generated they were responsible for 94.8% of variability 
of the data. The 1st, 2nd and 3rd variability are 80.4, 12.2 
and 2.2%, respectively. Figure 9 shows PCA scores plot 
of the afore-mentioned selected wavelength whereby 
almost all the high reflectance of pot 1 and 2 samples 
pots (non-inoculated plants) are located in the positive 
area of both PC1 and PC2. The sample plants from pot 3 
and 4 (inoculated plants) are almost entirely located in 
the negative area indicating inverse relationship among 
these two quality classes, whereas the scores located at 
the center are medium reflectance region from both of the 
pots.  
 
 
DISCUSSION  
 
The results of this study demonstrate the potential 
application of hyperspectral remote sensing within 380 to 
1030 nm wavelength, as a rapid and field based method 
of identifying healthy and infected plants prior to symptom 
expression, with overall accuracy of 90 to 94% from  both 
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Figure 6. ENVI predefined indices. Where (a) is ENVI Vegetation indices calculator showing 21 available 
indices that can be calculated from pot 3 tobacco plants samples at 18dai out of 27 predefined VIs by 
ENVI. (b) Is the available bands list window which appears after selecting indices and clicking OK from 
indices calculator. Results can be loaded in gray-scale by selecting one band of VIs at a time, or loaded in 
RGB colours by selecting 3 bands of VIs at a time and fill them in R, G and B columns in available bands 
list window.  

 
 
 
indices and the PCA. Disease can be detected within first 
six days of development after infection even if the 
symptoms cannot be visibly seen by the human eye, so 
that action can be taken as soon as possible. The 
spectral range from 520 to 650 nm (116 to 220 bands), 
and 720 to 850 nm (275 to 376 bands) was useful for 
discriminating black-shank fungus severity levels, 
especially at the wavelength of 730 nm (283 band) and 
790 nm (330 band), where the differences in reflectance 
between levels were the largest. These results are in 
agreement with findings obtained by (Daughtry et al., 
2004; Muhammed, 2002; Naidu et al., 2009; Xu et al., 
2007) for spectral reflectance decreases significantly with 
the increasing severity level at both the visible  and  near-

infrared wavelength ranges. While (Minghua et al., 2003) 
reported that if a plant is infected the spectral reflectance 
increases in the visible region and decreases within NIR 
region.  

Although this experiment was performed in laboratory, 
but the application of hyperspectral remote sensing for 
disease detection already applied on many crops both 
under field conditions, larger plantations and in 
greenhouses. In this work for example, more than 30 
references are based on hyperspectral applications in 
which 21 of them are laboratory experiments, (Laudien et 
al., 2005) used hyperspectral sensor integrated with 
tractor-based for detection of plants stress under field 
condition, and  (Kim et al., 2011)  hang-up  on  roof of the  
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Figure 7.  RGB colors of moisture contents of (a) healthy tobacco leaf during day 1 experiment and (b) 
shows the same tobacco leaf by 18 days after inoculation with black-shank disease. The colour ramp 
displayed the classes whereby blue to green represent low stress (that is, healthy plants or vegetation), 
whereas yellow to reds indicate high stress (that is, weakest / infected plants or vegetation).  

 
 
 
greenhouse the hyperspectral imaging to monitor the 
crop changes. While (Brantley et al., 2011; Daughtry et 
al., 2004; Naidu et al., 2009; Rumpf et al., 2010) used 
portable hyperspectral for detection of crops diseases 
under field conditions, and (Freek, 2004; Glaber et al., 
2011; Huang et al., 2007; Jackson, 2004; Minghua et al., 
2003; Plaza et al., 2009; Xu et al., 2008) used 
hyperspectral imaging installed on satellites and aircrafts 
such as Landsat 7, Landsat 5TM, Landsat ETM+, TRWIS 
III Airborne, German Digital Airborne and NASA’s 
Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) 
for crops disease detections under field conditions.  

Hyperspectral vision systems work by using devices 
that are capable of filtering incident electromagnetic 
radiation and transmitting only that corresponding to a 
specific wavelength, depending on the technology they 
employed. These devices can be classified into imaging 
spectrometers like acousto-optical tunable filters (AOTF) 
and liquid crystal tunable filters (LCTF), used in such as 
ImSpector Spectrographs and airborne hyperspectral 
imaging systems (Gomezsanchis et al., 2008). As applied 
to the field of optical remote sensing such as crop 
disease detection, spectrograph deals with the spectrum 
of sunlight that is diffusely reflected (scattered) by 
materials at the earth’s surface. Although the weather 
condition (e.g. solar  lighting)  and  the  leaves  inclination 

imply a multiplicative effect and an additive effect on the 
obtained reflectance (Vigneau et al., 2011), but the 
overall shape of a spectral curve, the position and 
strength of absorption bands in many cases can be used 
to identify and discriminate different materials. Where by 
each pixel contain a unique, continuous spectrum for the 
identification of terrestrial materials by their reflectance 
after atmospheric correction. The hyperspectral imaging 
still remains valuable technique for detection and 
classification of materials and objects on the earth's 
surface. 
 
 
Conclusion  
 
Hyperspectral imaging has a great potential on non-
destructive testing technology, also is a real-time system 
capable of discriminating between stressed and non-
stressed plants. This study proved the feasibility of early 
detection of black-shank disease on tobacco plants. The 
reflectance differences between healthy and infected 
tobacco plants samples were found within visible/NIR 
wavelength regions (380 to 1030 nm). However, using 
hyperspectral imaging to determine severity of plant 
diseases may improve to make good use of the pesticide, 
only applying when and where needed and  reducing  the  
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Figure 8. Stress plot of healthy and infected tobacco plants disease 
advancements. Percentage by the left side shows the disease advancement 
of infected plants ‘D’ to about 37% by 18dai. While percentage by the right 
side shows non-inoculated plants ‘H’ stayed healthy with increase in 
reflectance of about 6% throughout the experimental period. ‘B’ is the 
average spectra of both plants before day 1 experiment. Based on our 
results, the decrease in reflectance is indicating the increase in severity level. 
The calculations are based on the average spectra reduced and increased 
from day 1 to 18 experiments.  

 
 
 

 
 
Figure 9.  Principal Components Analysis Scores plot.  The healthy plants (pot 1 
and 2) are located in the positive area of both PC1 and PC2 with high 
reflectance. While the inoculated plants (pot 3 and 4) are almost entirely located 
in the negative area with low reflectance indicating inverse relationship among 
these two quality classes, whereas the scores located at the center are medium 
reflectance regions from both of the pots.  



 
 
 
 
residues in produce and environmental contamination.  
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