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Waterlogging is the major obstacle for sustainable agriculture. Plants subjected to waterlogging suffer 
from substantial yield losses. Under natural environmental conditions, plants often get exposed to 
transient or permanent waterlogging. Flooding induces a number of alterations in important soil physio-
chemical properties like soil pH, redox potential and oxygen level. Thus, the plants growing on the 
waterlogged soil face the stressful environment in terms of hypoxia (deficiency of O2) or anoxia 
(absence of O2). These oxygen deficient conditions substantially hamper plant growth, development 
and survival. Plants under O2-restrictive environment exhibit metabolic switch from aerobic respiration 
to anaerobic fermentation. It is evident from the available literature that most of the genes expressed 
under flooding stress are potentially involved in the synthesis of enzymes known to play active role in 
the establishment of this fermentative pathway. Plants undergo this metabolic change in order to get 
continuous supply of Adenosine triphosphate (ATP). Under waterlogged conditions, plants exhibit 
several responses including hampered stomata conductance, net CO2-assimilation rate and root 
hydraulic conductivity. Furthermore, plants grown under waterlogged conditions often face the 
oxidative damage induced by the generation of reactive oxygen species. These reactive oxygen species 
in turn affects the integrity of membranes and induce damage to the efficiency of photosystem II, 
thereby, causing considerable decrease in net photosynthetic rates. Moreover, these perturbations in 
physiological mechanisms may affect the carbohydrate reserves and translocations. In fact, 
waterlogging tolerant and sensitive plant species could be discriminated on the basis of their efficient 
carbohydrate utilization. Waterlogging is also known to induce adverse effects on several physiological 
and biochemical processes of plants by creating deficiency of essential nutrients like nitrogen, 
magnesium, potassium, calcium. Apart from these waterlogging-induced alterations in physiological 
mechanisms, plants growing under flooded conditions also exhibit certain morphological changes 
entailing the formation of adventitious roots, initiation of hypertrophied lenticels and/or establishment 
of aerenchyma. Therefore, the aim of this review is to highlight the major morphological, physiological 
and biochemical adaptations of plants to tolerate the flooding stress. 
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INTRODUCTION 
 
In tropical and subtropical regions, excessive rainfall is 
the major constraint for crop production. Elevated levels 
of water in soil create hypoxic conditions (decrease in the 
level of oxygen) within a short period of time. As a result 
plant roots suffer from anoxia, complete absence of 
oxygen (Gambrell and Patrick, 1978). However, plants 
tolerant to waterlogging (flooding) stress exhibit certain 
adaptations, for example, formation of aerenchyma and 
adventitious roots. Furthermore, the formation of 
adventitious roots is due to the interaction of plant 

hormones, auxin and ethylene (McNamara and Mitchell, 
1989). Oxygen deficiency inhibits the root respiration of 
plants which results in substantial reduction in energy 
status of root cells. Since oxygen is a terminal electron 
acceptor in aerobic respiration, in its absence, Kreb’s 
cycle and electron-transport system are blocked. 
Therefore, plants under waterlogged conditions use 
alternate pathway for energy extraction. This alternate 
pathway uses fermentative metabolism to produce 
Adenosine   triphosphate   (ATP),   thereby,   resulting   in  



 
 
 
 
enhanced accumulation of ethanol.  

Moreover, the activity of alcohol dehydrogenase (ADH) 
is also increased (Davies, 1980; Vartapetian, 1991). 

In fermentation, plants could get only two ATP per 
glucose molecule, whereas, 36 ATP molecules are 
produced per glucose molecule in aerobic respiration. 
Flood-tolerant plants are able to maintain their energy 
status using fermentation. In addition, the maintenance of 
cytosolic pH is of prime importance. In waterlogged 
plants, initial decline in cytosolic pH has been observed 
and this decline is attributed to the production of lactic 
acid during fermentation. This initial decrease in pH helps 
the plant to switch from lactate to ethanol fermentation by 
activation of alcohol dehydrogenase and inhibition of 
lactate dehydrogenase (Chang et al., 2000). As under 
hypoxic or anoxic conditions oxygen is lacking, therefore, 
alternative electron acceptor is required. For example, 
nitrate has been considered as terminal electron acceptor 
of plant mitochondria under anoxic or hypoxic conditions 
(Vartapetien et al., 2003). It has also been suggested that 
nitrate reduction is an alternate respiratory pathway and 
is important for the maintenance and energy homeostasis 
of the cell in the oxygen deficient environment 
(Igamberdiev and Hill, 2004).  
 
 
WATERLOGGING-INDUCED ALTERATIONS IN 
PHYSIOLOGICAL MECHANISMS 
 
One of the first plant responses to waterlogging is the 
reduction in stomata conductance (Folzer et al., 2006). 
Plants exposed to flooding stress exhibit increased 
stomata resistance as well as, limited water uptake 
leading to internal water deficit (Parent et al., 2008). In 
addition, low levels of O2 may decrease hydraulic 
conductivity due to hampered root permeability (Else et 
al., 2001). Oxygen deficiency generally leads to the 
substantial decline in net photosynthetic rate (Ashraf et 
al., 2011). This decrease in transpiration and 
photosynthesis is attributed to stomata closure (Ashraf 
and Arfan, 2005). However, other factors such as 
reduced chlorophyll contents, leaf senescence and 
reduced leaf area are also held responsible for 
decreased rates of photosynthesis (Malik et al., 2001). In 
this context, Yordanova et al. (2005) reported fast 
stomata closure in barley plants when subjected to 
flooding conditions. Similarly, when pea plants were 
subjected to flooding conditions, a prompt closure of 
stomata was recorded (Zang and Zang, 1994). This 
stomata closure of pea plants was attributed to the 
abscisic acid (ABA) transport from older to younger 
leaves or denovo synthesis of this hormone.  

Furthermore, prolonged exposure of plants to flooding 
conditions could result in root injuries which in turn 
restrict photosynthetic capacity by inducing certain 
alterations in biochemical reactions of photosynthesis. 
These biochemical alterations include restricted activity of  
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ribulose bisphosphate carboxylase (RuBPC), 
phosphoglycollate and glycollate oxidase (Yordanova and 
Popova, 2001), demolition of chloroplast membrane 
inhibiting photosynthetic electron transport and efficiency 
of photosystem II (Titarenko, 2000). It is evident from the 
literature that flooding causes a marked reduction in 
photosynthetic capacity of a number of plants, for 
example, Lolium perenne (McFarlane et al., 2003), 
Lycopersicon esculentum (Bradford, 1983; Jackson, 
1990) Pisum sativum (Jackson and Kowalewska, 1983, 
Zhang and Davies, 1987), and Triticum aestivum 
(Trought and Drew, 1980). However, plants exhibit 
certain adaptation under waterlogging stress to maintain 
photosynthetic capacity (Li et al., 2004). Moreover, flood-
induced destruction of chlorophyll has been investigated 
widely by a number of researchers (Jackson et al., 1991; 
Huang et al., 1994; Ashraf et al., 2011). This decrease in 
chlorophyll directly or indirectly affects the photosynthetic 
capacity of plants under waterlogged conditions (Ashraf 
et al., 2011).  

The adverse effects of waterlogging on different gas 
exchange attributes of plants have been reported in some 
earlier studies. For example, Ashraf and Arfan (2005) 
reported decrease in photosynthetic rate, water use 
efficiency and intrinsic water use efficiency of 32-day okra 
plants when subjected to waterlogged conditions. It is a 
general consensus that stomata regulation controls the 
CO2 exchange rate of plants under waterlogged 
conditions (Ashraf and Arfan, 2005; Ashraf et al., 2011). 
Furthermore, water potential of plants is also controlled to 
some extent by stomata regulations (Liao and Lin, 1996). 
However, there are contrasting reports on the 
involvement of stomatal regulation in maintenance of 
water potential. For example, waterlogging caused a 
marked reduction in stomata conductance of bitter melon. 
This reduction in gs resulted in increased leaf water 
potential (Liao and Lin, 1994). In contrast, Ashraf and 
Arfan (2005) found no significant correlation between 
stomata conductance and water potential of okra plants 
under waterlogged conditions. In fact, these authors were 
of the view that osmotic potential and pressure potential 
are the main factors that determine water potential. 

Waterlogging stress is also known to cause marked 
perturbation in different chlorophyll fluorescence 
attributes of plants. Since chlorophyll fluorescence is an 
excellent physiological marker that determine the primary 
processes involved in photosynthesis such as energy 
transfer due to excitation, absorption of light and 
photochemical reactions occurring in the PSII 
(photosystem II) (DeEll et al., 1999; Saleem et al., 2011). 
Therefore, changes in chlorophyll fluorescence 
parameters determine the function and stability of 
photosystem II (Jimenez et al., 1997; Abdeshahian et al., 
2010). The plants subjected to waterlogged conditions 
exhibit certain alterations in this physiological marker. For 
example, when Cork oak (Quercus variabilis) and China 
wingnut    (Pterocarya stenoptera)    were    subjected   to  
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waterlogging stress, a prominent decrease in maximum 
quantum efficiency (Fv/Fm) was recorded (Hua et al., 
2006). Likewise, decrease in the maximum quantum yield 
of PS II photochemistry (Fv/Fm) was also recorded in 
flied beans when subjected to varying days of 
waterlogging stress (Pociecha et al., 2008). PSII 
photochemistry was also impaired due to waterlogging in 
Medicago sativa. The decrease in Fv/Fm indicated the 
sensitivity of photosynthetic apparatus to abiotic stress 
and also inability of the plants to regenerate rubisco 
under stressful conditions (Smethurst et al., 2005). 
 
 
OXIDATIVE DAMAGE INDUCED BY REACTIVE 
OXYGEN SPECIES (ROS) 
 
Despite the fact that oxygen is important for life on earth, 
its reduction by any means could result in the production 
of ROS perturbing several cellular metabolic processes of 
plants (Ashraf, 2009; Ashraf et al., 2010). Lethal reactive 
oxygen species include superoxide (O2

−), hydrogen 
peroxide (H2O2) and the hydroxyl radical (OH). Singlet 
oxygen generated due to the reaction of oxygen with 
excited chlorophyll, is also considered as potential ROS 
(Ashraf and Akram, 2009). These ROS are extremely 
reactive in nature and induce damage to a number of 
cellular molecules and metabolites such as proteins, 
lipids, pigments, DNA etc (Ashraf, 2009). ROS are also 
produced in plants under normal conditions or non-
stressed conditions but their concentration is very low. 
However, when plants are facing some environmental 
stress like waterlogging stress, the concentration of ROS 
is elevated to a level that is damaging for several cellular 
metabolic reactions of plants such as photosynthesis, 
efficiency of PS II (Ashraf, 2009). For example, elevated 
cellular levels of hydrogen peroxide result in inhibition of 
calvin cycle (Ashraf and Akram, 2009). 

ROS are free radicals possessing one or more 
unpaired electrons. This is not a stable configuration; 
therefore, the radicals react with other cellular molecules 
to produce more free radicals (Foyer and Halliwell, 1976; 
Hideg, 1997). Generation of reactive oxygen species 
occurs via different mechanisms, for example, when 
molecules of aerobic system come in contact with the 
ionizing radiations, this interaction results in the 
production of ROS. It is now a well established fact that 
electrons flowing through electron transport chain may 
leak from their proper rout and in the absence of any 
electron acceptor, these electrons react with oxygen to 
produce reactive oxygen species (Ashraf, 2009). Different 
celluar organelles such as mitochondria, chloroplasts and 
peroxisomes are considered as the sites for production of 
reactive oxygen species (Sairam and Srivastva, 2002).  
 
 
ANTIOXIDANT DEFENSE MECHANISM OF PLANTS 
UNDER WATERLOGGED CONDITIONS 
 
All  the  plants  have  the  ability  to  detoxify  the  adverse 

 
 
 
 
effects of ROS by producing different types of 
antioxidants. Generally, antioxidants are categorized into 
enzymatic and non-enzymatic antioxidants. Enzymatic 
antioxidants include ascorbate peroxidase (APX), 
superoxide dismutase (SOD), peroxidase (POD), 
catalase (CAT), glutathione reductase (GR), whereas, 
ascorbic acid, glutathione, tocopherols and carotenoids 
are included in non-enzymatic antioxidants (Gupta et al., 
2005). 

 A marked alteration in the endogenous levels of 
different enzymatic and non-enzymatic antioxidants has 
been recorded in a number of studies. For example, 
when mungbean plants were subjected to waterlogging 
stress, the activities of various enzymatic antioxidants 
such as glutathione reducatse (GR), superoxide 
dismutase (SOD), catalase (CAT), and ascorbate 
peroxidase (APX) decreased markedly (Ahmed et al., 
2002). These authors also stated that oxidative damage 
was not directly involved in the impairment of 
photosynthetic machinery of plants under waterlogged 
conditions. Likewise, waterlogging-induced reduction in 
the activity of one of oxygen processing enzyme SOD 
has also been reported in corn (Yan et al., 1996).  In 
contrast, increase in the activities of different enzymatic 
antioxidants was recorded in maize seedlings when 
subjected to varying degree of waterlogging stress (Tang 
et al., 2010). Similarly, when pigeon pea genotypes were 
exposed to waterlogging stress, the activities of 
superoxide dismutase (SOD), catalase (CAT), peroxidase 
(POD) and ascorbate peroxidase (APX) increased 
markedly (Kumutha et al., 2009).  From these reports, it 
is amply clear that plants when exposed to waterlogged 
conditions employ antioxidant defense system to get 
through the damaging effects of oxidative stress induced 
by ROS.  
 
 
EFFECT OF WATERLOGGING ON NUTRIENT 
COMPOSITION 
 
Waterlogging reduces the endogenous levels of nutrient 
in different parts of plants (Ashraf et al., 2011). Oxygen 
deficiency in the root zone causes a marked decline in 
the selectivity of K+/Na+ uptake and impedes the transport 
of K+ to the shoots (Armstrong and Drew, 2002). It has 
also been reported in the literature that hypoxic 
conditions cause decrease in the permeability of root 
membranes to Na+ (Barrett-Lennard et al., 1999). 
Generally, waterlogging causes acute deficiencies of 
essential nutrients such as nitrogen, phosphorous, 
potassium, magnesium and calcium (Smethurst et al., 
2005). In this context, Boem et al. (1996) reported a 
marked decline in the uptake of N, P, K and Ca in canola 
when exposed to short period of waterlogging stress. 
Likewise, reduced endogenous levels of N, P and K have 
been reported in maize (Atwell and Steer, 1990). When 
M. sativa was subjected to flooding stress, a marked 
reduction in leaf and root nutrient composition (P,  K,  Ca, 



 
 
 
 
Mg, B, Cu and Zn) was recorded in plants (Smethurst et 
al., 2005). Similarly, Stieger and Feller (1994) reported 
reduced concentrations of P, K and Mg in wheat shoots 
due to waterlogging. In contrast, the endogenous levels 
of calcium remained unaffected in wheat under 
waterlogged conditions. However, decrease in calcium 
contents along with other nutrients (N, P, K and Mg) were 
also recorded in different organs of wheat under 
waterlogged conditions (Sharma and Swarup, 1989). 
Similarly, Tarekegne et al. (2000) recorded a marked 
reduction in Cu, Zn, P and K uptake in waterlogging 
susceptible wheat genotype when compared with the 
tolerant genotypes. These researchers were of the view 
that genotypes that possess the ability to avoid 
waterlogging-induced nutrient deficiency, particularly Zn 
and P deficiency should be selected. Moreover, the 
hampered efficiency of PS II is attributed to the 
deficiencies of N, P, K, Mg and Ca (Smethurst et al., 
2005). It is evident from the literature that adverse effects 
of waterlogging are not due to the toxic levels of Na and 
Fe but reduced concentrations of N, P, K, Ca and Mg are 
the major contributors (Sharma and Swarup, 1989; 
Smethurst et al., 2005).  
 
 
MORPHOLOGICAL AND ANATOMICAL CHANGES  
 
Waterlogging stress is also known to cause a number of 
morphological and anatomical changes in plants. For 
example, the presence of hypertrophied lenticels is a 
common anatomical change observed in different woody 
species under flooding stress (Yamamoto et al., 1995). 
Radical cell division and expansion near stem base 
results in hypertrophic growth. In addition, it is also 
believed to be associated with ethylene and auxin 
production (Kozlowski, 1997). The lenticels are thought to 
be involved in the downward diffusion of O2 as well as, 
the compounds produced as by-products of anaerobic 
metabolism (ethanol, CO2 and CH4). Although, the actual 
physiological role of lenticels is still unclear, their 
presence is often linked to waterlogging tolerance in 
plants (Parelle et al., 2006). Moreover, the number of 
hypertrophied lenticels is more under the water surface 
that supports the argument stating their involvement in 
maintenance of plant water homeostasis and deviating 
from the argument that dictates their role as important 
facilitators of oxygen entry toward the root system. Their 
potential role in the plant water homeostasis is evident 
from their active involvement in partially replacing the 
decaying roots and facilitating water intake for the shoot 
(Parent et al., 2008). 

Formation of adventitious roots potentially replacing the 
basal roots is considered as one of the potential 
morphological adaptations depicted by plants under 
waterlogging stress (Malik et al., 2001). These 
specialized roots maintain the continuous supply of water 
and minerals when the basal root  system  fails  to  do  so  
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(Mergemann and Sauter, 2008). Furthermore, the 
deterioration of the main root system is taken as the 
sacrifice providing energy for the development of well 
adapted root system (Dat et al., 2006). In addition, the 
formation of adventitious roots is associated with 
waterlogging tolerance of plants (Steffens et al., 2006). 

Another important morphological response of plant is 
the development of lacunae gas spaces (aerenchyma) in 
the root cortex. The formation of aerenchyma is 
considered as an adaptive response of the plant under 
flooding stress (Evans, 2004). There are two types of 
processes involved in the development of aerenchyma. 
The first is constitutive development of aerenchyma as it 
is not linked with the abiotic stress. It is formed by the 
cells separated during tissue development.  This type of 
cell death occurring as a result of cell separation is 
termed as shizogeny, regulated developmentally and 
independent of external stimulus. It is formed as a result 
of highly regulated tissue specific pattern of cell 
separation. The second type of aerenchyma development 
is known as Isogeny since it is formed due to partial 
breakdown of the cortex that resembles programmed cell 
death and its formation depends on the external stimulus 
like abiotic stress (Pellinen et al., 1999).  
 
 
GENETIC VARIATION FOR WATERLOGGING 
TOLERANCE 
 
Plants under waterlogged conditions exhibit marked up 
and/or down-regulation of a number of genes. By 
investigating the induced expression of these genes in 
low oxygen environment, it is possible to identify certain 
gene products. Then these potential genes involved in 
conferring waterlogging tolerance can be isolated and 
introduced into the transgenic plants in order to identify 
their possible contribution in stress tolerance. Early 
studies performed by isotopic labeling of maize roots with 
35S-methionine clearly indicated the synthesis of 
anaerobic polypeptides when plants were subjected to 
low oxygen environment (Sachs et al., 1980). The 
anaerobic polypeptides include the enzymes involved in 
fermentation, that is, pyruvate decarboxylate, alcohol 
dehydrogenase and lactate dehydrogenase.  

Moreover, there exists a marked variation in genetic 
resources of potential crops for flooding tolerance. For 
example, it has been widely reported in the literature that 
genetic differences exists in wheat for waterlogging 
tolerance (Gradner and Flood, 1993; Ding and Musgrave, 
1995). Setter et al. (1999) showed that there exists a 
significant genetic diversity among 14 wheat varieties 
when exposed to flooding stress under glasshouse 
conditions. Similarly, genetic variation has also been 
reported in many other plant species, for example, oat 
(Lemons e Silva et al., 2003), cucumber (Yeboah et al., 
2008), Soybean (VanToai et al., 1994) and maize(Anjus e 
Silva et al., 2005). 
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SHORTGUN APPROACHES TO INDUCE 
WATERLOGGING TOLERANCE 
 
Scientists from different geographical regions of the world 
are actively involved in making the plants tolerant to 
flooding stress by the use of exogenous application of 
nutrient and plant hormones. For example, recently, 
Ashraf et al. (2011) reported that exogenous application 
of potassium in soil and as foliar spray alleviated the 
adverse effects of waterlogging on cotton plants. 
Likewise, Ashraf and Rehman (1999) reported that 
application of nitrate in soil proved useful in mitigating the 
harmful effects of waterlogging on different physiological 
attributes of maize. Likewise, Yiu et al. (2009) found that 
exogenous application of spermidine and spermine 
provoked several biochemical and physiological 
adaptations in onion when exposed to flooding stress. In 
this context, exogenous application of uniconazole was 
also helpful in circumventing the damaging effects of 
waterlogging in wheat and oil seed rape plants (Webb 
and Fletcher, 1996; Zhou et al., 1997). Therefore, the use 
of these organic and inorganic compounds offers an 
excellent platform for inducing tolerance to flooding 
stress. 
 
 
CONCLUSION 
 
It can be inferred from the aforesaid discussion that 
waterlogging is one of the major constraints for 
sustainable agriculture. Its effects are evident on the 
entire plant as well as, cellular levels. There is the need 
to screen available germplasm for waterlogging tolerance 
and use the genes responsible for inducing tolerance in 
other potential crops so as to make them resistant as 
well. Waterlogging causes deficiency of several essential 
nutrients. Therefore, exogenous application of these 
nutrient or other plant hormones could be used so as to 
alleviate the adverse effects of waterlogging.  
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