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Two-step two-point hybrid numerical methods for direct solution of initial value problems of general 
second order differential equations are proposed in this study. Chebyshev polynomials without 
perturbation terms are used as basic function for the development of the methods in predictor-corrector 
mode. The collocation and interpolation equations are generated at both grid and off-grid points.  The 
resulting methods are zero-stable, consistent and normalized. The main predictors, having the same 
order with the scheme, are developed for the implementation of the methods. Accuracy of a discrete 
scheme from the methods is tested with linear and non-linear problems. The results show a better 
performance over the existing methods. 
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INTRODUCTION 
 
In this paper, we shall consider a direct solution of general 
second order problem of the form 
 

0 0 0 1( , , ),  ( ) ,  ( )y f x y y y x y x     
                    (1) 

 
Several literatures have shown that this type of equations 
is conventionally reduced to systems of first order ordinary 
differential equations in attempting to solve them.   It is also 
revealed in literature that some researchers have 
attempted the direct solution of (1) using linear multistep 
methods (Lambert, 1973; Brown, 1977; Awoyemi, 2003; 
Adesanya et al., 2008; Kayode, 2010). These authors 
independently proposed methods of various order of 
accuracies to proffer solution to problem (1) at only grid 
points. 

A few authors, (Kayode, 2011; Yahaya and Badmus 
2009;

 
Majid et al., 2009; Alabi et al., 2008; Ehigie et al., 

2010; Kayode and Adeyeye 2011) have introduced hybrid 
methods to solving problem (1) but with lower order of 
accuracies.  

In this work, Chebyshev series was used as basic 
function in generating the interpolation and collocation 
equations for the development of continuous hybrid linear 
multistep method (CHLMM) for the direct solution of 
problem (1). 
 
 
MATERIALS AND METHODS 
 
In this work, we considered using a partial sum of Chebyshev series 
in the form. 
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as the basic function for the development of the method, where c 
and i are the number of collocation and interpolation points 

respectively; 
'ja s

 are the determinate parameters and 
( )nT x

 is 
the Chebyshev polynomial of first kind.

 
    The differential system arising from Equation (2) is given as: 
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Interpolating the basic function (2) at grid points 
,  0,1n ix i 

 
and collocating the differential system (3) at grid and off-grid points 

,  0(1)2,n jx j 
   

,n rx 

 
and

 

,n sx   0 1r   and 

1k s k  
  respectively, gave rise to a system of equations
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where 

   ', , ; ;  n j n j n j n j n i n i n i nf f x y y y y x x x ih         
, k

 

is the stepnumber and h is the stepsize.

 
Determining 

'ja s
 from Equations (4) – (7) and substituting the 

values into Equation (2) yields the continuous hybrid method: 
 

 

1
2

1 2

0 0

( ) ( ) ( ) ( ) ( )
k k

k j n j j n j n r n s

j j

y x x y h x f x f x f   


   

 

 
    

 
 

      (8)

 
 

Taking 

1n kx x
t

h

 


, 2k  , the continuous coefficients j
, 

j , 1 , 2  and their respective first derivatives are obtained as: 
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Evaluating Equation (8) at the last end grid point where 1t   
yields the discrete scheme 
 

 2 1 1 0 0 1 1 1 2 2 2n n n n n r n n s ny y y f f f f f                 
                   (11) 
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The first derivative of Equation (11) is 

 

 ' ' ' ' ' ' ' '
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Implementation of the CHLMM 

 
A sample discrete scheme is obtained for the implementation of the 
method by taking the values of r and s at the mid-point of the 
subintervals containing r and s respectively to obtain 
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The discrete scheme (13) is zero stable, normalized (Lambert, 

1973) and its order of accuracy 
p

 is 6. The absolute error 

constant

6

2 8. 2672 10pC 

  
. The derivative (14) is also of 

order 
6p 

 and 

4

2 1. 9841 10pC 

  
. 

 
 
 
The Predictors 

 
The major disadvantage of predictor-corrector mode has been the 
use of predictors of lower order to implement the scheme. In order 
to overcome this setback, we developed a predictor that is of the 
same order as the scheme. The predictor and its first derivat ive are 
developed using Chebyshev series as a basic function as 
discussed above to obtain 
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Table 1. Numerical results for Problem 1 0.1h   
 

X y-exact y-computed 

0.2 -0.22140275816 -0.22140194098 

0.3 -0.34985880757 -0.34985570401 

0.4 -0.49182469764 -0.49181812807 

0.5 -0.64872127070 -0.64870983266 

0.6 -0.82211880039 -0.82210083478 

0.7 -1.01375270747 -1.01372626007 

0.8 -1.22554092849 -1.22550370623 

0.9 -1.45960311115 -1.45955243246 

1.0 -1.71828182845 -1.71821456690 

 
 
 
and
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The main predictor (14) and its derivative (15) are also of order 6  

with absolute error constant 

5

2 2. 3768 10pC 

  
 and 

4

2 2. 2821 10pC 

  
 respectively. Taylor's series expansion 

for 

1

2
n

y


 was adopted from (Yahaya and Badmus, 2009). 

 
 
NUMERICAL EXPERIMENTS 
 
Test problems 
 
The usability of the derived schemes is confirmed with 
three test problems and the results are compared with 
the results of some existing methods. 
 
 

Problem 1  
 

'' ', (0) 0, '(0) 1y y y y   
 

 

Exact solution: 
( ) 1 xy x e 

 
 
 
Problem 2 
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Exact solution: 
2( )y x Sin x  

 
Problem 3 
 
Brown (1977) 
 

   '' ' '

1 2 1 1cos ,  0 1,  0 1,y y x y y      

 
   '' '

2 1 2 2sin ,  0 1,  0 0y y x y y   

 

 

Exact solution:
   

 
 1 cos sin ;y x x x    2 cosy x x

 
 

 
 
Problem 4 
  
Suleiman (1989) in Majid et al. (2009) 
 

   '' '1
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y
y y y
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    '' '2
2 2 2

2 2
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,  0 0,  0 1
y

y y y
r

r y y


  

 
  

Exact solution:
 

: 
  

 
 1 cos ;y x x  2 siny x x

   
 
RESULTS 
 
Results are explained in Tables 1-6 
 
 
Conclusion 
 
This work has produced a two-point hybrid method for the 
direct solution of general second order initial value non-
stiff and mildly-stiff problems. Chebyshev series was 
used as basic function for the approximate solution to the  
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Table 2. Comparison of errors for Problem 1. 
 

X Errors in Yahaya and  Badmus  (2009) Errors in Ehigie et al. (2010) Method (13) 

0.2 3.27E-04 1.16E-02 8.17176E-07 

0.3 2.22E-03 3.50E-02 3.10356E-06 

0.4 4.86E-03 7.18E-02 6.56957E-06 

0.5 9.10E-03 1.23E-01 1.14380E-05 

0.6 1.44E-02 1.91E-01 1.79656E-05 

0.7 2.15E-02 2.77E-01 2.64474E-05 

0.8 2.99E-02 3.84E-01 3.72222E-05 

0.9 4.03E-02 5.12E-01 5.06786E-05 

1.0 5.26E-02 6.65E-01 6.72615E-05 
 

 
 

Table 3. Numerical results for Problem 2 0.01h  . 
 

X y-exact y-computed 

0.544 0.26751586298 0.26751586348 

0.554 0.27641504148 0.27641504257 

0.564 0.28540365098 0.28540365300 

0.574 0.29447809616 0.29447809933 

0.584 0.30363474736 0.30363475191 

0.594 0.31286994205 0.31286994820 

0.604 0.32217998626 0.32217999423 

0.614 0.33156115611 0.33156116611 

0.624 0.34100969925 0.34100971149 
 
 

 
Table 4. Comparison of errors of Problem 2. 
 

x Errors in  Ehigie et al. (2010) Error in new method (13) 

0.544 4.70E-08 4.04E-10 

0.554 1.46E-07 1.10E-09 

0.564 3.09E-07 2.02E-09 

0.574 5.45E-07 3.17E-09 

0.584 8.65E-07 4.55E-09 

0.594 1.28E-06 6.15E-09 

0.604 1.79E-06 7.97E-09 

0.614 2.42E-06 9.99E-09 

0.624 3.17E-06 1.22E-08 
 
 

 
Table 5. Comparison of errors for Problem 3. 

 

TOL 
Results in Majid et al (2009) Results in New Scheme (13) 

MTD TS MAXE TIME NMTD TS MAXE TIME 

210

 
2P4SDIR 33 2.73003E-2 710 2PHM 33 2.768463E-10 119 

410

 
2P4SDIR 42 1.72828E-3 837 2PHM 55 1.275646E-13 213 

610

 
2P4SDIR 69 6.87609E-6 1182 2PHM 74 3.519407E-14 262 

810

 
2P4SDIR 84 9.64221E-7 1552 2PHM 130 7.510659E-13 447 

1010

 
2P4SDIR 160 2.04449E-9 2485 2PHM 278 3.088640E-13 922 
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Table 6. Comparison of errors for Problem 4. 
 

TOL 
Results in  Majid et al. (2009) Results in New Scheme (13) 

MTD TS MAXE TIME MTD TS MAXE TIME 

210

 
2PFDIR 67 7.98175E-2 938 2-STEP 67 9.763298E-08 635 

410

 
2PFDIR 140 6.93117E-4 1472 2-STEP 140 4.170707E-10 1346 

610

 
2PFDIR 316 7.46033E-6 3318 2-STEP 316 2.100171E-12 2614 

810

 
2PFDIR 394 2.45673E-6 4181 2-STEP 394 3.214551E-15 2788 

1010

 
2PFDIR 938 2.53897E-8 9932 2-STEP 938 2.473336E-17 5590 

 

TOL  - Tolerance, MTD  - Method employed, TS - Total steps taken, MAXE  - Magnitude of the maximum error of the computed solution, 

TIME - The execution time taken in microseconds, 2P4SDIR - Direct two point four step implicit block method of variable step size [9], NMTD  

- New method employed, 2PHM     - 2-Point hybrid method employed with hybrid points  
 
1 3

 and 
2 2

 
 

 
 
 
given problem. A discrete scheme from the derived 
methods was implemented to test its usability and 
accuracy using the main predictor of the same order of 
accuracy. The results, as shown in the Tables 1 to 6, 
revealed that the developed methods are significantly 
better than those of the existing methods. 
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